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Abstract

Oil and gas domain deals with a varied set of problems ranging from methane leaks to prognostics and health
management. This study demonstrates a solution to identify whether there is a methane leak or not and classify
on what level the leak occurs based on different flow rates (5.3 g/h — 2051.6 g/h) at 5 distances (4.6 m - 15.6 m),
using various spatial and temporal preprocessing techniques and deep learning models. For this study, we are
using the GasVid methane leak dataset which consists of videos taken from infrared cameras on 2 different
separators with a frame rate of 15 frames per second. Firstly, we applied a series of preprocessing steps,
including contrast enhancement, Gaussian blur, three different background subtraction methods, namely moving
average background subtraction method, KNN Gaussian mixture model, and Gunnar Farneback optical flow
analysis. To save computational resources, temporal down-sampling was applied on the video frames.
Thereafter, experiments were conducted using the 3D CNN model by modifying hyperparameters. It was found
that on comparing the Adam and Lion (EvoLved Sign Momentum) optimizers, the Lion Optimizer increased
accuracy by more than 34% and achieved state-of-the-art accuracy of 41.36% on 4.6 m videos. Further, the
moving average background subtraction method's performance surpassed other background subtraction
techniques. In addition, applying spatial preprocessing and down-sampling raw videos were compressed from
2.3GB to ~200MB which is a reduction factor of 11.
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1. Introduction

Different greenhouse gases and their emissions contribute to global warming and understanding the level of
impact they can have will significantly change the measures employed to address climate change. Although
carbon dioxide (CO2) with its centuries-long persistence and huge quantities is a primary contributor. Methane,
though less abundant, is responsible for 17.3% of warming on a century-long timeline. However, reducing
methane emissions will have more immediate benefits for climate change owing to its 20-year lifespan and

quicker effect in reducing global warming rather than efforts aimed at CO2.

Approximately 33% of methane emissions in the United States are from oil and gas systems. Natural gas is
endorsed as an environmentally friendly alternative to coal because it reduces greenhouse gas emitted on
burning by half, however, a more nuanced picture emerges on considering full lifecycle emissions. Natural gas
operations occur in several phases such as extraction, processing and distribution, all of which may have
methane leakage. With a minimal leakage rate of 0.2% the climate impact of natural gas may supersede coal,
thus casting doubts on its clean energy status (Wang and his colleagues [2]). Estimates suggest that actual rates
may be substantially higher, 1.4% as per EPA and 11% by other studies. Furthermore, the top 5% of major leaks

account for nearly half the emissions, which highlights the urgency for targeted detection and intervention.

Our research proposes developing an autonomous, edge-based methane leak detection and monitoring system
for oil and gas systems. Using infrared cameras in place of expensive sensors can help deploy such a system
across thousands of sites in the US. This can also combat logistic barriers prevalent at remote, bandwidth-
limited operation sites. The EPA and DoE announced $1 billion to reduce methane emissions from the oil and
gas sector, along with fining excess emissions from certain facilities, providing significant financial incentives

for such emission monitoring systems.

2. Materials and methods

The GasVid dataset proposed by Wang and his colleagues [1] has 31 recordings nearly 24 minutes each
amounting to 669,600 frames in total. A wide range of leaks from 5.3 gCH4/h to 2051.6 gCH4/h at distances
between 4.6 m to 15.6 m are covered using FLIR GF-320 infrared camera enhanced by including different
ambient variables. The videos were collected at Colorado State University's METEC laboratory, home to over
50 metered leak sources, offers lab-controlled settings to reproduce actual gas leaks. To maintain uniformity for
model validation, the first 15 and last 5 seconds of each recording are omitted. This research study utilizes
convolutional neural networks (CNNs), optical gas imaging (OGI) and machine vision captured with infrared
cameras to detect methane emissions from natural gas. GasNet, the CNN model built by training, validating and
testing on the GasVid dataset, outperforms the baseline change detection system based on Gunnar Farneback
optical-flow algorithm. Other background subtraction methods like fixed background subtraction, moving
average background subtraction and Mixture of Gaussian-based (MOG) background subtraction were assessed
in parallel leading to the conclusion that moving average background subtraction surpasses the rest in methane
plume isolation. It was also observed that for minor leaks, accuracy is inversely proportional to distance. The

GasNet models had detection accuracies between 95% and 99% for leaks of all sizes and at varying distances.
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Notably, binary detection accuracy for major leaks at smaller distances surpassed 97% and the GasNet-2 model

had optimal performance across varying distances.

