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Abstract

In this work, we consider the synchronization between chaotic oscillators with different orders and operating in
the UHF band. Firstly, the normalized state equation of Hartley and Colpitts oscillators are presented as well as
their chaotic behavior has been proven in this frequency band. Secondly, the problem of dynamics synchronization
is investigated, and a controller based on Lyapunov stability theory is proposed to ensure synchronization between
both oscillators. Finally, computer experiments are provided to demonstrate the effectiveness and feasibility of

the proposed synchronization approach.
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1. Introduction

Chaos synchronization refers to a process wherein two (or many) chaotic systems (either identical or non-
identical) adjust a given property of their motion to a common behavior due to coupling or forcing. The idea of
synchronizing chaotic systems with different initial conditions was introduced by Pecora and Carroll in 1990 [1].
Since then, there has been a particular interest in chaotic synchronization, due to many potential applications in
secure communication [2]. Hence, in order to recover the information, the chaotic generator (drive system) in the
transmitter must be synchronized with the generator (response system) in the receiver. Many other fields have

been subject of chaos synchronization such as chemical and biological systems [3,4].

On the other hand, the study of chaotic oscillators to information technologies [10] is under intensive investigation.
In this frame, there is a great interest behind the study of chaotic oscillator operating at high MHz frequencies,
due to their potential applications in future communication systems [11], and in radar systems [12]. In particular,
it has been shown that the Colpitts oscillator, with special settings of the circuit parameters can exhibit chaotic
behavior. This circuit was investigated at the kHz frequencies [5], high (3-300MHz) frequencies [6] and ultrahigh
(300-1000 MHz) frequencies [7] both numerically and experimentally. At the same time, it has been shown that
Hartley oscillator, according to the general architecture of circuit parameters structures can produce chaotic
behavior [8].

To synchronize chaotic oscillators, a huge variety of methods have been developed such as nonlinear Pecora-
Carroll method [13,14], linear coupling technique [11,15,16], adaptive synchronization [17], active control
synchronization [18], linear feedback control method [19], observer-based synchronization [20] and so on. Note
that most of the aforementioned methods investigated the chaos synchronization for identical chaotic oscillators
however, both Colpitts and Hartley chaotic oscillators may be identical [11,12,14-16,18-20] or non-identical with
different parameters in most cases [16,17]. Recently, a lot of effort has been devoted to synchronize a class of
chaotic systems in the presence of system’s disturbances and unknown parameters [21, Boukabou,. . . ]. Especially,
the adaptive observer based synchronization concept has attracted increased interests among the others since it
presents the advantage that the full state vector estimation of system’s disturbances and unknown parameters, and
chaos synchronization can be achieved simultaneously. Thus, it is important and interesting to investigate chaos
synchronization behavior between non-identical Hartley and Colpitts oscillators using the adaptive observer
method. Although, the method of the synchronization of two different chaotic oscillators is far from being
straightforward, in this work, we address the problem of chaos synchronization between two non-identical chaotic
oscillators with different orders designed to operate in the UHF band. This is numerically investigated by means
of integration of simplified (piecewise-linear) different equations. Following the concept of adaptive observer
based synchronization [22], we address the problem of dynamics synchronization using a controller based on
Lyapunov stability theory to ensure synchronization between non-identical Hartley and Colpitts oscillators.
Finally, computer experiments are provided to demonstrate the effectiveness and feasibility of the proposed
synchronization approach. It is worth noting that the use of the electronic Hartley and Colpitts oscillators is due
to the following reasons: On the first hand, the Hartley oscillator uses a tapped coil and a diode as maintenance
circuit in the sense that the presence of an internal current source in the JFET explains its active behavior and

produces the chaotic behavior in autonomous operation. The non-linearity in this circuit comes from the effect of
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the diode. On the other hand, the Colpitts oscillator uses a simple transistor as maintenance circuit; it has an

intrinsic non-linearity due to the bipolar transistor (BJT) and it was a diversified dynamic behavior. The frequency
range of this later oscillator can vary from a few hertz to UHF band, and hence, solicited in electronic devises and
communication systems.The remainder of this paper is organized as follows. In Section 1, the circuit models for
Hartley and Colpitts oscillators are introduced, and the normalized state equations are presented while their chaotic
behavior is confirmed. In Section 2, the synchronization state of chaotic oscillators with different orders is
addressed using the adaptive observer method. Lyapunov stability theory to ensure synchronization between non-
identical Hartley and Colpitts oscillators are proven. In Section 4, computer experiments are investigated to

validate this approach. Finally, Section 5 concludes the paper.
2. Circuit and basic equations of oscillators

In this section, we briefly introduce the circuits under investigations and give their corresponding state space

equations.

