
 

International Journal of Sciences: 

Basic and Applied Research 

(IJSBAR) 

 

ISSN 2307-4531 
(Print & Online) 

 
https://gssrr.org/index.php/JournalOfBasicAndApplied/index 

--------------------------------------------------------------------------------------------------------------------------- 

510 
 

Synchronization of Chaotic Oscillators Operating in the 

UHF Band Using the Adaptive Observer Method 

Franklin Djimasraa*, Jean De Dieu Nkapkopb, Nestor Tsafackc, Abdelkrim 

Boukaboud, Jean Yves  Effae 

aDepartment of Fundamental Sciences, University of Moundou, B.P. 206 Moundou, Tchad 

bDepartment of Electrical Engineering and Industrial Computing, University Institute of Technology, P.O. Box 

8698 Douala, Cameroon 

cResearch Unit of Laboratory of Condensed Matter, Electronics and Signal Processing(URMACETS) 

dDepartment of Physics, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon 

eDepartment of Electronics, University of MSB Jijel, Ouled Aissa, Jijel 18000, Algeria 

aEmail: masrafranck@gmail.com,bEmail: jdd.nkapkop@gmail.com 

cEmail: nestor.tsafack@yahoo.fr,dEmail: aboukabou@gmail.com 

eEmail: effa_jo@gmail.com 

Abstract 

In this work, we consider the synchronization between chaotic oscillators with different orders and operating in 

the UHF band. Firstly, the normalized state equation of Hartley and Colpitts oscillators are presented as well as 

their chaotic behavior has been proven in this frequency band. Secondly, the problem of dynamics synchronization 

is investigated, and a controller based on Lyapunov stability theory is proposed to ensure synchronization between 

both oscillators. Finally, computer experiments are provided to demonstrate the effectiveness and feasibility of 

the proposed synchronization approach. 
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1. Introduction 

Chaos synchronization refers to a process wherein two (or many) chaotic systems (either identical or non-

identical) adjust a given property of their motion to a common behavior due to coupling or forcing. The idea of 

synchronizing chaotic systems with different initial conditions was introduced by Pecora and Carroll in 1990 [1]. 

Since then, there has been a particular interest in chaotic synchronization, due to many potential applications in 

secure communication [2]. Hence, in order to recover the information, the chaotic generator (drive system) in the 

transmitter must be synchronized with the generator (response system) in the receiver. Many other fields have 

been subject of chaos synchronization such as chemical and biological systems [3,4]. 

On the other hand, the study of chaotic oscillators to information technologies [10] is under intensive investigation. 

In this frame, there is a great interest behind the study of chaotic oscillator operating at high MHz frequencies, 

due to their potential applications in future communication systems [11], and in radar systems [12]. In particular, 

it has been shown that the Colpitts oscillator, with special settings of the circuit parameters can exhibit chaotic 

behavior. This circuit was investigated at the kHz frequencies [5], high (3-300MHz) frequencies [6] and ultrahigh 

(300-1000 MHz) frequencies [7] both numerically and experimentally. At the same time, it has been shown that 

Hartley oscillator, according to the general architecture of circuit parameters structures can produce chaotic 

behavior [8]. 

To synchronize chaotic oscillators, a huge variety of methods have been developed such as nonlinear Pecora-

Carroll method [13,14], linear coupling technique [11,15,16], adaptive synchronization [17], active control 

synchronization [18], linear feedback control method [19], observer-based synchronization [20] and so on. Note 

that most of the aforementioned methods investigated the chaos synchronization for identical chaotic oscillators 

however, both Colpitts and Hartley chaotic oscillators may be identical [11,12,14-16,18-20] or non-identical with 

different parameters in most cases [16,17]. Recently, a lot of effort has been devoted to synchronize a class of 

chaotic systems in the presence of system’s disturbances and unknown parameters [21, Boukabou,. . . ]. Especially, 

the adaptive observer based synchronization concept has attracted increased interests among the others since it 

presents the advantage that the full state vector estimation of system’s disturbances and unknown parameters, and 

chaos synchronization can be achieved simultaneously. Thus, it is important and interesting to investigate chaos 

synchronization behavior between non-identical Hartley and Colpitts oscillators using the adaptive observer 

method. Although, the method of the synchronization of two different chaotic oscillators is far from being 

straightforward, in this work, we address the problem of chaos synchronization between two non-identical chaotic 

oscillators with different orders designed to operate in the UHF band. This is numerically investigated by means 

of integration of simplified (piecewise-linear) different equations. Following the concept of adaptive observer 

based synchronization [22], we address the problem of dynamics synchronization using a controller based on 

Lyapunov stability theory to ensure synchronization between non-identical Hartley and Colpitts oscillators. 

