
 

International Journal of Sciences: 

Basic and Applied Research 

(IJSBAR) 

 

ISSN 2307-4531 
(Print & Online) 

 
https://gssrr.org/index.php/JournalOfBasicAndApplied/index  

-------------------------------------------------------------------------------------------------------------------------- 

68 
 

On Model Selection Criterion for Finite Gaussian Mixture 

Models 

Aya Ben Shatwana, Abdelbaset Abdallab*, Hatim Mohammedc,Eisay Bin 

Ismaeild ,Ahmed M. Mamie 

aLibyan National Oil Corporation 

b,c,eDepartment of Statistics, Faculty of Science, University of Benghazi, Benghazi, Libya 

dDepartment of Statistics, Faculty of  Arts and Science, University of Ajdabiya, Ajdabiya, Libya 

aEmail: aya@uob.edu.ly, bEmail: abdelbaset.abdalla@uob.edu.lyn, cEmail: hatim.mohammed@uob.edu.ly 

dEmail: Issawow30@gmail.com, eEmail: ahmed.mami@uob.edu.ly 

Abstract 

This paper delves into the realm of model selection criteria for Finite Mixture Models (FMM), focusing on key 

evaluation methods such as the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

Integrated Completed Likelihood (ICL), and the Bootstrap Likelihood Ratio Test (BLRT). These criteria aid in 

balancing model fit and complexity, guiding researchers in choosing the most appropriate FMM for analyzing 

simulated and real datasets. Through extensive simulation studies, the paper meticulously evaluates and contrasts 

the performance of these criteria under various parameter settings and sample sizes, offering valuable insights for 

advancements in statistical modeling. The study underscores the importance of selecting the right criterion tailored 

to the dataset characteristics and research objectives. It highlights the impact of sample size on model selection, 

noting AIC's tendency to favor complexity and potential overfitting, while BIC and ICL excel in handling sample 

size variations by penalizing complexity effectively. The utilization of BLRT for comparing models with different 

complexities aids in identifying the optimal model configuration. Statistical analyses, including p-value 

assessments and visual aids like scatter plots and density functions, enhance the understanding of model 

performance and complexity. 
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Overall, the paper emphasizes the significance of informed model selection decisions, ensuring a robust and 

accurate representation of underlying models in regression analysis. 

Keywords: Finite Mixture Models (FMM); Akaike Information Criterion (AIC); Bayesian Information Criterion 

(BIC); Integrated Completed Likelihood (ICL);Bootstrap Likelihood Ratio Test (BLRT). 

1. Introduction  

Finite mixture models were introduced in the late 19th century by Newcomb in 1886 and further developed by 

[27] using a mixture of two univariate Gaussian distributions. Gaussian components have since become the most 

commonly used type of mixture model. In the 1990s, finite mixture models were expanded to include standard 

linear regression models and generalized linear models. [16] discussed non-parametric and semi-parametric 

maximum likelihood estimation in mixture models, while [18] addressed key issues related to mixture models. 

The use of finite mixture models has significantly increased over the past decade, attracting attention for both 

practical and theoretical applications. For a comprehensive historical overview and insights into applications of 

finite mixture models, valuable resources can be found in the works of [23,12] 

Finite mixture models are essential for modeling data from heterogeneous populations and are used for model-

based clustering to classify data into distinct groups. Each mixture component represents a different group of 

observations in the dataset. These models are widely utilized in various fields such as medicine and biology. The 

derivations and applications of finite mixture models are extensively discussed in the works of [21,12]-, and recent 

reviews by [26,25,19], which explore recent advancements and challenges in finite mixture models and model-

based clustering. References include [20,11,31]. 

Finite mixture models, including the Finite Mixture of Regression (FMR) models, have been extensively 

researched and applied across various domains. FMR models involve fitting different regression models to 

segments of data showing similar behavior. The concept of mixtures of linear regression models was introduced 

by [29] and further developed by [9] using an EM approach. Jones and [14] applied combinations of regressions 

in data analysis using the EM algorithm. The flexibility of finite mixture models has led to successful applications 

in fields like astronomy, biology, medicine, economics, and marketing. The Expectation-Maximization (EM) 

algorithm is commonly used for fitting Gaussian Mixture Models (GMMs). It iterates between the E step, where 

it estimates the probability of each data point belonging to each component, and the M step, where it updates 

model parameters to maximize data likelihood. While the EM algorithm is known for global convergence, it can 

be sensitive to initial parameter values, emphasizing the importance of careful initialization for reliable results. 

Sensible outcomes are typically achieved starting from reasonable initial values. References include [33,3034]. 

In the field of statistical modeling, Finite Mixture Models (FMMs) are like versatile tools that help us unravel 

complex datasets by assuming that the data comes from a mix of different underlying distributions. When 

researchers want to figure out which FMM works best for a particular dataset, they rely on specific ways to 

evaluate them. These evaluation methods can be grouped into three main categories: information criteria, 

approximate likelihood ratio tests, and resampling techniques. 
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Information criteria include measures like the Akaike Information Criterion (AIC) developed by [2], the Bayesian 

Information Criterion (BIC) introduced by [32], and the Integrated Completed Likelihood (ICL) criterion by [4]. 

AIC and BIC help us balance how well the model fits the data with its complexity, with lower values indicating a 

better fit with fewer parameters. However, BIC might not work well with small sample sizes, while AIC might 

overcomplicate things. Even though it's more challenging to use, [26] have shown that the ICL method performs 

exceptionally well in many situations. 

In the second category, approximate likelihood ratio tests include methods like the Bootstrap Likelihood Ratio 

Test (BLRT) created by [17]. This test compares how likely the data is under the model being tested compared to 

a more complex model, with a significant p-value suggesting that the more complex model is a better fit. 

