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Abstract 

This paper numerically explores the effect of heat transfer on Jeffrey fluid flow over a horizontal stretching sheet 

in the absence of magnetic field and under chemical reaction. The governing coupled nonlinear momentum, 

thermal, concentration boundary layer equations are rendered into a system of coupled nonlinear ordinary 

differential equations through similarity transformation with suitable boundary conditions. The obtained fourth 

order and second order differential equations are reduced to first order ordinary differential equations using 

shooting method then it is numerically solved using bvp4c in MATLAB. This present investigation is of great 

interest relevant to colling of metallic plates, polishing of artificial heart valves and separation processes in 

chemical industries. 
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1. Introduction  

Heat transfer over a stretching sheet is important because the rate of cooling has great effect on the quality of the 

product. Boundary layer flow has extensive application in industry, Engineering, aerospace manufacturing, and 

medical Industries, numerous researchers and scientists achieved results in the fluid flow and heat transfer , M. R. 

Eid, and his colleagues [1] has given intense study on “Effects of NP Shapes on Non-Newtonian Bio-Nanofluid 

Flow in Suction/Blowing Process with Convective Condition: Sisko Model,” J. Nonequilibrium Thermodyn, M. 

J. Kotresh, G. K. Ramesh, V. K. R. Shashikala, and B. C. Prasannakumara, and his colleagues [2] has studied the 

“Assessment of Arrhenius activation energy in stretched flow of nanofluid over a rotating disc,” M. 

Sheikholeslami, S. A. Shehzad, Z. Li, andA. Shafee, and his colleagues [3] gave a  “Numerical modeling for 

alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law,” M. 

R. Eid and A. F. Al-Hossainy, and his colleagues [4] has given a research on “Synthesis, DFT calculations, and 

heat transfer performance large-surface TiO2: ethylene glycol nanofluid and coolant applications,’’ 

H.Blasius,Grenzschichten , and his colleagues [5] intense study in Flussigkeiten mit Kleiner Reibung,z.Angew, 

Fang, X.; Xuan, Y.; Li, Q, and his colleagues [6] gave an Experimental investigation on enhanced mass transfer 

in nanofluids, Veilleux, J.; Coulombe, S. , and his colleagues [7] gave A dispersion model of enhanced mass 

diffusion in nanofluids,Hayat, T., Mustafa, M., , and his colleagues [8] have studied the Influence of thermal 

radiation on the unsteady mixed convection flow of a Jeffrey fluid over a stretching sheet, Nadeem, S., Tahir, B., 

Labropulu, F., Akbar, N.S. and his colleagues [9] given a study on Unsteady oscillatory stagnation point flow of 

a Jeffrey fluid, Hayat, T., Shehzad, S.A., Qasim, M., Obaidat, S., , and his colleagues [10] pioneered the  Radiative 

flow of Jeffery fluid in a porous medium with power law heat flux and heat source, M. Qasim, I. Khan, S. Sharidan, 

, and his colleagues [11]  examined the Heat transfer in a micropolar fluid over a stretching sheet with Newtonian 

heating,S. Nadeem, R. Mehmood, Noreen. Sher Akbar, and his colleagues [12] examined the Non-orthogonal 

stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer, 

S. Nadeem, Noreen. Sher Akbar , and his colleagues [13] studied the Peristaltic flow of a Jeffrey fluid with 

variable viscosity in an  asymmetric channel , M. Khan, F. Iftikhar, A. Anjum , and his colleagues [14] added 

Some unsteady flows of a Jeffrey fluid between two side walls over a  plane wall 

,T. Hayat, S. Asad, M. Qasim, A. Hendi , and his colleagues [15] gave Boundary layer flow of a Jeffrey fluid with 

convective boundary conditions,T. Hayat, S.A. Shehzad, M. Qasim, S.Obaid , and his colleagues [16] gave a 

study on Thermal radiation effects on the mixed convection stagnation-point flow in a Jeffery fluid, S. Srinivas 

and M. Kothandapani, and his colleagues [17] studied heat and mass transfer of fluid,M. Massoudi and I. Christie, 

and his colleagues [18,22] a study on Nonlinear steady flow, M Y Malik,I Zehra,S.Nadeem, and his colleagues 