2.1. Chaotic dynamic of Hartley oscillator

Figure 1 represents the oscillator consisting of a JFET and a tapped coil [23]. The control parameter of this
oscillator is the bias voltage source connected to the circuit between the drain (D) of the JFET and the ground.

In case if the control parameter has to be different from the bias voltage source, variable inductors may be used at
the place of the tapped coil. Otherwise, the circuit has to be upgraded to a three-component chaos generating

Hartley’s oscillator by the insertion of a variable resistor. In this later case, chaos will occur only for low values

of that resistance, in the range of some few ohms, if this is mounted in series with the source (S) or with the gate

(G) of the JFET . The value of the connected resistance is considered as the control parameter. It should be
noted that, this later equal to zero, then the circuit will behave like the two-component circuit in discussion in this

paper. The resistance can also be connected in parallel to one side of the tapped coil, for instance between (G)

and (S) of the JFET or between (S) and the ground. In that case, for the circuit to generate chaotic behavior,

the value of the resistance has to be in the range of hundreds of kilo Ohms. For very high values of the resistance,
the circuit will again function as a two-component circuit, since the current passing through the resistor will be

negligible as if the circuit were opened at that point.

To model the circuit, we have considered some simplifications: (i) The internal resistance of the tapped coil is

neglected; (ii) Because of the low voltage and low power in the circuit, currents in the different branches of the
tapped coil are also low, and therefore, the magnetic field generated by each side of this tapped coil is too weak

to generate a no negligible magnetic coupling between the two branches; (iii) As a result of the previous point,

we are going to use the high-frequency small-signal equivalent circuit model of a JFET as proposed by

Elshabini [9]. In this model, the capacitance of the parasitic capacitor between the drain and the source is neglected
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to the advantage of the two others which are greater. The voltage at the drain is globally higher than that at the
gate of the JFET , making the diode at the junction gate-drain with its anode at the gate to be permanently biased
in the reverse sense. So, it is not part of modeling. Thus, the system still respects the low-order oscillators
according to the architecture of general structures for autonomous chaotic oscillators proposed by Elwakil and
Kennedy [8]. The presence of internal current sources in the JFET explains its active behavior and thus, the

simple architecture of the model presented here can exhibit chaos while functioning autonomously [26].

The state equations governing the above electrical circuit (Fig. 1) are derived from Kirchhoff laws as:
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Figure 1: Equivalent circuit of Hartely oscillator using the simplified Giacoletto dynamic model of the JFET
for small signals at high frequency according to reference [9].The parasitic capacitor between the drain and the

source is neglected as well as the diode effect between the gate and the drain of the JFET
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Where, E is the bias voltage source and the control parameter of the system at the same time. L, and L, are the
inductances of the two inductors formed by the tapped coil. In the set of Eq.(2)thei, with h e {l, 2} represent
the currents flowing through the inductor parts L, and L,, while Vgs and Vg respectively correspond to the

voltages across the parasitic capacitors C¢ and CGD . The voltage v across the gate-source junction of the

JFET is equal to the potential difference between the anode and the cathode of the diode.

Consequently, the expression of the current flowing through that diode is expressed by
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ip =l exp[\\l/ﬁj—l @
T

where | its reverse saturation’s current.

The nonlinearities in this electrical model arise in the circuit from the diodes effect at the p—n junction gate-
source, which is characterized by its currentiy, as well as from the current source between the drain and the
source. The simplified mathematical modeling of the later, that is to say the nonlinear current |, flowing from

the drain to the source can be described by the following set of equations showing the functioning of the JFET
in the cutoff, the saturation and the triode regions [24]

0 .
, If Vgs < Voo
Iy = Gmo (VGS ~ Vosoff ) it Vop <Vsor ©)
if vy, 2V,
Omo (VGS —Vep )(VGS +Vgp — Vs ) GD ™ 7 GSoff

where V¢ < 0 is the cutoff value of the voltage between the gate and the source; §,,, is the current gain of
the JFET . Note that the voltages, currents and time can be normalized with respect to V., |, and 7 =w,t

respectively, where W, is the resonant radian frequency of the system.