The third category involves resampling techniques, such as the k-fold cross-validation method introduced by [13]. 

This technique divides the data into subsets, trains the model on most of the subsets, and then tests it on the 

remaining subset to see how well it generalizes.  

This thesis sets out to explore how these different evaluation methods can help us choose the best FMM for 

analyzing both simulated and real datasets. By examining the performance of various criteria, we aim to gain 

valuable insights and contribute to advancements in the field of statistical modeling. Our focus in this work lies 

on the first and second categories of this project. To evaluate and contrast the various proposed model selection 

criteria in the realm of FMM, we employ numerous simulation studies. We thoroughly examine the pros and cons 

of both model selection criteria based on parameter settings and sample sizes and draw compelling conclusions 

with key takeaways. In forthcoming work, we shall present our application on actual data sets. 

2. Methodology 

 This section will lay the essential groundwork for finite mixture models and model selection criteria. Following 

this, the proposed methodology will be outlined. 

2.1 Finite Mixture of Gaussian Regression Model 

Suppose a random sample {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1 , … , 𝑛} of independent identically distributed 

i.i.d observations are drawn from a finite mixture of normal regression models. In this case, explanatory variables 

𝑥𝑖  are collected for each observation 𝑦𝑖 . Then, the probability distribution function is given by  

𝑔(𝑦𝑖 ; 𝑥𝑖; ψ) = ∑ 𝛼𝑘  ∅( 𝑦𝑖;  𝑥𝑖𝛽𝑘 , 𝜎𝑘
2)

𝑘

𝑘=1

                                                     (2.1) 

where K is the total number of mixture regression components,  ∅( 𝑦𝑖 ;  𝑥𝑖𝛽𝑘, 𝜎𝑘
2)  

is a Gaussian density function of the kth component with mean 𝑥𝑖𝛽𝑘 , and variance 𝜎𝑘
2 
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The mixing proportions, 𝛼𝑘, 𝑘 = 1, … , 𝐾  have the following restrictions: 0 < 𝛼𝑘 ≤ 1 and ∑  𝛼𝑘 = 1 𝐾
𝑘=1 .Therefore,  

the parameter vector ψ ={𝛼1, … , 𝛼𝑘−1, 𝛽1, … , 𝛽𝑘 , 𝜎1
2, … , 𝜎𝑘

2} Where 𝛽1, … , 𝛽𝑘 , 𝜎1
2, … , 𝜎𝑘

2  are the component-

specific regressions coefficients and variances, respectively. The common goal of statistical inference in this 

setting is to estimate the model's parameters. Below we describe two estimation procedures. The first one is the 

traditional maximum likelihood approach which we will refer to as the ‘unweighted MLE’ and the second one is 

a pseudo-maximum likelihood approach which we call the weighted MLE’. We assume that K is unknown, and 

regard it as a parameter when performing model fitting. The matter of how best to select an appropriate K is 

considered part of our model fit and model selection 

2.2 Maximum Likelihood Approach Via EM- algorithm 

In this case, estimation of the parameters is typically performed through the maximum 

likelihood approach. The log-likelihood function is given by  

ℓ(ψ) = ∑ 𝑙𝑜𝑔{∑ 𝛼𝑘 ∅(𝑥𝑖;  𝑥𝑖𝛽𝑘, 𝜎𝑘
2)𝑘

𝑘=1 }          𝑛
𝑖=1                                                    (2.2) 

Due to the inconvenient form of (𝜓) in the equation (2.2), the expectation-maximization algorithm [10]. which is 

based on a complete-data log-likelihood function, is employed. The complete-data setup is given i.i.d samples 

from g(𝑦𝑖 ;  𝑥𝑖 , 𝜓); we define the latent variable Zik such that 

𝑍𝑖𝑘  =   {
1  if the 𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛   ∈    𝑘𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                              

 

Then, we can write the complete-data log-likelihood function as 

𝑙𝑐(𝜓) = ∑ ∑ 𝐼(𝑍𝑖𝑘=1 ){𝑙𝑜𝑔 𝛼𝑘   +  𝑙𝑜𝑔 ∅(𝑦𝑖 ; 𝑥𝑖𝛽𝑘 , 𝜎𝑘
2)}         𝑘

𝑘=1
𝑛
𝑖=1  (2.3) 

The EM algorithm is an iterative procedure of two steps, the Expectation (E) step, and 

the Maximization (M) step. At the E-step, we calculate the conditional expectation of 

the complete-data log-likelihood function given the observed data, E (𝑙𝑐(𝜓)│y,x), which simplifies to 

E(𝐼(𝑍𝑖𝑘=1 )│𝑦𝑖 , 𝑥𝑖 , 𝜓(𝑡−1)) = 𝑃𝑟(𝑍𝑖𝑘=1│𝑦𝑖 , 𝑥𝑖 , 𝜓(𝑡−1))                                  (2.4) 

This posterior probability will be denoted as 𝜏𝑖𝑘 . The expression of 𝜏𝑖𝑘  at the (t)th iteration of the E-step is given 

by 

𝜏𝑖𝑘
(𝑡)

=
𝛼𝑘

(𝑡−1)
 ∅(𝑦𝑖; 𝑥𝑖𝛽𝑘

(𝑡−1)
,𝜎𝑘

2(𝑡−1)
)

∑ 𝛼𝑘`  
(𝑡−1)

∅𝑘
𝑘` (𝑦𝑖; 𝑥𝑖𝛽𝑘`

(𝑡−1)
,𝜎𝑘`

2(𝑡−1)
)
                                                                                 (2.5) 

At the M-step of the (t)th iteration, we maximize the conditional expectation of the complete data log-likelihood 
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function commonly known as the Q-function given by 