Finally, computer experiments are provided to demonstrate the effectiveness and feasibility of the proposed 

synchronization approach. It is worth noting that the use of the electronic Hartley and Colpitts oscillators is due 

to the following reasons: On the first hand, the Hartley oscillator uses a tapped coil and a diode as maintenance 

circuit in the sense that the presence of an internal current source in the JFET explains its active behavior and 

produces the chaotic behavior in autonomous operation. The non-linearity in this circuit comes from the effect of 
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the diode. On the other hand, the Colpitts oscillator uses a simple transistor as maintenance circuit; it has an 

intrinsic non-linearity due to the bipolar transistor (BJT) and it was a diversified dynamic behavior. The frequency 

range of this later oscillator can vary from a few hertz to UHF band, and hence, solicited in electronic devises and 

communication systems.The remainder of this paper is organized as follows. In Section 1, the circuit models for 

Hartley and Colpitts oscillators are introduced, and the normalized state equations are presented while their chaotic 

behavior is confirmed. In Section 2, the synchronization state of chaotic oscillators with different orders is 

addressed using the adaptive observer method. Lyapunov stability theory to ensure synchronization between non-

identical Hartley and Colpitts oscillators are proven. In Section 4, computer experiments are investigated to 

validate this approach. Finally, Section 5 concludes the paper. 

2. Circuit and basic equations of oscillators 

In this section, we briefly introduce the circuits under investigations and give their corresponding state space 

equations. 

2.1. Chaotic dynamic of Hartley oscillator 

Figure 1 represents the oscillator consisting of a JFET  and a tapped coil [23]. The control parameter of this 

oscillator is the bias voltage source connected to the circuit between the drain  D  of the JFET  and the ground. 

In case if the control parameter has to be different from the bias voltage source, variable inductors may be used at 

the place of the tapped coil. Otherwise, the circuit has to be upgraded to a three-component chaos generating 

Hartley’s oscillator by the insertion of a variable resistor. In this later case, chaos will occur only for low values 

of that resistance, in the range of some few ohms, if this is mounted in series with the source  S  or with the gate

 G  of the JFET . The value of the connected resistance is considered as the control parameter. It should be 

noted that, this later equal to zero, then the circuit will behave like the two-component circuit in discussion in this 

paper. The resistance can also be connected in parallel to one side of the tapped coil, for instance between  G  

and  S  of the JFET  or between  S  and the ground. In that case, for the circuit to generate chaotic behavior, 

the value of the resistance has to be in the range of hundreds of kilo Ohms. For very high values of the resistance, 

the circuit will again function as a two-component circuit, since the current passing through the resistor will be 

negligible as if the circuit were opened at that point. 

To model the circuit, we have considered some simplifications: ( )i  The internal resistance of the tapped coil is 

neglected; ( )ii  Because of the low voltage and low power in the circuit, currents in the different branches of the 

tapped coil are also low, and therefore, the magnetic field generated by each side of this tapped coil is too weak 

to generate a no negligible magnetic coupling between the two branches; ( )iii  As a result of the previous point, 

we are going to use the high-frequency small-signal equivalent circuit model of a JFET  as proposed by 

Elshabini [9]. In this model, the capacitance of the parasitic capacitor between the drain and the source is neglected 
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to the advantage of the two others which are greater. The voltage at the drain is globally higher than that at the 

gate of the JFET , making the diode at the junction gate-drain with its anode at the gate to be permanently biased 

in the reverse sense. So, it is not part of modeling. Thus, the system still respects the low-order oscillators 

according to the architecture of general structures for autonomous chaotic oscillators proposed by Elwakil and 

Kennedy [8]. The presence of internal current sources in the JFET  explains its active behavior and thus, the 

simple architecture of the model presented here can exhibit chaos while functioning autonomously [26]. 