Reference [23] gave a Numerical treatment of Jeffrey fluid with pressure  dependent viscosity,C.S.K Raju 

,M.J.Babu,N.Sandeep, and his colleagues [24] has examined the  Chemically reacting radiative MHD Jeffrey 

nanofluid flow over a cone in porous medium, P.V Satya Narayana, D Harish Babu, and his colleagues [25]  

pioneered the Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with 

chemical reaction and thermal radiation several investigations have been carried on Jeffery fluid few of them are 

hereby cited. In view of all the mentioned above research the main objective of the present article is to explore 

the eat and mass transfer on the Jeffrey fluid in the absence of magnetic field over a linearly stretching sheet. 

Effect of non -dimensional governing parameters such as Prandtl number, the ratio of relaxation to retardation 
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times. Here we also describe the numerical method, we present result and discuss. Finally, we summarize our 

result and present our conclusion. 

1.1. Mathematical formulations 

The essential equations for Jeffrey fluid can be written as 

𝜏 = −𝑝𝑙 + Ε                                                          (1) 

Ε =
𝜇

1+𝜆1
[𝑅1 + 𝜆2 (

𝜕𝑅1

𝜕𝑡
+ 𝑉. ∆) 𝑅1]                                  (2) 

Where Ε is the extra stress tensor, 𝜏 is the Cauchy stress tensor, 𝜆1and 𝜆2are the material parameters of 

Jeffrey fluid and 𝑅1 is the Rilin -Ericksen tensor defined by  

                   𝑅1 = (∇𝑉) + (∇𝑉)′                             

 

Figure 1: The physical model of the flow problem and coordinate system 

A steady two-dimensional incompressible, electrically conducting Jeffrey fluid over a linear 

stretching sheet in the presence of chemical reaction, thermal radiation and heat source flow is 

generated, due to linear stretching of the sheet, caused by simultaneous application of two equal and 

opposite forces along the x-axis and y-axis is taken normal to it. The origin is fixed as shown in Figure 

1.The temperature and the species concentration have power index m variations with the 

distance from the origin. At t = 0, the sheet is impetuously stretched with the variable velocity 

Uw(x). 

Under these assumptions the governing equation of continuity and momentum take the following form 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                           (3) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜐

1+𝜆1
[

𝜕2𝑢

𝜕𝑦2 + 𝜆2 (𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑦2 + 𝑣
𝜕3𝑢

𝜕𝑦3 −
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2 +
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
)]                         (4) 

Where 𝑢, 𝑣 are the velocity components in the x and y direction, respectively,𝜐 is the kinematic viscosity, 𝜆1 is 
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the ratio of relaxation and retardation time,𝜆2 is the relaxation time. 

The equation of heat transfer and thermal radiation is given as 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘

𝜕2𝑇

𝜕𝑦2 −
𝜕𝑞𝑟

𝜕𝑦
− 𝑄(𝑇 − 𝑇∞)                                    (5) 

Where 𝑐𝑝 is the specific heat and 𝑘 is the thermal conductivity, T is the temperature of the fluid.𝑇∞ is the constant 

temperature of the fluid far away from the sheet 

By using Rosseland diffusion approximation, the radiative heat flux 𝑞𝑟 is given by  

𝑞𝑟 = −
4𝜎∗

3𝐾𝑠
 

𝜕𝑇4

𝜕𝑦
                                              (6) 

Where 𝐾𝑠 and 𝜎∗ are the Rosse land mean absorption coefficient and the Stefen-Boltzmann constant, resp. the 

temperature within the fluid flow is considered sufficiently small such that 𝑇4can be expressed as linear function 

of temperature. 