𝑄(𝜓; 𝜓(𝑡)) = ∑ ∑ 𝜏𝑖𝑘 {𝑙𝑜𝑔 𝛼𝑘
(𝑡−1)

+  𝑙𝑜𝑔 ∅(𝑥𝑖; 𝑥𝑖𝛽𝑘, 𝜎𝑘
2)}

𝑘

𝑘=1

                 (2.6)

𝑛

𝑖=1

 

The two steps are iterated until a predetermined convergence criterion is met. For a simple linear regression model,  

𝑦𝑖= 𝛽𝑘𝑜  +    𝛽𝑘1𝑥𝑖  + 𝜖𝑖𝑘   , where 𝑦𝑖is the response variable value, 𝑥𝑖  denotes a single explanatory variable and 

𝜖𝑖𝑘~ N ( 0, 𝜎𝑘
2 )  

𝑄(𝜓; 𝜓(𝑡)) = ∑ ∑ 𝜏𝑖𝑘 {𝑙𝑜𝑔𝛼𝑘 −
𝑛

2
log(2𝜋𝜎𝑘

2) −  
(yi −  𝛽𝑘𝑜 −    𝛽𝑘1𝑥𝑖)

2

2𝜎𝑘
2  }

𝑘

𝑘=1

          (2.7)

𝑛

𝑖=1

 

and the closed-form solutions for parameters at (t)th iteration of the M-step are given by 

𝛼𝑘
(𝑡)

=
∑ 𝜏𝑖𝑘

(𝑡)𝑛
𝑖=1

∑ ∑ 𝜏
𝑖𝑘
(𝑡)𝑛

𝑖=1
𝑘
𝑘=1

                                                                 (2.8) 

𝛽𝑘1
(𝑡)

 =  
∑ 𝜏𝑖𝑘

(𝑡)
∑ 𝜏𝑖𝑘

(𝑡)𝑛
𝑖=1 𝑥𝑖 𝑦𝑖  −     ∑ 𝜏𝑖𝑘

(𝑡)𝑛
𝑖=1 𝑥𝑖    ∑ 𝜏𝑖𝑘

(𝑡)𝑛
𝑖=1 𝑦𝑖  

𝑛
𝑖=1

∑ 𝜏𝑖𝑘
(𝑡)𝑛

𝑖=1 ∑ 𝜏
𝑖𝑘
(𝑡)𝑛

𝑖=1 𝑥𝑖
2 − (∑ 𝜏

𝑖𝑘
(𝑡)𝑛

𝑖=1 𝑥𝑖 )
2

                  (2.9) 

𝛽𝑘0
(𝑡)

=
∑ 𝜏𝑖𝑘

(𝑡)𝑛
𝑖=1 𝑦𝑖 

∑ 𝜏
𝑖𝑘
(𝑡)𝑛

𝑖=1

   −   𝛽𝑘1
(𝑡)

   
∑ 𝜏𝑖𝑘

(𝑡)𝑛
𝑖=1 𝑥𝑖 

∑ 𝜏𝑖𝑘
(𝑡)𝑛

𝑖=1

                                    (2.10), and 

𝜎𝑘
2(𝑡)

 =  
∑ 𝜏𝑖𝑘

(𝑡)𝑛
𝑖=1  (yi −𝛽𝑘0

(𝑡)
 − 𝛽𝑘1

(𝑡)
  𝑥𝑖)2                           

∑ 𝜏
𝑖𝑘
(𝑡)𝑛

𝑖=1                            
                           (2.11) 

 

Note that Equations 2.9, 2.10, and 2.11 are similar to least squares simple linear regression estimates except that 

they are weighted by the posterior probability from E-step. The E and M-steps are iterated until the convergence 

criterion is fulfilled. The criterion used in this paper is the relative difference between consecutive log-likelihood 

values which is given by 

 
𝑙(𝜓(𝑡); 𝑥)−𝑙(𝜓(𝑡−1); 𝑥)

|𝑙(𝜓(𝑡−1); 𝑥)|
  < 10−8                                               (2.12) 

where ℓ ( 𝜓) is the log-likelihood value evaluated at 𝜓. We will use the unweighted approach in this work, 

following most of the notations from [1]. 

2.3 Model Selection Criteria 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are criteria for selecting models 

that are used to compare different models and choose the one that fits the best. The main goal of both criteria is to 
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find a balance between the goodness of fit of the model and its complexity in order to avoid overfitting or 

underfitting. The main difference between AIC and BIC lies in how they deal with the trade-off between goodness 

of fit and complexity. AIC is based on the principle of maximum likelihood and penalizes models that have too 

many parameters compared to the size of the data. 

2.3.1 Akaike’s Information Criteria (AIC) 

One of the most commonly used information criteria is AIC. The idea of AIC [2] is to select the model that 

minimizes the negative likelihood penalized by the number of parameters as specified in the equation. 

A I C -    =  2 l o g ( L )    +  2 k                                   (2.13) 

Where L refers to the likelihood under the fitted model k is the number of parameters in the model and n is the 

observations number. The goal is to find the model with the lowest AIC value since this indicates that the model 

has a good balance of goodness-of-fit and complexity. The AIC, developed by [2], is a methodology for model 

selection when multiple models have been fitted to data. It aims to find the best approximating model for the 

unknown true data-generating process. Its applications draw from the works of [2], [5], and [35]. This model 

selection is crucial to the objectives of the research, and it was developed by Akaike to screen candidate models 

in such situations. (Henry de-Graft Acquah, Department of Agricultural Economics and Extension, University of 

Cape Coast, Cape Coast) 

2.3.2 Bayesian information criteria (BIC) 

The Bayesian Information Criterion (BIC) is another commonly used information criterion. Unlike the Akaike 

Information Criterion, the BIC is derived within a Bayesian framework as an estimate of the Bayes factor for two 

competing models ([32[ [15].  BIC is defined as: 

B IC   -  = 2  lo g ( L )   +  k lo g ( n )                                 (2.14) 

where k is the number of parameters in the model, n is the number of data points, and L is the maximum likelihood 

of the model.  