The state equations governing the above electrical circuit (Fig. 1) are derived from Kirchhoff laws as: 

 

 

 

 

 

Figure 1: Equivalent circuit of Hartely oscillator using the simplified Giacoletto dynamic model of the JFET   

for small signals at high frequency according to reference [9].The parasitic capacitor between the drain and the 

source is neglected as well as the diode effect between the gate and the drain of the JFET  
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Where, E is the bias voltage source and the control parameter of the system at the same time. 1L and 2L are the 

inductances of the two inductors formed by the tapped coil. In the set of .(1)Eq the hi  with  1, 2h represent 

the currents flowing through the inductor parts 1L and 2L , while 
GSv  and 

GDv  respectively correspond to the 

voltages across the parasitic capacitors GSC  and
GDC . The voltage 𝑣𝐺𝑆 across the gate-source junction of the

JFET  is equal to the potential difference between the anode and the cathode of the diode.  

Consequently, the expression of the current flowing through that diode is expressed by 
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exp 1GS
D S

T

v
i I

V


  
   

  
                                                                                        (2) 

where SI its reverse saturation’s current. 

The nonlinearities in this electrical model arise in the circuit from the diodes effect at the p n  junction gate-

source, which is characterized by its current Di , as well as from the current source between the drain and the 

source. The simplified mathematical modeling of the later, that is to say the nonlinear current dI  flowing from 

the drain to the source can be described by the following set of equations showing the functioning of the JFET  

in the cutoff, the saturation and the triode regions [24] 
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where 0GSoffV   is the cutoff value of the voltage between the gate and the source; 0mg  is the current gain of 

the JFET . Note that the voltages, currents and time can be normalized with respect to TV , 0I  and 
0w t   

respectively, where 
0w  is the resonant radian frequency of the system. 

Introducing the dimensionless states variables 1x  , 2x  , 3x  and 4x  such that 1*GS Tv V x , 2*GD Tv V x , 

1 0 3*i I x , 
2 0 4*i I x , the state  . 1Eq  discribing the system is then rewritten as follows: 
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for 𝑥2 = 𝑦1 , 𝑥3 = 𝑧1  𝑒𝑡 𝑥4 = 𝑣1, then the equations (1) et (3) take the following form : 
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The nonlinear function expressing the drain-source current takes now the normalized form in the following  

Equation (4) : 
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When the system parameters are chosen by… The simulated phase portrait in the plane  1 1 1, ,v y z is given in 

Figure 2. Clearly, the system can exhibit chaotic behavior. 

 

Figure 2: Phase portrait Hartley system 
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The general form of the equilibrium points is recorded as 
3

1 1 1 1 1 1
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, with  0,1,2f  corresponding to the cutoff regime, the saturation and the linear regimes respectively. 

 0,fg e is the normalized nonlinear function expressing the drain-source current in the three different regions 

of functioning of the JFET   at possible equilibrium points. 
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                                                                    (7) 

Hence, the eigenvalues of the Jacobian matrix 
1JM  are solutions of the following fourth order nonlinear algebraic 

equation in : 

   4 3 2 2

2 3 1 2 2 1 1 2 2 1 1 22 0ma a x a b b b a a b a b b                                             (8) 

Considering the parameters, 

2
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0 1I mA , 
9

0 110 / , 24.5 ,104 149,w rad s L F e  and 2.6 3.7V E V , then solutions to Eq. 

8 are : 
1 2 3 4119.49, 15.87, 1.53 6.37 , 1.53 6.37i i           . 

Obtained results indicate that the treated equilibrium point is unstable, and 1P  can be called a spiral saddle index 

2, in comparison to reference [25]. 
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Nature of equilibrium point 𝑷𝟐 in the triode region If
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The eigenvalues of the Jacobian matrix 
2JM  are solutions of the following fourth order nonlinear algebraic 

     4 3 2 2
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(10)  

considering the same values of parameters, the solutions of .(10)Eq are: 

 
1 2 3 41.21 37.95 , 1.21 37.95 , 5.47 5.16 , 5.47 5.16i i i i           . 