𝑇4 ≈ 4𝑇∞
3𝑇 − 3𝑇∞

4                                                (7) 

On solving (6) (7) and (5) we get 

𝜕𝑞𝑟

𝜕𝑦
= −

16𝜎∗𝑇∞
3

3𝐾𝑠

𝜕2𝑇

𝜕𝑦2                             (8) 

We introduce a dimensionless temperature variable 𝜃(𝜉) of the form 

𝜃(𝜉) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
                             (9) 

1.2. Boundary Conditions 

The following boundary conditions on velocity, temperature and concentration  are appropriate in order 

to employ the effect of stretching of the boundary surface causing flow in x-direction as 

𝑢 = 𝑈𝑤(𝑥) = 𝑐𝑥, 𝑣 = 0 𝑎𝑡 𝑦 = 0  

𝑢 → 0, 𝑢′ → 0 𝑎𝑠 𝑦 → ∞    

𝑇 = 𝑇𝑤 = 𝑇∞ + 𝐴1 (
𝑥

𝑙
)

𝑚

at y=0                                                                                            

T→ 𝑇∞as y→ ∞                       (10) 

Where𝐴1,  𝐴2  are constants, 𝑙  is the characteristic length, m is the surface temperature parameter, 𝑇𝑤  is the 
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stretching sheet temperature, 𝐶𝑤  𝑎𝑛𝑑 𝐶∞ are the concentration at the wall and far away from the wall, resp.                                                                                                                                                                                       

The following similarity transformations are introduced to solve equation (4) (5) and (9) 

𝑢 = 𝑐𝑥𝑓′(𝜉), 𝑣 = −√𝑐𝜐𝑓(𝜉)  𝑤ℎ𝑒𝑟𝑒 𝜉 = √
𝑐

𝜐
 𝑦                     (11) 

Where 𝜉 is the similarity variable and 𝑓(𝜉)   is the dimensionless stream function 

Substituting eq (13) in eq (4) (5) and (10) we obtain second and fourth order ordinary differential equations as 

follows 

𝑓′′′ + (1 + 𝜆1)(𝑓𝑓′′ − 𝑓′2
) + 𝛽(𝑓′′2

− 𝑓𝑓𝑖𝑣) = 0                    (12) 

(1 +
4𝑅

3
) 𝜃′′ + Pr(𝑓𝜃′ − 𝑚𝑓′𝜃 + 𝛾𝜃) = 0                 (13) 

With boundary conditions (10) takes the form: 

𝑓(𝜉) = 𝑠, 𝑓′(𝜉) = 1 𝑎𝑡 𝜉 = 0; 𝑓′(𝜉) = 0, 𝑓′′(𝜉) = 0 𝑎𝑠 𝜉 → ∞  

𝜃(𝜉) = 1 𝑎𝑡 𝜉 = 0 ;  𝜃(𝜉) = 0 𝑎𝑠 𝜉 → ∞                                                                       (14)               

Where 𝛽 = 𝜆2𝑐 is the Deborah number,𝑅 =
4𝜎∗𝑇∞

3

𝐾𝑠
 the radiation parameter, 

𝑃𝑟 =
𝜌𝑐𝑝

𝑘
  the Prandtl number, 𝛾 =

𝑄𝜐

𝜌𝑐𝑝
 is a heat source parameter 

The system of non -linear ordinary differential equations (14) (15) (16) with the boundary conditions (17) are 

converted to ordinary differential equations using shooting method and using MATLAB bvp4c the numerical 

solution is obtained; thus, the fourth order and second order equations are reduced to system of simultaneous 

equations of order one. 

𝑓 = 𝑦(1), 𝑓′ = 𝑦(2), 𝑓′′ = 𝑦(3), 𝑓′′′ = 𝑦(4)  

𝜃 = 𝑦(5), 𝜃′ = 𝑦(6)                                                   (15) 

Substituting these in (11)(12)(13) and (14) we have 

𝑦(4) + (1 + 𝜆)(𝑦(1)𝑦(3) − 𝑦(2)2) + 𝛽(𝑦(3)2 − 𝑦(1)𝑓𝑖𝑣) = 0          (16) 

𝜃′′ (1 +
4

3𝑅
) − 𝑃𝑟(𝑦(1)𝑦(6) − 𝑚𝑦(2)𝑦(5)+𝛾𝑦(5)) = 0        (17) 

 Boundary Conditions 
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𝑦0(1) = 1, 𝑦0(2) = 1 ;  𝑦∞(2) = 0, 𝑦∞(3) = 0; 𝑦0(5) = 1, 𝑦∞(5) = 0; 𝑦0(7) = 1, 𝑦∞(7) =0; 