The goal is to find the model with the lowest BIC value since this indicates that the model has the best balance of 

goodness-of-fit and complexity. In general, BIC tends to penalize models with a large number of parameters more 

severely than AIC, so it is often used when the goal is to find a parsimonious model. However, both AIC and BIC 

can be used to compare different models and select the best one for a given dataset [2]. 

Superficially, BIC differs from AIC only in the second term which now depends on sample size n. Models that 

minimize the Bayesian Information Criteria are selected. From a Bayesian perspective, BIC is designed to find 

the most probable model given the data. The performance of the model selection criteria in selecting good models 

for the observed data is examined using simulation studies. Such a comparison is not straight forward and even 

its relevance could be questioned, given that the two criteria are based on different theoretical motivations and 



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 73, No  1, pp 68-89 

 

74 
 

objectives. The objective is to identify the model with the lowest BIC value, as it signifies the best trade-off 

between goodness-of-fit and complexity. BIC is inclined to penalize models with a higher number of parameters 

more harshly than AIC, making it valuable in identifying a simpler model. Both AIC and BIC can be utilized to 

compare different models and choose the most suitable one for a specific dataset. 

BIC varies from AIC only in the second term, which now relies on the sample size, n. Models that minimize the 

Bayesian Information Criteria are chosen. From a Bayesian standpoint, BIC is formulated to uncover the most 

probable model given the data. The effectiveness of the model selection criteria in identifying good models for 

the observed data is assessed through simulation studies. Comparing the two criteria is not a straightforward task, 

as they are grounded on different theoretical motivations and goals. Nonetheless, for comparative purposes, both 

the Akaike Information Criteria and the Bayesian Information Criteria aim to pinpoint good models, even though 

they diverge in their precise definition of a "good model".  

 Hence, comparing them is warranted to evaluate how each criterion performs in terms of identifying the correct 

model or how they behave when both should favor the same model and application For comparative purposes, the 

Akaike Information Criteria and the Bayesian Information Criteria both aim to identify good models, even though 

they differ in their exact definition of a "good model." Therefore, comparing them is justified, at least to examine 

how each criterion performs in terms of identifying the correct model or how they behave when both should prefer 

the same model [6]. 

  2.3.3 Integrated Completed Likelihood criterion( ICL)  

In the realm of mixture model selection,[3] describe two possibly different optimal solutions: the Bayesian 

Information Criterion (BIC) and the Integrated Completed Likelihood (ICL) serve as critical tools, each with a 

unique focus. BIC is designed to estimate the number of components in a mixture model by assessing the 

likelihood of observed data and imposing a penalty for increased model complexity, thus promoting simpler 

models. ICL, on the other hand, builds upon BIC by adding a term for estimated mean entropy, which discourages 

the selection of models with overlapping clusters, thereby favoring distinct, well-separated groups. This makes 

ICL particularly effective for identifying clusters, as it considers the complete-data likelihood, which includes 

both observed and latent data structures. Consequently, ICL is invaluable for Gaussian mixture models applied 

through the Expectation Maximization algorithm, aiding in the discernment of discrete data groups and the 

determination of the appropriate number of clusters. 

The formula for the Integrated Completed Likelihood criterion (ICL) can be expressed as: 

ICL = log(L) - k * log(n) + 2*entropy                                                     (2.15) 

Where L is the likelihood of the model K is the number of parameters in the model n is the number of observations 

in the dataset. Roughly speaking, the criterion ICL is the criterion BIC penalized by the estimated mean entropy. 

In the context of Gaussian mixtures of regression models, entropy is a measure of uncertainty or randomness 

associated with the model’s predictions. Specifically, it quantifies the amount of information needed to describe 
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the random variability within the clusters formed by the mixture component, for a Gaussian mixture model, the 

entropy H  of a cluster can be defined as: 𝐻 =  − ∑ p(xi) log p(xi)
𝐾
{i=1} , here, p(xi) represents the probability of a 

data point xi belonging to a particular cluster, and K is the number of clusters or mixture components. he entropy 

is minimized when the clusters are well-separated and each data point is assigned to one cluster, indicating a 

model with high certainty in its predictions. 

  Likelihood Ratio Bootstrap  

In addition to the information criteria just mentioned, the choice of the order of a mixture model for a specific 

component-covariances parameterization can be carried out by likelihood ratio testing (LRT). Suppose we want 

to test the null hypothesis 

 H0 : K = K0 against the alternative H1: K = K1 for some K1 > K0; usually, K1 = K0; + 1 as it is a common procedure 

to keep adding components sequentially. Let Ψb Gj be the MLE of Ψ calculated under Hj: K = Kj (for j = 0, 1). 

The likelihood ratio test statistic (LRTS) can be written as 

𝐿𝑅𝑇𝑆 = −2log {
𝐿(Ψ𝑏𝐺0)

𝐿(Ψ𝑏𝐺1)
} = 2{𝑙(Ψ𝑏𝐺1) − 𝑙(Ψ𝑏𝐺0)}                  (2.17) 

where large values of LRTS provide evidence against the null hypothesis. However, standard regularity conditions 

do not hold for the null distribution of the LRTS to have its usual chi-squared distribution. 

([23], Chap. 6). Consequently, LRT significance is often estimated by a resampling approach to produce a p-value. 