As all the roots are complex conjugate with positive real parts, it reveals that 2P  is an unstable focus called a 

spiral repellor [25]. 

The unstable nature of the equilibrium points 1P  and 2P supports the fact that the oscillator can oscillate 

chaotically. 

2.2. Chaotic dynamic of Colpitts oscillator 

The Colpitts oscillator (Figure 3) which has a typical common-base configuration is described by a set of three 

autonomous state-space equations [12]: 
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Figure 3: The circuit diagram of standard chaotic Colpitts oscillator 

The variables and parameters of the system are defined as: 
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The normalized time is defined as in the previous Section 2.1. 

Here r  is the differential resistance of the forward-biased base–emitter junction and V 
 is the break-point voltage 

of its I–V characteristics (for silicon transistors 0.7V   ). In Equation 13, the collector current is assumed to be 

equal to the emitter current, i.e., the base current is neglected. The parameter c  does not influence dynamical 

behavior of the oscillator, it sets only the components of the variables. Therefore, it can be omitted for simplicity. 

Two linear segments are used to approximate the I–V characteristic of the base–emitter junction: 
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Under the following parameters, 15.5, 0.67, 0.96a b d    and 1  , the standard Colpitts oscillator 

exhibits chaotic oscillations as shown in Figure 4, with the initial conditions 

   (0), (0), (0) 0.2,0.5,0.5x y z  . 
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Figure 4: The simulated phase portrait in the space  2 2 2, ,x y z  for 15.5, 0.67, 0.96a b d    

3. Chaos synchronization between Hartley and Colpitts oscillators with different orders 

The objective in this section is to build a controller to ensure synchronization between Hartley and Colpitts 

oscillators operating in microwave frequencies range. In the literature, several methods to investigate the stability 

of the synchronization dynamics are proposed in the literature. Our approach is based on the adaptive observer 

method to adaptively synchronize between the nonlinear oscillators given by 4 and 10. Therefore, we define the 

dynamics of the synchronization error, and then, develop a control law that ensures the stability of all states and 

signals in the closed-loop system. 
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respectively, where ( )u t  represents the control action to be designed.  
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1 2 1e z z   

2 2 1e y k   

3 2 2e x k   

where 1k  and 2k  are some given variables in function of the two systems variables. 

Remark 1. One notes that we use only one controller; this will allow considerably reduced parameters estimation 

and synchronization achievement time. 

Our goal is therefore to determine the control function ( )u t  to ensure chaos synchronization between the two 

systems. The only requirement imposed here is that the two variables 1k  and 2k  have to be bounded by upper 

bounds, which are not needed to be known. The knowledge of these upper bounds will be overcome by the 

adaptive laws proposed in the following theorem. 

Theorem 1. Consider the master and slave oscillators represented by (13) and (14). If the control action is 

designed as follows 

3 2( ) ( )u t e e w t                                                                                                            (15) 

 in which the adaptation laws are designed by 

1 1 1 1k e b x d                                                                                                                    (16) 

       2 1 2 2 2 1 1 2 1 1 1 1 1 1 3 1 1 1exp 1 ,k e e b y z b x a b x a b v z a b g x y d                  (17)                                                                                   

 2 2 2( )w t y aF z k                                                                                        (18) 

Then the stability of the closed-loop system can be guaranteed. Moreover, convergence of the synchronization 

errors can be made arbitrarily small by adjusting the parameters gains  ,   and . 

Proof 1. We construct a Lyapunov function candidate according to the different variables. Accordingly, from 

systems (13) and (14), we obtain: 
1 2 1 1e y b x d   . 

Constructing the first partial Lyapunov function as: 
2

1 1

1

2
V e , the derivative part of derivation of this function 

is obtained as follows : 
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 2

1 1 1 1 1 2 1 1 1V e e e e y e b x d                                                                   (19) 

when 0  is a constant value introduced in order to construct a first negative part of derivative of Lyapunov 

function. 