VideoGasNet [2] by Wang and his colleagues uses their previously introduced dataset GasVid and further
subdivides each video into 3-minute sections comprising 2700 frames to minimize the cost of computation.
Variable duration datasets with 15 to 100 frames are generated from the video subsections using a sliding
window approach. Image preprocessing methodologies such as moving average background subtraction and
pixel value normalization are applied on the input dataset along with analysis of different segmentation lengths
to maintain consistent training dataset sizes and improve model accuracy. On comparing 2D CNN, 3D CNN,
and ConvLSTM models, 3D CNN provided the best performance and is referred as VideoGasNet. On applying
the model for binary detection, its accuracy is about 100%, for multi-class leak classification for three-class
categorization it achieved 78.2% accuracy and for the complex eight-class categorization, 39.1%. These results

show considerable improvement over random chance accuracy of 12.5%.

Ravikumar and his colleagues [3] developed an open-source model that simulates passive infrared (IR) imaging
in optical gas imaging. They conducted experiments near Sacramento, California to record 800 methane frames
using a FLIR GF320 camera at rates between 1 g/s and 29 g/s and distances between 10 to 60 meters. To avoid
strong winds or sudden direction changes, 50 frames were selected from each for model validation. For image
processing Lucas-Kanade optical flow technique and direct image enhancement using filtering and thresholding
were used. Accuracy was determined using pixels of plume in a frame and comparing it against the simulation
results. The greatest factor influencing accuracy of detection was identified to be distance, at 10 meters 80%
emission was detected. Another factor is the background of the image, aerial observation is less efficient in
contrast to land-based detection against the sky or low-emission backgrounds. Temperature of the scenes does
not impact efficiency of OGl-based leak detection. The minimum detectable leak rate (MDLR) for distances
from 10 to 200 meters is increased nearly 25 times. It is observed that detection efficiency is enhanced by super

emitters, therefore the focus should be on larger breaches to mitigate the effects of methane emissions.

Another deep learning framework to detect point-source methane emissions is introduced by Rouet-Leduc &
Hulbert [9]. It uses a Vision Transformer (ViT) encoder combined with a U-Net decoder architecture for
emission detection in multi-spectral satellite images (Sentinel-2). Synthetic Gaussian plumes at different
emission rates and wind conditions were embedded into Sentinel-2 scenes that were collected over varied land
covers, topographies as well as climates. The input consists of two time-steps (t-1 and t) for ten Sentinel-2 bands
(resampled to 20 m where needed). By comparing bands over a span of time transient signatures can be
detected. On synthetic test data, the model achieves high F1-scores (harmonic mean of precision and recall)
down to signal-to-noise ratios of ~5%, substantially outperforming the state-of-the-art Multi-Band Multi-Pass
(MBMP) thresholding methods used on the same data. When applied to real methane plumes cataloged by
airborne surveys (Carbon Mapper), the model reliably detects plumes of approximately 0.01 km2 area,
corresponding to emission rates of 200-300 kg methane/h under typical wind conditions. False positive rates are
low: e.g. <0.03% at the pixel level for an ~85% true positive rate at that threshold. The authors discuss that

detections decline sharply for much smaller leak rates/plume extents below those thresholds.
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Daugela and his colleagues [10] to study methane emissions in Lithuania from the Kariotiskes landfill. The
UADS integrated GIS-derived products with multispectral imaging (RGB, near-infrared, thermal infrared) and
collected data between 2015-2018 flying DJI Matrice 200 UAVs with Zenmuse X4S and Trimble UX5 with
Sony NEX-5R sensors. Digital elevation models (DEMs), NDVI maps and high spatial resolution orthoimages
developed were used to determine areas of localized methane emissions, Further, a lightweight gas sensor array
and thermal infrared imagery of the identified areas enabled mapping of surface temperature anomalies and
validate methane presence. The approach enables rapid localization of emission hotspots and monitoring of
landfill topography with minimal structural changes observed over time, though methane influence is inferred

rather than quantified precisely for many areas.

A number of optical techniques namely tunable diode laser spectroscopy (TDLS), lidar, cavity-enhanced
absorption spectroscopy (CEAS) for methane detection were reviewed by Kwasny & Bombalska [11]. These
included various domains of application such as atmospheric monitoring, industrial leak detection, etc. and
ranged from low-ppm/ppb levels to nearly 100% concentrations. Selectivity of absorption lines, field
deployability, interference of absorption bands from CO. and water vapor, cost, trade-0ffs between compactness
and sensitivity refined by employing high-quality cavities or long optical path lengths emerged as key areas of
concern. They also present Designs of laser methane analyzers (e.g. differential absorption lidar, TDLS, NIR
instruments) were presented and their performance parameters such as detection limits, optical path lengths, and
spectral regions used were compared. In summary, though remote sensing and laboratory methods have
achieved very low detection limits, practical systems still struggle with robustness, cost, and interference in

“real world” outdoor conditions.