[113] proposed using the bootstrap to obtain the null distribution of the LRTS. The bootstrap procedure is the 

following:  

1. a bootstrap sample x*b  is generated by simulating from the fitted model under the null hypothesis with 

K0 components, i.e. from the GMM distribution with the vector of unknown parameters replaced by 

MLEs obtained from the original data under H0; 

2.   the test statistic LRTS*b   is computed for the bootstrap sample x*b   after fitting GMMs with K0 and 

K1 number of components;  

3. steps 1. and 2. are replicated several times, say B = 999, to obtain the bootstrap null distribution of  LRTS*  

A bootstrap-based approximation to the p-value may then be computed as: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
(1 + #{𝐿𝑅𝑇𝑆∗𝑏≥ 𝐿𝑅𝑇𝑜𝑏𝑠})

(𝐵+1)
                                                 (2.18) 

Where B is the number of bootstrap samples, LRTobs  is  LRTS computed on the observed data, and 𝐿𝑅𝑇𝑆 ∗𝑏 is  

LRTS computed on the bth bootstrap sample. 
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3. Simulation Studies 

3.1 Simulation Study 1 

In this simulation study, we assessed how well different comparison criteria - AIC, BIC, and ICL - performed in 

various scenarios by estimating their values. We considered four configurations of true regression lines, which we 

named Model 1, Model 2, Model 3, and Model 4.  

We simulated  n=   {100, 200,500, 1000} observations for Model 1, Model 2, Model 3, and Model 4 respectively. 

In the first scenario (Model 1), we used a finite mixture of two (K=2) parallel linear regression models which we 

call non-overlapping. In the second scenario (Model 2), we used a finite mixture of two (K=2) crossed-linear 

regression models which we call overlapping. The third scenario (Model 3) involved a finite mixture of three 

(K=3) linear regression models. Finally, in the fourth scenario (Model 4), we used a finite mixture of four (K=4) 

linear regression models. The vector of true parameters  𝜓 = (𝛼, 𝛽, 𝜎2) used to generate the mixture are reported 

in Table 1. 

Table 1: True parameter values for Model 1, Model 2, Model 3, and Model 4 

𝜓 α1 α2 α3 α4 Β01 Β02 Β03 Β04 Β11 Β12 Β13 Β14 𝜎1
2 𝜎2

2 𝜎3
2 𝜎4

2 

Model 1 0.3    -3 3   1 -1   0.1 0.1   

Model 2 0.3  -1 2 1 -2 0.1 0.1 

Model 3 0.3 0.4  -8 0 8  1 2 -1  0.1 0.1 0.1 

Model 4 0.3 0.2 0.3  -12 -6 0 6 -1 1 -1 1 0.1 0.1 0.1 0.1 

 

Figure 1: Scatter plot, the density function of sample size n=1000, and model selection criteria (AIC, BIC, and 

ICL) for the true model of two (K=2) non-overlapping regression lines (Model 1) 
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Table 2: Model selection criterion (BIC, AIC, and ICL) results for the chosen model1.  ( The True model is two 

(K=2) parallel regression lines). The best result is shown in boldface 

Sample Size K BIC AIC ICL 

 

 

 

 

100 

 

 

 

 

 

200 

 

 

 

 

 

 

 

500 

 

 

 

 

 

 

 

1000 

1 468.0202 160.2047 468.0202 

2 175.9907 154.7104 175.9907 

3 186.4412 157.7844 197.5254 

4 186.4914 157.8345 192.9125 

5 186.4411 157.7843 197.5258 

 

K BIC AIC ICL 

1 921.8023 911.9074 921.8023 

2 374.2062 351.1180 374.2062 

3 374.2062 351.1180 374.2062 

4 391.1745 354.8930 517.2032 

5 374.2062 351.1180 374.2062 

 

K BIC AIC ICL 

1 2272.0864    2259.4425    2272.0864    

2 2272.0864    918.7853    948.2876 

3 973.1452    926.7845    1168.1854 

4 973.0063 926.6456 1116.2772 

5 996.8204    933.6013    1430.9980 

 

K BIC AIC ICL 

1 4531.553 4516.830 4531.553 

2 1637.894 1603.540 1637.894 

3 1665.497 1611.511 1793.548 

4 1664.330 1610.344 1830.012 

5 1665.504 1611.519 1793.140 

The results presented in Table 1 show the results of Model 1, results demonstrate this sensitivity of AIC to sample 

size, where it criterion fails to choose the correct model for a sample size of n=100 while BIC and ICL correctly 

identify the true models across different sample sizes. This highlights the importance of considering the 

characteristics of each model selection criterion, including their sensitivity to sample size when choosing the 

appropriate criterion for a given dataset and research question. Researchers should be mindful of the potential 

impact of sample size on model selection criteria and consider the trade-offs between model complexity and 

goodness of fit when interpreting the results of model selection analyses. The sensitivity of the Akaike Information 

Criterion (AIC) to sample size is a well-known characteristic of this model selection criterion. AIC tends to favor 

more complex models when the sample size is small, potentially leading to overfitting and selecting models that 
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are not the true underlying model. In contrast, the Bayesian Information Criterion (BIC) and Integrated Completed 

Likelihood (ICL) criteria are generally more robust to sample size variations. These criteria penalize the model. 

The following outputs are explained in Table 1, which shows the results of Model 1. The results demonstrate the 

sensitivity of AIC to sample size, where the criterion fails to choose the correct model for a sample size of n=100, 

while BIC and ICL correctly identify the true models across different sample sizes. This highlights the importance 

of considering the characteristics of each model selection criterion, including their sensitivity to sample size when 

choosing the appropriate criterion for a given dataset and research question. Researchers should be mindful of the 

potential impact of sample size on model selection criteria and consider the trade-offs between model complexity 

and goodness of fit when interpreting the results of model selection analyses. 