On other hand, we have 2 2 1e y k  . Using formulas (13) and (14) we get 

       2 2 2 2 1 1 2 1 1 1 1 1 3 1 1exp 1 ,e x b y z b x a x a b v z a g x y d                   

The second partial Lyapunov function is constructed as follows 

2

2 1 2

1

2
V V e                                                                                                                                 

One gets: 

      2 2

2 1 3 3 1 2 2 2 1 2 2 2 1 1 2 1 1 1 1 1 1 3 1 1 1( ) exp 1 ,V V e e e e e x e e b y z b x a b x a b v z a b g x y d                         
     

                     (20) 

where 0  

Finally, the dynamics error 𝑒̇3 is derived from (13) and (17) as follows 

 3 2 2 2 2 2( ) ( ) ( )e x k y aF z u t k u t w t         

         3 2 2 1 2 2 2 1 1 2 1 1 1 1 1 1 3 1 1exp 1 ,e y aF z e e b y z b x a x x a b v z a g x y                

(21) 

Where 

   

     
1 1 1 1

1 1 1 1 1 1 1 1

0

' , 2

2

m

m

g x y x x x

x y x y x x y x y




 
      

     

if

if

if

  

1

1

1

m

m

m

x x

y x

y x







                       (22) 

The last Lyapunov function is then constructed as 

2

2 3

1

2
V V e    
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Then, the derivative of V  is: 

 2 2 2

3 2 3 3 1 2 3 3 3 2 ( ) ( )V V e e e e e e e e u t w t                                                      (23) 

 2 2 2

3 1 2 3 3 3 2 3 2( ) ( )V e e e e e e w t e e w t                                    

where 0 . Substituting .(15)Eq , we get : 

2 2 2

3 1 2 3 0V e e e      . 

Hence, the time derivative 3V  is negative as long as the term in braces is positive. According to Lyapunov stability 

theory, the synchronization of the two systems is then achieved and the error variables of the system 𝑒𝑖(𝑡)approach 

zero with the lapses of times, i.e.,  

 
0

lim 0i
t

e t


                                       1,2,3i   

This completes the proof. 

Corollary 1. The following variables 

 

 

       

1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 2

, ,

, ,

, , 2 exp( ) ,

H x y z z

H x y z b x z d

H x y z b x a b x a b v z a b g x y d a



  




  
         

     (24) 

And 

 

 

   

1 2 2 2 2

2 2 2 2 2 2

3 2 2 2 2 2 2

, ,

, ,

, ,

S x y z z

S x y z y z

S x y z x b y z



  




 
     

                                                                     (25) 

Are considered as observable variables of systems (13) and (14) only if the errors 

   

   

   

1 2 1 1 2 2 2 1 1 1 1

2 2 1 2 2 2 2 2 1 1 1

3 2 2 3 2 2 2 3 1 1 1

, , , ,

, , , ,

, , , ,

e z z S x y z H x y z

e y k S x y z H x y z

e x k S x y z H x y z

   


   
    
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Verify that 

      2 2 2 1 1 1
0

lim lim , , , , 0i i i
t t

e t S x y z H x y z
 

   ,  1,2,3i   

The construction of observable variables completes the method. 

4. Computer experiments 

We have theoretically showed that the systems (13) and (14) which respectively represent Hartley and Colpitts 

oscillators can be synchronized if the controller is of the form (15). This controller has been derived by 

constructing progressively the error equations and the Lyapunov functions. To verify the effectiveness of the 

proposed control technique, let the drive system with initial conditions  0.02,-8.16,-0.84,0.42  and the 

response system with initial conditions  0.2,0.5,0.5 . The parameters
1 210.706638, 0.000036a a  ,

3 0.011737a  , 

 

(a) (b) 

 

(c) 

Figure 5: Evolution of the state variables of the master and slave systems in the presence of the controller 
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Figure 6: Graphs of synchronization errors 1 2 3e , ,e e  with normalized time t ( 20     ) 

1 20.001020, 0.00625b b  , 0.67, 0.96, 1.115223, 1, 56.36mb d x       , are keep 

constants during present computations. 