During the California Methane (COMEX) campaign, Airborne Visible/Infrared Imaging Spectrometer-Next
Generation (AVIRIS-NG) were used by Thompson and his colleagues [12] for methane detection in real-time. A
matched-filter algorithm was used to extract methane absorption features from the shortwave infrared region
from hyperspectral data streams. For plume concentrations 1% above surroundings, column enhancements are
estimated at noise-equivalent levels of ~141 ppm-m which retained sensitivity while reducing computational
cost. Concurrent in-situ sensors and non-imaging spectroscopic measurements were validated which maintained
cross-platform consistency. Not only does this support adaptive sampling strategies but also allows for real time
redirection of airborne measurements toward active emission hotspots. As one of the first demonstrations of
real-time for airborne hyperspectral methane detection, its results show reliable plume localization irrespective

of atmospheric conditions.

2.1. Experimental Setup/Dataset

This study has been performed on the GasVid dataset proposed by Wang and his colleagues [1] created at
METEC, Colorado State University in a controlled setting recorded between July 10 to July 14, 2017. It has 31
videos, each 24 minutes long with a total of over a million frames with recordings from production separators
and tanks using a FLIR GF-320 IR camera. The METEC facility simulated varied real gas leaks from over 50
metered leak sources at varying distances and size of leaks ranging between 5.3 to 2051.6 g CH4/h. Since it was

a controlled setting external factors such as moving vegetation and steam were excluded. Although there are
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challenges like environmental factors(wind) and low video resolution, the dataset helps in developing and
testing methane leak detection systems. Of the 31 videos, 5 videos were excluded as they were at a distance of
18.6m which is too far for an operator to detect leaks, 1 video at a distance of 8.8m was excluded as it would
result in imbalance of the dataset. Among the 25 videos being considered, 10 were recorded at separator 1 and
the rest on separator 2 at different times of the day and varying distances. Separator 2 videos were used for
training and Separator 1 videos were used for validation to ensure broad applicability and robustness of the
model.

Figure 1: Training focus on 4.6-meter proximity

To set up a baseline for leak detection under controlled conditions, videos recorded at 4.6m which is closest is
taken into consideration. For validation, videos taken at longer distances like 6.9 and 9.8 meters to account for
leaks differing in distance and visual appearance due to atmospheric conditions and camera angles to simulate
real-world scenarios. However, the GasVid dataset does have some shortcomings. It does not simulate large
leaks, since it uses standardized 5mm tubing, which are rare but important due to their excessive contribution to
total methane emissions. It does not include real-world interference from moving objects, water vapor or steam
which are important obstacles to consider while detecting leaks. Another critical shortcoming is the uncontrolled
wind factor as wind speed and direction massively change the appearance of methane plumes reinforcing the
requirement for another dataset that can address these concerns.

Figure 2: Testing focus on 6.9-meter proximity

The test dataset consists of methane leaks recorded from a raised vent having 2.5cm diameter but seven varying

rate of emissions between 1 g/s (equivalent to 5 mscf/day) to around 29 g/s (135 mscf/day). The leaks were
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captured at distances between 10 to 60 meters using a FLIR GF320 camera near Sacramento, CA. The videos
were captured at 16 fps resulting in nearly 800 frames for each flow rate. To extract high-quality uncompressed
videos, the ResearchlR software was utilized. The magnitude of the leak changed the plume’s velocity, both
horizontally and vertically and the plume’s dispersion was affected by surrounding winds and vertical velocity.
To make the test dataset more complex, several environmental components such as airplane contrails in the
distance(observed in specific video segments such 7 as LeakVid71) and airborne insects were included. Further,
the plume source was intentionally placed at different places (corner of video frame) to ensure model

robustness.

Class 2 pixel mean Class 2 pixel Std. De'

Class 2 pixel mean

100 100
150 ’ 150

200

Class 6 pixel mean

Class 6 pixel mean Class 6 pixel Std. De

100 100

150 150

200 200

Figure 3: Comparing pixel, grayscale pixel mean, and pixel standard deviation of Class 2 and 6 images

Figure 3 contrasts methane leakage for two classes: Class 2 (lower methane leak) and Class 6 (greater methane
leak). Although the average pixel images seem visually comparable, the grayscale pixel mean images clearly
reveal Class 6 with a brighter and more extensive emission source, suggesting higher methane leakage. While
Class 2 shows a smaller, more focused emission pattern with less variability, the pixel standard deviation images
highlight this difference by showing more variability and dispersion for Class 6 commensurate with larger leak

intensity.