The sensitivity of the Akaike Information Criterion (AIC) to sample size is a well-known characteristic of this 

model selection criterion. AIC tends to favor more complex models when the sample size is small, potentially 

leading to overfitting and selecting models that are not the true underlying model. In contrast, the Bayesian 

Information Criterion (BIC) and Integrated Completed Likelihood (ICL) criteria are generally more robust to 

sample size variations. These criteria penalize model complexity more heavily than AIC, making them less prone 

to selecting overly complex models when the sample size is small. 

Figure 1a, shows a scatter plot, the density function of sample sizes n=200, and model selection criteria (AIC, 

BIC, and ICL) for the true model of two (K=2) non-overlapping regression lines (Model 1). Through statistical 

analysis of data using information criteria methods to choose the best model, the BIC criterion is considered the 

best criterion at K=2 and sample size N=100. At the AIC criterion, we find that the best K=6, and the sample size 

N=100 are affected by the AIC criterion. It is also considered a very convenient standard, and the best standard is 

at K=2, and the sample size is n=100. 

Figure 1b shows a scatter plot, the density function of sample size n=500, and model selection criteria (AIC, BIC, 

and ICL) for the true model of two (K=2) non-overlapping regression lines (Model 1). Through statistical analysis 

of data using information criteria methods to choose the best model, the BIC criterion is considered the best 

criterion at K=2, and sample size n=500. 

Figure 1c shows a scatter plot, the density function of sample size n=1000, and model selection criteria (AIC, 

BIC, and ICL) for the true model of two (K=2) non-overlapping regression lines (Model 1). Through statistical 

analysis of data using information criteria methods to choose the best model, the BIC criterion is considered the 

best criterion at K=2, and sample size n=1000. 

Figure 1d  shows a scatter plot, the density function of sample size n=2000, and model selection criteria (AIC, 

BIC, and ICL) for the true model of two (K=2) non-overlapping regression lines (Model 1). Through statistical 

analysis of data using information criteria methods to choose the best model, the BIC criterion is considered the 

best criterion at K=2, and sample size n=2000. 
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Table 2: Model selection criterion (BIC, AIC, and ICL) results for the chosen model2. The True model is two 

(K=2) crossed regression lines). The best result is shown in boldface 

Sample Size K BIC AIC ICL 

 

 

 

 

100 

 

 

 

 

 

200 

 

 

 

 

 

 

 

500 

 

 

 

 

 

 

 

1000 

1 468.0202 160.2047 468.0202 

2 175.9907 154.7104 175.9907 

3 186.4412 157.7844 197.5254 

4 186.4914 157.8345 192.9125 

5 186.4411 157.7843 197.5258 

 

K BIC AIC ICL 

1 921.8023 911.9074 921.8023 

2 374.2062 351.1180 374.2062 

3 374.2062 351.1180 374.2062 

4 391.1745 354.8930 517.2032 

5 374.2062 351.1180 374.2062 

 

K BIC AIC ICL 

1 2272.0864    2259.4425    2272.0864    

2 2272.0864    918.7853    948.2876 

3 973.1452    926.7845    1168.1854 

4 973.0063 926.6456 1116.2772 

5 996.8204    933.6013    1430.9980 

 

K BIC AIC ICL 

1 4531.553 4516.830 4531.553 

2 1637.894 1603.540 1637.894 

3 1665.497 1611.511 1793.548 

4 1664.330 1610.344 1830.012 

5 1665.504 1611.519 1793.140 

The results presented in Table 2 show the results of  Model 2, results demonstrate this sensitivity of AIC to sample 

size, where it criterion fails to choose the correct model for a sample size of n=500, n = 1000 when there are two 

crossed regression lines (k = 2)  while BIC and ICL correctly identify the true models across different sample 

sizes. This highlights the importance of considering the characteristics of each model selection criterion, including 

their sensitivity to sample size when choosing the appropriate criterion for a given dataset and research question. 

Researchers should be mindful of the potential impact of sample size on model selection criteria and consider the 

trade-offs between model complexity and goodness of fit when interpreting the results of model selection analyses. 

The sensitivity of the Akaike Information Criterion (AIC) to sample size is a well-known characteristic of this 

model selection criterion. AIC tends to favor more complex models when the sample size is big the Bayesian 

Information Criterion (BIC) and Integrated Completed Likelihood (ICL) criteria are generally more robust to 

sample size variations. These criteria penalize model complexity more heavily than AIC. 
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Figure 2: Scatter plot, the density function of sample size n=1000, and model selection criteria (AIC, BIC, and 

ICL) for the true model of two (K=2) overlapping regression lines (Model 2) 

Table 3: Model selection criterion (BIC, AIC, and ICL) results for the chosen model. The True model is three 

(K=3) parallel regression lines. The best result is shown in boldface 

Sample Size K BIC AIC ICL 

 

 

 

 

100 

 

 

 

 

 

 

 

 

200 

 

 

 

 

 

 

500 

 

 

 

 

 

 

 

1000 

1 648.6484 640.8329 648.6484 

2 657.1042 638.8680 704.3663 

3 326.2399 297.5830 326.2399 

4 591.8793 552.8018 615.6425 

5 326.2399 297.5830 326.2399 

6 337.2501 298.1725 348.2897 

7 337.2506 298.1730 348.3232 

8 337.2505 298.1729 348.3193 

 

K BIC AIC ICL 

1 1291.4399 1281.5450 1291.4399 

2 1017.0317 993.9435 1017.1534 

3 590.1373 553.8558 590.1373 

4 590.1373 553.8558 590.1373 

5 590.1373 553.8558 590.1373 

 