Choosing appropriated values for , ,    is very important. For 20     , Figures. 5 and 6 display the 

good results for synchronization. Computer experiments show that synchronization is achieved successfully and 

the error signals approach zero smoothly and quickly. We have solved numerically Equations (13) and (14) using 

the fourth-order Runge–Kutta algorithm with a time step ∆𝑡 = 0.01. 

5. Discussion of results 

The numerical results clearly demonstrate the effectiveness of the proposed adaptive observer–based method for 

synchronizing two non-identical chaotic oscillators of different orders operating in the UHF band. In particular, 

successful synchronization between the fourth-order Hartley oscillator and the third-order Colpitts oscillator is 

achieved using a single control input, which represents a significant advantage over many existing approaches 

that require multiple control laws or full knowledge of system parameters. 

Numerical simulations show that the synchronization errors converge rapidly to an arbitrarily small neighborhood 

of zero, thereby confirming the robustness of the proposed control strategy. This convergence is achieved despite 

the structural dissimilarity of the oscillators, the presence of strong inherent nonlinearities associated with 

electronic components, and the absence of any prior knowledge of the upper bounds of the internal system signals. 

The use of Lyapunov stability theory provides a rigorous proof of closed-loop system stability. The introduced 

adaptive laws effectively compensate for dynamic uncertainties and enable online estimation of unknown terms, 

making the proposed approach particularly well suited for real electronic systems operating at high frequencies. 

Moreover, synchronization is achieved without requiring an exhaustive parameter identification process, which 

further enhances the practical relevance of the method. 
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Another important outcome of this study is that synchronization is successfully realized in the UHF band, a 

frequency range in which the generation and control of chaotic signals remain particularly challenging. This 

feature significantly increases the potential applicability of the proposed scheme, especially in secure 

communication systems, chaotic radar applications, and advanced microwave technologies. 

Finally, the choice of Hartley and Colpitts oscillators is motivated by practical considerations. These architectures 

are widely used and technologically accessible, making them realistic platforms for future experimental 

implementation of the proposed synchronization scheme and thereby strengthening the practical impact of the 

reported results. 

6. Constraints and Limitations of the Study 

Despite the encouraging results, several limitations of this study should be acknowledged. 

First, the findings are based exclusively on numerical simulations using normalized mathematical models. No 

experimental validation has been carried out at this stage, and certain phenomena inherent to real electronic 

circuits such as thermal noise, component tolerances, temperature drift, and parasitic electromagnetic couplings 

have not been taken into account. 

Second, the modeling of the active electronic components relies on piecewise-linear nonlinear approximations. 

While these models are commonly adopted for dynamical analysis and control design, they may deviate from the 

actual behavior of electronic devices, particularly at very high operating frequencies. 

Furthermore, the influence of explicit external disturbances, such as measurement noise or radio-frequency 

interference, has not been considered. Therefore, a comprehensive robustness analysis of the proposed 

synchronization scheme in the presence of such perturbations remains an open research direction. 

Finally, although the synchronization errors can be made arbitrarily small through appropriate tuning of the 

adaptive gains, no systematic optimization procedure for selecting these parameters is provided. In addition, the 

achieved synchronization is of a practical nature, characterized by convergence to a bounded neighborhood of the 

synchronized state rather than strict asymptotic convergence. Nevertheless, this level of synchronization is 

generally sufficient for most physical and technological applications. 

7. Conclusion 

In this work, we have investigated the synchronization of non-identical chaotic oscillators of different orders 

operating in the UHF band using an adaptive observer-based approach. 

Synchronization between a fourth-order Hartley oscillator and a third-order Colpitts oscillator was successfully 

achieved despite strong nonlinearities and structural differences. 
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A Lyapunov-based adaptive control law was designed to ensure closed-loop stability and convergence of the 

synchronization errors using a single control input, without requiring prior knowledge of system parameters. 

Numerical simulations confirm the effectiveness and robustness of the proposed method, demonstrating reliable 

chaos synchronization at ultra-high frequencies. 

These results highlight the potential of adaptive observer techniques for high-frequency chaotic systems and 

provide a promising framework for applications in secure communications and microwave technologies. 
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