2.2 Preprocessing

2.2.1 Spatial preprocessing

Contrast enhancement: A series of contrast enhancement techniques were applied to the input frames
beginning with top-hat transformation, followed by contrast limited adaptive equalization (CLAHE). As the
input frames are gray scale and represent white methane plumes against a dark background, we utilized top-hat
filter with a kernel size of 15, which extracts brighter and lighter objects of interest contrasting with a dark
setting. It enhances the minor details of the input image and extracts subtle variations in pixels in front of a dim
backdrop. Following that, we executed CLAHE (Contrast Limited Adaptive Histogram Equalization) to
improve the contrast of the input frames while managing the over-amplification of noise. We used the default
tile size of 8x8 and applied histogram equalization to smaller independent parts of the images to capture local

contrast.
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Gaussian blur: In gaussian blur, every pixel is substituted by the weighted average of the neighboring pixel
values which smooths the image by reducing noise. In this paper, we used a kernel size of 5, which defines the

dimensions of the square for the calculation of the mean of the weights of the surrounding pixels.

Background subtraction: In this section, we will introduce 2 different background subtraction methods to
detect dynamically moving entities. For the dataset, we need to extract foreground masks of dynamically
moving objects against the static dark background. We adopted the moving average background subtraction
method by Wang and his colleagues [1], as it has demonstrated superior performance against the fixed
background subtraction and Mixture of Gaussians-based (MOG) background subtraction. Also, we implemented
KNN Mixture of Gaussians-based method and Gunnar Farneback optical flow algorithm that extracts

foreground mask by subtracting current frame and background model.

e Moving average: Wang and his colleagues [1] proposed this approach where a background model is
created by a series of initial frames by taking the running average of pixels of the previously processed frames
and the current frame. Subsequently, the absolute difference between the present frame and the background
model is computed to detect the new entities. For this paper, we have used a learning rate of 0.01 which
determines the impact of the current frame while calculating the background model. An accuracy threshold
parameter of 30 is chosen for this research paper, which is important to contrast stationary, dark backdrop from
foreground entities.

e Optical flow analysis: Gunnar Farneback A dense optical flow algorithm introduced by Gunnar
Farneback is applied to detect the relative motion of objects between two subsequent frames by computing
intensity gradient of vectors along both horizontal and vertical axis. In our study, we used a threshold value of 5
for optical flow estimation, defining the minimum numerical value of the flow of objects in subsequent frames

to filter out small and large motions of objects.

Binarization: To identify specific features and extract foreground elements from the background, we converted
the grayscale images to binary images, where each pixel denotes either white (1) or black (0) color. White and
black are assigned based on pixel intensity values. If the value is above a pre-determined threshold, it is
assigned white denoting foreground entity, otherwise it is assigned black denoting a background element. In our
study, we experimented with two threshold values, i.e. 5 and 20 to identify the region of interest and the

magnitude of noise we intend to keep in the preprocessing steps.

2.2.2 Temporal Segmentation

Down-sampling: The dataset consists of 25 videos of approximately 24 minutes each with a frame rate of 15
frames per second of 67 MB. In this research, we applied a down sampling technique, which reduces the number
of frames in a video by eliminating selected frames while maintaining essential visual information for efficient
storage and video compression. Here, we deployed down sampling technique with a factor of 0.5, which
removes every alternate frame from the original video to create a new video by reducing the frame rate by half.
After completing the preprocessing and down sampling steps the final size was reduced to 24 MB, signifying a

significant decrease of 65%.
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Sliding window: After performing preprocessing steps and down sampling, the 24-minute videos are reduced to
~12 minutes set, which brings it down to ~1400 frames per video. Due to computational limitations while
training deep learning models (Kohar and his colleagues [7]), we further break down a 1.5-minute video to
multiple videos of 15 frames each using sliding window of size 15 (Wang and his colleagues [1]) and 5 frame
strides, thus reducing parameters fed into the model. A 5-size stride is indicative of number of frames skipped to
interpret the next window and 15 size window indicates the number of consecutive video frames taken into

consideration while performing processing.
2.2.3 Data augmentation

As methane gas leak videos could be affected by factors like camera angles, distances, lighting condition and
other external environmental interference, it is pertinent to simulate these variations by augmenting the data,
making the model more robust to real-world scenarios. In this work, we use 10 data augmentation techniques
like uniform zoom, asymmetric zoom, combined affine transformations (translation, scaling, rotation), 90° angle
rotation, 45° angle rotation, random rotation, horizontal flipping, vertical flipping, diagonal flipping and

sequential augmentation of the raw data described below.

Zoom: We conduct various zooming parameters, in combination with flipping and rotation of the data. We find
that zooming in or scaling doesn’t expose the model to variations in the data set as the training and test datasets

already cover a similar range of scales, leading to redundant information.