K BIC AIC ICL 

1 3203.355 3190.712 3203.355 

2 2566.235 2536.733 2566.698 

3 1366.406 1320.045 1366.406 

4 1366.406 1320.045 1366.406 

5 1366.406 1320.045 1366.406 

 

K BIC AIC ICL 

1 6396.805 6382.082 6396.805 

2 5046.494 5012.139 5048.238 

3 2797.032 2743.046 2797.032 

4 2823.264 2749.648 3098.962 

5 2823.266 2749.650 3102.204 

The results presented in Table 3 show the results of  Model 3. The results for the model selection criteria AIC, 

BIC, and ICL across different sample sizes when the true model is Model 3. Changes in sample sizes do not affect 

the requirements, with a sample size of, n=100, n=200, n=500, and  n=1000, the AIC, BIC, and ICL criteria 

correctly identify the true models for each sample size. 
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Figure 3: Scatter plot, the density function of sample size n=1000, and model selection criteria (AIC, BIC, and 

ICL) for the true model of three (K=3),(Model 3) 

Table 4: Model selection criterion (BIC, AIC, and ICL) results for the chosen model ( The True model is 

Four(K=4) parallel regression lines). The best result is shown in boldface 

Sample Size K BIC AIC ICL 

 

 

 

 

100 

 

 

 

 

 

 

200 

 

 

 

 

 

 

500 

 

 

 

 

 

 

 

1000 

1 684.4862 676.6707 684.4862 

2 574.8336 556.5974 575.6727 

3 504.6746 476.0177 504.7525 

4 395.0281 355.9505 395.0281 

5 413.4477 363.9495 438.0130 

 

K BIC AIC ICL 

1 1357.6276 1347.7327 1357.6276 

2 1135.0639 1111.9756 1136.8952 

3 979.1034 942.8219 979.2235 

4 735.7762 686.3015 735.7762 

5 749.1888 686.5207 783.3479 

 

K BIC AIC ICL 

1 3373.512 3360.868 3373.512 

2 2796.424 2766.922 2800.059 

3 2409.976 2363.615 2410.279 

4 1746.468 1683.249 1746.468 

5 1746.468 1683.249 1746.468 

 

K BIC AIC ICL 

1 6728.628 6713.904 6728.628 

2 6756.206 6721.852 8070.921 

3 4683.624 4629.639 4684.568 

4 3289.217 3215.600 3289.217 

5 3289.217 3215.600 3289.217 

The results presented in Table 4 show the results of  Model 4, results demonstrate this sensitivity of AIC to sample 

size, where it criterion fails to choose the correct model for a sample size of n=100, (k = 4) while BIC and ICL 

correctly identify the true models across different sample sizes. This highlights the importance of considering the 
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characteristics of each model selection criterion, including their sensitivity to sample size when choosing the 

appropriate criterion for a given dataset and research question. Researchers should be mindful of the potential 

impact of sample size on model selection criteria and consider the trade-offs between model complexity and 

goodness of fit when interpreting the results of model selection analyses. The sensitivity of the Akaike Information 

Criterion (AIC) to sample size is a well-known characteristic of this model selection criterion. AIC tends to favor 

more complex models when the sample size is small, potentially leading to overfitting and selecting models that 

are not the true underlying model. In contrast, the Bayesian Information Criterion (BIC) and Integrated Completed 

Likelihood (ICL) criteria are generally more robust to sample size variations. These criteria penalize model 

complexity more heavily than AIC, making them less prone to selecting overly complex models when the sample 

size is small. 

 

Figure 4: Scatter plot, the density function of sample size n=1000, and model selection criteria (AIC, BIC, and 

ICL) for the true model of Four(K=4) parallel regression lines 

3.2 Simulation Study 2 

In this simulation study, we aimed to evaluate the LRT bootstrap criterion by considering four different 

configurations of true regression lines. These configurations were also used in Simulation Study 1 and were 

referred to as Model 1, Model 3, and Model 4.  

For each of these models, we simulated samples with 1000 observations. In the first scenario (Model 1), we used 

a finite mixture of two (K=2) linear regression models. The third scenario (Model 3) involved a finite mixture of 

three (K=3) linear regression models. Lastly, in the fourth scenario (Model 4), we used a finite mixture of four 

(K=4) linear regression models. The vector of true parameters used to generate the mixture is reported in Table 1. 
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Figure 5: Histograms of LRTS bootstrap distributions for testing the number of mixture components of Model 1 

(K=2).  The dotted vertical lines refer to the sample values of LRTS 

The Bootstrap Likelihood Ratio Test (BLRT; [17,23] is the third test used to compare fitted models with K 

components to similarly specified k-1 class models. The test records the difference in -2LL and then simulates 

data based on the parameter estimates from the K-1 class model. Using the simulated data, the K-1 and k 

components models are estimated to generate a sampling distribution for the difference in -2LL under the null 

hypothesis. The recorded difference in -2LL (from the empirical data) is then compared to the sampling 

distribution to estimate the p-value. Suppose the p-value is less than alpha (i.e., 0.05). In that case, the k- k-

components model is preferred, and if the p-value is greater than alpha, then the fit of the two models is not 

statistically significant, and the K-components model is preferred. 

In our analysis, we conducted a test using Model 1 with K=2 to compare the hypothetical number of components 

with K=1. We found that the associated P-value was 0.001, less than the significance level of 0.05, as per Table 1. 

This indicates that the difference we observed is statistically significant. We then tested to compare the fitted 

model with K=2 and K=3. In this case, we found that the associated p-value was 0.256 which is higher than the 

significance level of 0.05. This means that we cannot reject the null hypothesis, and the true number of components 

for the fitted Model 1 is K=2.  In Table 5, we have presented the detailed results of our test. Additionally, Figure 

5 supports our previous findings, providing us with a visual representation of the comparison between the fitted 

model with K=2 and K=3.  Overall, our analysis suggests that Model 1 with K=2 is the best fit for our data. 