Introducing the dimensionless states variables X, , X, , X, and X, such that Vg =V; * X, Vgp =V *X,,

i, = 1% X, i, =1,%X,, the state EQ.(1) discribing the system is then rewritten as follows:

where

a = m— , dy s as_ngVT b1: d ,b2: il ,QZCGS,G—E
Ll I OWO L2 IOWO CGD VT

= i - i
VT CGS WO VT CGS WO CGS WO
I Is ImoVT Vr Vr Cgs E
a; = 0 , Ay = ’a3=—m0 , = ,b2= , a4 =-—=, = —
VrCeswo VrCgswo Ceswo Lylowo LaIogwo Cep Vr

for x, =y, ,x3 = z; et x, = vy, then the equations (1) et (3) take the following form :

Xl = a1(V1 - Zl) -4, [exp(xl) _1] - asg(xlv yl)
Vi =a(ay-a,9(x, )

2, =bx

v, =b,(e—x +VY,)

(4)
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The nonlinear function expressing the drain-source current takes now the normalized form in the following

Equation (4) :

0 si X <X,
9%, ;) = (% —Xy)? si Y, <X, ©)
4 =Y (% + Y, —2X%,) iy, >X,

When the system parameters are chosen by... The simulated phase portrait in the plane (Vl, Vi Zl) is given in

Figure 2. Clearly, the system can exhibit chaotic behavior.

Hartley phase plots

0.5 -

v 200 0 -

Figure 2: Phase portrait Hartley system

2.1.1. Equilibrium points and their nature

The equilibrium points are solutions of Eq.(4) forX, =0,k € {1, s 4} . The system of equations to be solved

becomes:

0= al(vl - Z1) -, [exp(xl) _1]_ a3g(X1’ yl)
0=ca(ay -a,9(x,Y;))

0=Dbx

0=b,(e—x+VY,)

(6)
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The general form of the equilibrium points is recorded as p; = [Xl* =0y, =—6,z, =0,v, = & 9%, Y1)
8

, with f 6(0,1,2) corresponding to the cutoff regime, the saturation and the linear regimes respectively.

d; (0, —e) is the normalized nonlinear function expressing the drain-source current in the three different regions

of functioning of the JFET at possible equilibrium points.

Nature of Po at the cutoff region. The JFET functions in the cutoff region for x, <X, = X/ =0< X, , and
g, (O, —e) =0. This is impossible since X, <0 as indicated after Eq. (4). Therefore, the point

P, = (0, e,0, 0) , cannot be defined as an equilibrium point.

Nature of P1 in the saturation region. The saturation regime of the transistor corresponds to Yy, <X_ and

e>—X, etQ, (0,—e) = X2 . The related equilibrium point is P= (O,—e,o,ixi and the corresponding
&

Jacobian matrix is

-8, +2ax, 0 -a &

20X, 0 0 -aq
T p 0 0 ©0
b, b 0 O

<
|

™)

Hence, the eigenvalues of the Jacobian matrix M 5 are solutions of the following fourth order nonlinear algebraic

equation in A :
At +(a, —2a,x, )4 +a, (ab, +b, +b) A* + caa,b,A + aalbb, =0 ®)
Considering the parameters,

Cqs =3.736 pF,C; =3.35pF, I =33.57 fA Vs =—1.409V,V, =25mV, g,,, =1.754mAV 2
I, =1ImA, w, =10%rad /s, L, =24.5uF,104 < e<149,and 2.6V < E<3.7V , then solutions to Eq.
gare: 4, =—119.49,4, =-15.87, 4, =1.53+6.37i,4, =1.53-6.37i.

Obtained results indicate that the treated equilibrium point is unstable, and P, can be called a spiral saddle index

2, in comparison to reference [25].
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Nature of equilibrium point P, in the triode region If y, > X, hencee < —X_ . The JFET functions in the

linear regime and g, (0,—€) =—e(2x, +e).

The second equilibrium point is P, = [0, -e,0, —%e(ZXm +€) |. Its corresponding Jacobian matrix is
&

—a, +2a;X, —2a;(e+Xx,)

—

M- 208X, 2aa,(e+x,) 0 -—oaa
J, T bl O
b, b, 0

9
0 ©)

0

The eigenvalues of the Jacobian matrix M ;, are solutions of the following fourth order nonlinear algebraic

At +(a, — 2,8 — 28X, — 2a3;X, ) A° +(ab, + &b, + aab, - 2aa,a;x, — 2aa,a.e) A* — aa, (2abx, + 2ape—a,h,) A + ealbb, =0
(10)

considering the same values of parameters, the solutions of Eq.(10) are:
A, =1.21+37.95i, 4, =1.21-37.95i, 4, =5.47 +5.16i, 4, =5.47 —5.16i .