Flip: In the GasVid dataset, plumes appear on either side of the separator because of the wind direction. Thus,
images have been flipped horizontally to diminish methane plumes' horizontal alignment which increases model

robustness and ensures invariance to wind among other environmental factors.

Rotate: To reproduce real-world situations, images are rotated to account for multiple orientations of the object

and camera. Our study uses 20% rotation, which implies random rotation by an angle of +72 degree to -72

--

(a) Post-processed image b) Flipped image (c) Flipped and rotated

degree.

Figure 4: Data Augmentation Techniques for Methane Gas Leak Videos

2.2.4 Deep learning architectures

In this section, the methodology of deep learning frameworks used is detailed, including the selection criteria of

hyper-parameters used. As processing all data at once requires more computational and memory resources, we
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trained all data into batches to enable parallel processing of data.

3D CNN model: We use the modification of 3D convolution structure presented by Wang and his colleagues
Reference [2] comprising of three units: 3 convolutional units, single dense layer and an output dense layer with
8 units. First, the input data is rescaled from a range of [0,255] to [-1, 1] for better model performance. In the
convolutional structure each convolutional layer has increasing kernel sizes (4,8,16), coupled with a batch
normalization layer, ReLU activation layer, a dropout layer 11 for regularization and a max pooling layer.
Additionally, it has a flattening layer plus a256 unit dense layer and an 8-unit (leak0 - leak?7) softmax output
layer for multi-classification. To prevent overfitting while training the dropout layer is set at 0.25 and sets a
subsection of the input for each iteration to be 0. Each layer's weight is initialized based on the previous layer

using the He Normal initializer to converge to the global minimum of the loss function fast.

ResNet model: First the 2D images are augmented by horizontal flipping and a rotation between +72 deg and -
72 deg after which it is fed into the ResNet-18 model with 18 layers and a “skip connection”, which means that
the input given to a layer can be fed to the output. This solves the vanishing gradient problem while
backpropagating. The residual network’s output is flattened and processed by a dense layer with He
normalization, L2 regularization and ReLU activation. Two more layers for regularization, batch normalization
and a dropout layer followed by a final dense layer having softmax activation and 8 units used for multi-class

problems form the complete model.

Octave Convolution model: An image could be divided into 2 categories based on spatial frequency: low
spatial frequency component, which captures gradual variations in structure and high spatial frequency
components, which illustrate fine detailed structural changes. We use Octave Convolution for the division of
low- and high-level spatial frequency. Our Octave convolution model is divided into 3 building blocks: an initial
block, which divides the input data into low and high frequency components, the core block for processing both
frequency components and finally the concluding component to combine the high and low frequency segments.
High-level features are processed like traditional convolution neural networks, while low frequency units are
sampled and processed separately, reducing spatial resolution, thus leading to a reduction of computational

resources.

2.2.5 Hyper-parameter tuning optimizer

This research study uses two optimizers namely Adam optimization which has stochastic gradient descent
adaptive estimation method based on calculating the first and second order moments. The other one is Lion
which uses the sign function to estimate only the 12 first-order momentum and is also a memory-efficient
optimizer. It is observed in Chen and his colleagues (2024) that with larger batch sizes Lion’s performance

improves gradually. This paper utilizes a batch size of 64 for Lion and 8 for Adam.

Batch size: The training batch size depends on the rate of convergence, duration of each epoch, and
computational efficiency. Although small batch sizes are less memory-intensive they have a noisy gradient and

large batch sizes provide more accurate gradient calculations. Experimenting with a wide range of batch sizes
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(8, 16, 32, 64, 128, and 256) it was determined that the Adam optimizer performs better with smaller batch
sizes (8) while Lion provided superior results for large batch sizes (64) especially while training the Octave

Convolution.

Learning rate: Learning rate is a critical hyper parameter which governs the step size to adjust model’s weights
during each iteration to minimize the loss function. While a higher learning rate often leads to overshooting the
minima of the loss function, a smaller learning rate takes longer to converge and might get stuck into local
minima. In this study, we use a smaller learning rate of 1e-4 for Lion optimizer as it results in larger norm due to
sign operator used in calculating the momentum. For Adam optimizer, we use a high learning rate of 1e-3. Both

these optimizers Lion and Adam have inherent adaptive learning rate capabilities.

Weight initialization He: Random weight assignment is done based on He norm initialization with the range of
the initialization governed by incoming connections from previous layers. To get a more effective gradient
descent, a Gaussian distribution is used to choose weights with standard deviation depending on previous layer

sizes and mean of 0.