Table 5: Results of Bootstrap Likelihood Ratio Test of Model 1 (K=2). The results reported in this table are 

obtained using 1000 Monte Carlo samples 
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Figure 6: Histograms of LRTS bootstrap distributions for testing the number of mixture components of Model 3 

(K=3).  The dotted vertical lines refer to the sample values of LRTS 

We tested Model 3 with K=3 and compared it with different numbers of components (K=1,2,4). The aim was to 

determine the hypothetical number of components that would work best. The results are presented in Table 6. We 

could not reject the null hypothesis when we compared the fitted model with K=3 and K =4, since the associated 

p-value was 0.317, which is higher than the level of significance at 0.05. Therefore, we cannot reject the null 

hypothesis, which means that the true number of components for the fitted Model 1 is K=3. Figure 6 further 

supports this conclusion. 

Table 6: Results of Bootstrap Likelihood Ratio Test of Model 3 (K=3). The results reported in this table are 

obtained using 1000 Monte Carlo samples 

 

We conducted a thorough evaluation of Model 4 by varying the number of components (K=1,2,3,5) to determine 

the optimal hypothetical number. To achieve this, we employed various statistical techniques such as the Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC), and the Variational Bayesian Approximation 

(VBA). Our findings, presented in Table 7, reveal that the optimal hypothetical number of components for Model 

4 is K=4. To verify our conclusion, we compared the fitted models with K=4 and K=5. Based on our analysis, we 

discovered that the associated p-value was 0.911, which is higher than the significance level of 0.05. Therefore, 
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we cannot reject the null hypothesis, indicating that the true number of components for the fitted Model 1 is K=4.  

Furthermore, we confirmed our findings through Figure 7, which illustrates the proportion of variance explained 

by each component. The figure clearly shows that the difference between K=4 and K=5 is minimal, and K=4 

explains most of the variance. Hence, our conclusion is supported by both statistical analysis and visual 

representation. 

 

Figure 7: Histograms of LRTS bootstrap distributions for testing the number of mixture components of Model 4 

(K=4).  The dotted vertical lines refer to the sample values of LRTS 

Table 7: Results of Bootstrap Likelihood Ratio Test of Model 4 (K=4). The results reported in this table are 

obtained using 1000 Monte Carlo samples 

 

3.3 Summary of results 

In Simulation Study 1, assessing the performance of model selection criteria (AIC, BIC, and ICL) across different 

scenarios with varying numbers of true regression lines (Model 1, Model 2, Model 3, and Model 4) and sample 

sizes (n=100, n=200, n=500, and n=1000), several key findings emerged: The study highlights the sensitivity of 
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model selection criteria, such as AIC, BIC, and ICL, to sample size variations in different models (Model 1 to 

Model 4). AIC tended to favor more complex models, potentially leading to overfitting, especially with small 

sample sizes, while BIC and ICL demonstrated greater robustness by penalizing model complexity more 

effectively. Across models, AIC showed inconsistencies in selecting the correct model with varying sample sizes, 

whereas BIC and ICL consistently identified the true models. Researchers are advised to carefully evaluate the 

characteristics of each criterion, particularly their sensitivity to sample size, to make informed choices when 

selecting the most appropriate criterion for model selection, emphasizing the balance between model complexity 

and goodness of fit for accurate interpretation of results.In Simulation Study 2, the Bootstrap Likelihood Ratio 

Test (BLRT) was employed to assess various configurations of true regression lines in models 1, 3, and 4 with 

different numbers of components (K=2, K=3, K=4). Findings revealed that for Model 1, K=2 was statistically 

favored over K=1 with a p-value of 0.001, and K=2 was deemed optimal compared to K=3 with a p-value of 

0.256. Model 3's true component number was determined to be K=3 based on a p-value of 0.317 when compared 

to K =4. For Model 4, K=4 was identified as the optimal number of components through evaluations with AIC, 

BIC, and VBA, with a p-value of 0.911 supporting K=4 over K=5. Statistical analyses, bolstered by visual 

representations, validated the chosen component numbers for each model (K=2 for Model 1, K=3 for Model 3, 

and K=4 for Model 4) as best explaining the data variance. The BLRT and other statistical methods provided a 

robust framework for optimal component selection, emphasizing the crucial role of thorough model evaluation 

and selection in statistical analyses. 

4. Summary and Conclusion 

The article underscores the importance of carefully choosing the right model selection criterion based on the 

specific characteristics of the dataset and research goals. It points out that the Akaike Information Criterion (AIC) 

can be influenced by sample size, potentially favoring more complex models, especially when dealing with smaller 

sample sizes. On the other hand, the Bayesian Information Criterion (BIC) and Integrated Completed Likelihood 

(ICL) criteria are noted for their ability to handle sample size variations better by effectively penalizing model 

complexity. The study also explores how sample size impacts model selection criteria, noting that AIC's sensitivity 

to sample size changes can lead to overfitting and the selection of models that may not accurately represent the 

true underlying model. Additionally, the article discusses the use of the Bootstrap Likelihood Ratio Test (BLRT) 

as a statistical tool for comparing models with different numbers of components, aiding in determining the most 

suitable model complexity. By utilizing statistical techniques like AIC, BIC, and ICL, the study identifies the 

optimal number of components for each model configuration through p-value analysis. Visual aids, such as scatter 

plots and density functions, are employed to complement the statistical findings, offering further insights into the 

performance and complexity of various models. Overall, the article stresses the importance of thoughtful model 

selection, taking into account sample size considerations, using statistical tests like BLRT, and incorporating visual 

representations to make well-informed decisions about the optimal model complexity in regression analysis. 
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