Equations (19)(20)(21) are reduced to eight simultaneous equations of first order as follows 

𝑦′(1) = 𝑦(2)  

 𝑦′(2) =  𝑦(3)  

𝑦′(3) = 𝑦(4)  

𝑦′(4) =
1

𝛽𝑦1
(𝑦4 + (1 + 𝜆)(𝑦1𝑦3 − 𝑦22) + 𝛽𝑦32)            (18) 

𝑦′(5) = 𝑦(6)  

𝑦′(6) = −
𝑃𝑟

(1+
4

3𝑅
)

(𝑦1𝑦6 − 𝑚𝑦2𝑦5 + 𝛾𝑦5)                  (19) 

The governed equations are solved numerically using MATLAB using bvp4c 

1.3. Results and Discursion 

The Following Graphs Gives the variation of velocity, temperature and concentration 

Fig 2 shows the effect of Pr Prandtl number on temperature, it shows that the temperature decreases with the 

increase of Pr. Physically it can be stated as the reduction in temperature is due to the thermal diffusivity, as 

thermal diffusivity decreases the Pr number increases and thus the temperature decreases. 

Fig 3 shows the effect of ratio of relaxation and retardation time 𝜆 on velocity, increase in 𝜆 cause the reduction 

of boundary layer velocity of fluid.  

fig 4 shows the effect of heat source parameter 𝜆1on temperature.it is clear that heat source gives an increase in 

the temperature of the fluid, physically the increase of heat source in the boundary layer generates energy which 

causes the temperature of the fluid to increase. 

 fig 5 and fig 6 shows the effect of Deborah number 𝛽 on the fluid velocity, as 𝛽 increases the velocity increases, 

physically Deborah number 𝛽 is proportional to the rate of stretching sheet, the increase of 𝛽 results in a higher 

fluid motion in the boundary layer. 

fig 7 it shows the effect of R on temperature profile, as temperature distribution increases with the increase in the 

value of R, this is due to fact that the thermal boundary layer thickness increases with an increase in thermal 

radiation, thus to proceed cooling process faster the radiation should be minimized.  
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  Figure 2: Temperature profile for Pr                                                      Figure 3: velocity profile for 𝜆 

 

 

 

 

 

Figure 4: temperature profile for 𝛾                                                                     Figure 5:  velocity profile for 𝛽 

 

 

 

 

 

Figure 6: Radial velocity profile for 𝛽                                                   Figure 7: Temperature profile for R 

Nomenclature 

𝐴1𝐴2    constants 

C concentration [k mole/m3] 
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𝑐𝑝 specific heat at constant pressure 

𝐶∞ species concentration far away from wall 

𝐶𝑤species concentration at the wall 

D diffusion coefficient[m2/s] 

Ε  extra stress tensor 

R Radiation parameter 

𝑅1      Rivlin-Erickse tensor 

𝑈𝑤     shrinking velocity [m/s] 

𝑢, 𝑣  velocity components in the x, y directions, resp.[m/s] 

𝜆1 ratio of relaxation and retardation time  

𝜆2 relaxation time 

𝜏 Cauchy stress tensor 

𝜐 kinematic viscosity [m2/s] 

𝜌 fluid density [Kg/m] 

𝑇 fluid temperature 

𝑇∞temperature far away from the wall[K] 

K fluid thermal conductivity [W/m/K] 

𝐾𝑠 Rosseland mean absorption coefficient 

𝐾𝑟∗ chemical reaction parameter 

𝜎∗ Stefan-Boltzmann constant 

𝜃 non dimensional temperature 

𝜙 non dimensional concentration 
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𝑞𝑟 radiative heat flux 

Pr Prandtl number 

𝛽 Deborah number 

𝑆𝑐 Schmidt number 

𝛾 heat source parameter 

x distance along the wall[m] 

y distance normal to the wall [m] 

𝜉 similarity variable 

𝑙  characteristic length 

m surface temperature parameter 

Subscripts 

W sheet surface 

∞  infinity 

Superscript  

′  differentiation with respect to 𝜉 
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