2.2.6 Student-teacher distillation

Our research delves deep into understanding knowledge distillation and its application in Octave convolution.
Our study uses the Octave convolution model as a ‘teacher’ model. After training the teacher model, we utilize
its acquired weights to transfer its knowledge to a ‘student’ model that has half the number of filters. In addition,
we started the training of the teacher model from its initial state to establish a standard method for comparison.
A distillation loss function is used to measure the difference between the softened predictions made by the
student model and the softened labels provided by the teacher model, built at a specific temperature. An alpha
coefficient for balancing student and distillation losses. During the computation loss step, we coordinate a
forward pass of both the teacher and the student models. We then determine the loss by multiplying the student
loss and distillation loss by alpha and (1 - alpha), respectively. In our studies, we applied a value of 0.5 to the
alpha parameter and a value of 2 to the temperature parameter. We perform training on the base Octave CNN
model. The teacher model had about 4,920,124 parameters, equivalent to almost 19MB. The student model on
the other hand, has a reduced complexity, with 1,230,906 parameters, occupying nearly 4MB of space. On
multiplying the student model's size by two to take into consideration 4, 8, 16, and 128 filters, its total
parameters went up to 2,460,860, equivalent to 9.39 MB. This demonstrates a large decrease in size compared to
the teacher model, while still maintaining substantial power for learning. By using half the filters, the student
model achieved a validation accuracy consistent with the teacher model's accuracy. This student model is

deployed on Agora edge devices for methane detection and methane leak prediction.

3. Constraints and Limitations

Despite the controlled design and careful methodology, this study faces several important constraints that limit
the scope and generalizability of its findings. These are discussed below in terms of dataset design,

preprocessing and modeling, and eventual real-world deployment.
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3.1 Dataset Constraints

3.1.1 Restricted Leak Types and Sizes

The GasVid dataset is constructed using standardized 5 mm tubing, which only allows for small to medium-
scale leaks to be simulated. While these leaks are important for calibration and controlled experimentation, they
fail to capture the large or catastrophic leak events that, although less frequent, account for a disproportionate
share of global methane emissions. As a result, the dataset underrepresents scenarios that are most impactful for

climate monitoring and industrial safety.

3.1.2 Controlled Environment Bias

Among the videos collected at METEC, Colorado State University's artificial testbed, videos with
environmental disruptions were deliberately omitted. This meant real-world operational complexities prevalent
in oil and gas fields or industrial facilities were not considered. Consequently, GasVid has data consistency

“clean” laboratory-like conditions but might result in model overfitting.

3.1.3 Distance and Angle Limitations

In the training dataset, proximity (4.6 m) recordings are used while validation is at intermediate distances (6.9 -
9.8 m), which does not cover the entire operational extent sensors need to cover. Although plume appearance
variations are simulated, in the real world, leaks may need to be detected from tens to hundreds of meters away
or at unfavorable camera angles. Thus, the scalability of the trained models in real industrial inspection

scenarios is constrained.

3.2 Preprocessing and Modeling Constraints

3.2.1 Augmentation Coverage Gaps

Although zooming, rotation, flipping, introduce several variations in orientation of the plume and wind
direction, certain convoluted environmental conditions could not be replicated. Fog, rain, snow, dust, or changes
in thermal background were not taken into consideration which are likely to introduce ambiguity to methane
plumes in practice. Their absence could result in poor generalization by the trained models in adverse field

conditions.

3.2.2 Down-Sampling Trade-offs

Frames were down sampled by a factor of 0.5 which cut the frame count nearly in half. This results in
eliminating temporal dynamics such as faint turbulence patterns in the plume motion. While the computational

overhead is reduced, thereby improving training efficiency, it may be critical for accurate leak classification.
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3.3 Generalizability and Deployment Constraints

3.3.1 Lack of Multi-Plume Scenarios

The Sacramento dataset and GasVid simulate single-source plumes, however, real-world scenarios have
numerous leaks with overlaying plumes. Although methane leak detection and its classification become easier,
the model's relevance to scenarios where the leak source is not isolated such as industries becomes limited.

3.3.2 Edge Dependence and Transferability

While the FLIR GF-320 camera is an extensively used infrared sensor, its availability and suitability for all
deployments may not occur. This constrains the universality of the suggested methods since portability to

different camera types offering various resolutions, sensitivities, or spectral ranges was not tested.

4. Results and Discussion

4.1 Comparing model architectures

Table 1: The runs were conducted on a dataset of 4.6 million videos, utilizing preprocessing techniques

including contrast enhancement, Gaussian blur, moving average background subtraction, down-sampling, and

binarization
Model Training accuracy Validation accuracy
OctConv 37.69% 41.36%
ResNet 52.84% 35.05%
3D CNN 58.75% 37.62%

Table 1 depicts that Octave Convolution (OctConv) has the highest validation accuracy of 41.36%. The 3D
CNN showed strong overfitting indicated by a higher training accuracy (58.75%) and a sharp drop in its
validation accuracy 37.62%. ResNet shows poor generalization (35.05%), despite having decent training
accuracy (52.84%).

Low frequency plumes appear as smooth, slowly varying structures while sharper edges and boundaries signify
high frequencies. OctConv separates and processes high and low-frequency components separately while also
being computationally lighter than conventional CNNs or frame-based classification models making it the most

accurate and practical choice for methane plume detection in real time.

4.2 Comparing background subtraction methods

Table 2 depicts the accuracies of moving average background subtraction, Gunnar-Farneback optical flow and
KNN-based subtraction. Moving average background subtraction performs substantially better than the other

methods, nearly 6% which further strengthens the belief that, for static backgrounds, simple temporal averaging

334



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 78, No 1, pp 323-341

techniques perform better.

Uniform, low-texture infrared backgrounds prove difficult for KNN-based background subtraction while
motion-based methods like Gunnar-Farneback optical flow (validation 28.57%) are not effective for optical flow
resulting in incorrect detections for subtle plume motion due to its sensitivity to small intensity variations and

noise. Therefore, moving average is the clear choice for its computational efficiency and robustness.

Table 2: The runs were conducted on a dataset of 4.6 million videos, utilizing preprocessing techniques

including contrast enhancement, Gaussian blur, moving average background subtraction, down-sampling, and

binarization
Method Training accuracy Validation accuracy
Moving average 37.69% 41.36%
Gunnar-Farneback 58.52% 28.57%
K-nearest neighbours 45.21% 34.79%

4.3 Comparing training and validation datasets with varying distances

Table 3: All runs were conducted with preprocessing techniques including contrast enhancement, Gaussian

blur, moving average background subtraction, down-sampling, and binarization

Training dataset Validation dataset Validation accuracy
4.6m 41.36%
6.9m 27.4%

4.6m 6.9m(cropped to 4.6m) 31.18%
9.8m 24.18%
9.8m(cropped to 4.6m)  28.09%

6.9m 6.9m 32.89%

9.8m 9.8m 24.16%

Table 3 shows accuracies for different distances, where closer distances resulted in better accuracies. At 4.6 m
the models yield the best accuracy (41.36%), and performance gradually declines as validation distance is
increased to 6.9 m and 9.8 m. This leads to the conclusion that distance directly impacts plume detection This
indicates that plume detectability decreases as distance increases, owing to atmospheric dispersion and reduced

infrared contrast.

Camera positioning and calibration prove to be critical, as observed by an improvement in accuracy on cropping
and resizing validation data to emulate closer distances(e.g., 27.4% — 31.18% for 6.9 m). Pre-deployment
calibration along with software-based adjustments can significantly boost performance when close distance data

is unattainable.
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4.4 Comparing optimizers

Table 4: All runs were done on 4.6m videos, with preprocessing methods of contrast enhancement, Gaussian

blur, moving average background subtraction, down sampling and binarization, using an OctConv model

Optimizer Training accuracy Validation accuracy
Adam 38.67% 39.45%
Lion 37.69% 41.36%

Table 4 shows that the Lion optimizer shows less overfitting and slightly better validation accuracy (41.36%)
while Adam (39.45%) tends to overfit small datasets showing higher training accuracy but worse generalization.
Usage of sign-based momentum estimation by Lion improves regularization, making it more suitable for larger
batch training in this study.

4.5 Comparing different augmentation parameters

We experimented with different sets of augmentation parameters in the training dataset to find the optimal
values that will lead to highest validation accuracy. We started with different combinations of rotation and zoom

values.

4.5.1 Changing rotation with fixed zoom level

Table 5 shows the accuracy on rotation to simulate wind direction and turbulence on the plume. Moderate
rotation (0.3) provided the best validation accuracy (41.36%) however, excessive rotation (>0.3) degraded

accuracy as it introduced noise in place of useful variability.

Table 5: All runs used an OctConv model on 4.6m videos, with preprocessing methods of contrast

enhancement, Gaussian blur, down sampling and binarization

Rotation Zoom Training accuracy Validation accuracy
0.1 0 42.79% 39.62%
0.2 0 39.07% 40.69%
0.3 0 37.69% 41.36%
0.4 0 36.63% 40.95%

4.5.2 Changing zoom with fixed rotation level

Table 6 shows the impact of zoom on accuracy. The best results were achieved at zoom = 0 indicating that

introducing artificial magnification distorts plume morphology and has no improvements on accuracy.
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Table 6: All runs used an OctConv model on 4.6m videos, with preprocessing methods of contrast

enhancement, Gaussian blur, down sampling and binarization

Rotation Zoom Training accuracy Validation accuracy
0.3 0 37.69% 41.36%
0.3 0.1 37.07% 38.53%
0.3 0.2 35.87% 37.73%
0.3 0.3 36.09% 35.82%

Overall, rotation-based augmentation proved beneficial, while zooming offers little to no advantage.

4.6 Grad-CAM visualizations

Grad-CAM visualizations (Figure 5) depicted that the OctConv model activated along plume boundaries and
dense regions of emissions implying no overfitting to background patterns. The deployment is trustable as it

helps in visualizing the model's field of view during classification.

Figure 5: Grad-CAM visualizations of various preprocessed frames

4.7 Test data: Finding the best zoom multiplier

On applying the OctConv model to independent test videos at 0.65 zoom multiplier it resulted in the best
accuracy (34.14%) (Figure 6), thus proving that deployment time calibration (cropping/zooming) significantly
improves accuracy without retraining. Further, this one-time low-cost calibration strategy adapts the model to

various camera placement distances and site setups.
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Test Data : Acc vs Zoom
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Figure 6: Comparing test accuracy for different zoom factors
All runs used an OctConv model on 4.6m videos, on different zoom test data
4.8 Eight-class classification problem

Figure 7 shows the full eight-class classification results in an overall accuracy of 41.36%, outperforming state-
of-the-art 39.1% benchmark. Class 0 “no leak” cases were identified with 100% accuracy, however larger leaks
(Classes 4-7) have high intensity plumes which show varying shapes and were less distinguishable by the
model. Thus, the model minimizes false positives but is less reliable for larger leaks reinforcing the trade-off
between granularity and reliability. Although fine-grained classification is thorough it is challenged by label
confusion, especially for higher leak classes.
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Figure 7: Confusion Matrix with Eight-class classification

4.9. Leak and non-leak binary classification problem

During preprocessing, binarization helps in detecting the plume which makes binary classification possible
without model inference. Not only does this reduce computational load by avoiding frames with no detected

plumes but also enhances field deployment efficiency as leaks may not be present in most frames.
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4.10. Three-class classification problem

Figure 8 shows that combining eight leak classes into small, medium, large leaks categories significantly
improved accuracy to 66%. Reduction in granularity of classification improves the reliability of the model.
Moreover, identifying “large leaks” is more pertinent to operations than being able to distinguish between

adjacent leak classes.

Overall, the accuracy, comprehensibility, and actionable insights of the three-class system makes it more

suitable for practical deployment.

e Small leaks: Class 0-1
e Medium leaks: Class 2-4
e Large leaks: Class 5-7
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Figure 8: Confusion Matrix with Three-class classification

By preprocessing, we compress the videos by 68%. Using Student-Teacher distillation, we are reducing the size
of our model by 79%, reducing it to 4MB from 19MB, making it very lightweight for edge devices. For a 1-
minute video, 20 preprocessing takes ~6 seconds and classification takes ~4 seconds. Since we can run this in

parallel, we can get real time classification and quantification of methane leaks.

Significance - We have achieved a better 41.36% accuracy which is better than state of the art accuracy of
39.1%. We minimized memory requirements by using a smaller model and significant compression of raw data
in preprocessing. This optimizes for constraints on bandwidth in remote sites and hence are ideal for deploying
on edge devices. Processing data in batches resulted in reduced memory requirements and faster processing and
classification speeds. Low-cost real-time classification and quantization of methane leaks is achieved by running
analysis in parallel to smaller chunks of a video. This can be easily generalized to various locations, distances of

the camera from the plume, backgrounds, etc.
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5. Conclusion and future work

Our paper illustrates a unique application of methane leak detection by early detection. Using the GasVid
dataset, we have built a model whose overall size has been reduced by 79% (from 19MB to 4 MB) which is
helpful for its use in Internet of Things (IoT) applications because the devices have less processing power and
small storage capabilities. The research has used many different optimizers like Lion, Adam and on comparing
it found that Lion Optimizers provides the highest accuracy. Data augmentation, the process of adding to the
existing data to improve model performance, by maintaining original image size (zoom 0), horizontal flip
followed by slight rotation (0.3) drastically improved results. The research also showed that prepping the
background of images using the moving average method increased accuracy by 6%. Overall, the Octave
Convolutional Model is the most effective with an accuracy score of 41.36%.

Estimating flow rate of the leakage and using that as an added feature in our current methodology and utilizing
segmentation analysis to gain thorough understanding of leak related data. As future scope, applying this model
to relevant, related datasets especially drone data and satellite data will deliver even better conclusions. In
conclusion, developing economical, efficient and accurate models for methane leak detection will have real-

world applications, in 10T and edge computing, beyond academic research.
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