As all the roots are complex conjugate with positive real parts, it reveals that P, is an unstable focus called a

spiral repellor [25].

The unstable nature of the equilibrium points P, and P,supports the fact that the oscillator can oscillate

chaotically.
2.2. Chaotic dynamic of Colpitts oscillator

The Colpitts oscillator (Figure 3) which has a typical common-base configuration is described by a set of three

autonomous state-space equations [12]:

Xz =Y, _aF(Zz)
Y, =C—X,—2,-by, (11)
Z.2 :yz_d

517



International Journal of Sciences: Basic and Applied Research (IJSBAR) - Volume 78, No 1, pp 510-527

+V.

Figure 3: The circuit diagram of standard chaotic Colpitts oscillator

The variables and parameters of the system are defined as:

The normalized time is defined as in the previous Section 2.1.

Here r is the differential resistance of the forward-biased base—emitter junctionand V * is the break-point voltage

of its 1-V characteristics (for silicon transistors V* ~ 0.7). In Equation 13, the collector current is assumed to be
equal to the emitter current, i.e., the base current is neglected. The parameter C does not influence dynamical
behavior of the oscillator, it sets only the components of the variables. Therefore, it can be omitted for simplicity.

Two linear segments are used to approximate the |-V characteristic of the base—emitter junction:

—(1+2z,) if z,~-1
F(z.) =
(z) { 0 if z,<-1 (2

Under the following parameters, a=15.5,b=0.67,d =0.96 and &£ =1, the standard Colpitts oscillator

exhibits  chaotic  oscillations as shown in  Figure 4, with the initial conditions

(x(0), y(0),2(0)) =(0.2,0.5,0.5).
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z2

Figure 4: The simulated phase portrait in the space [Xz, Y,, ZZ] fora=15.5,b=0.67,d =0.96

3. Chaos synchronization between Hartley and Colpitts oscillators with different orders

The objective in this section is to build a controller to ensure synchronization between Hartley and Colpitts
oscillators operating in microwave frequencies range. In the literature, several methods to investigate the stability
of the synchronization dynamics are proposed in the literature. Our approach is based on the adaptive observer
method to adaptively synchronize between the nonlinear oscillators given by 4 and 10. Therefore, we define the
dynamics of the synchronization error, and then, develop a control law that ensures the stability of all states and

signals in the closed-loop system.

In order to observe the synchronization behavior in the two different Colpitts oscillators, we assume that the
Hartley oscillator is the drive system and the Colpitts oscillator is the response system, indicated by subscription
land 2 as

X =a, (v, —2)—a,[exp(x)-1]-a,9(x, ¥;)
yl = a(aivl - asg(xy Y1))

. (13)
Z, = b1x1
Vl sz(e—X1+ Y1)
and
X, =Y, —aF(z,)+u(t)
Y, =C—X,—2,-by, (14)

22:Y2_d

respectively, where U(t) represents the control action to be designed.

Let us define the dynamics of the synchronization error as follows
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€=2,-17
€, =y2_k1
e3=x2—k2

where K; and k, are some given variables in function of the two systems variables.

Remark 1. One notes that we use only one controller; this will allow considerably reduced parameters estimation

and synchronization achievement time.

Our goal is therefore to determine the control function u(t) to ensure chaos synchronization between the two

systems. The only requirement imposed here is that the two variables K, and k, have to be bounded by upper

bounds, which are not needed to be known. The knowledge of these upper bounds will be overcome by the

adaptive laws proposed in the following theorem.

Theorem 1. Consider the master and slave oscillators represented by (13) and (14). If the control action is

designed as follows

u(t) =-ne, +e, —w(t) (15)
in which the adaptation laws are designed by

k,=—72e +hyx +d (o

k, =€ +ne,+(A-b)y,—z,—-bAx +a,b [exp(x)-1]-ab (v,~z,)-abg(x.y,)—Ad (17)

w(t) =y, —aF (z,)-k, (18)

Then the stability of the closed-loop system can be guaranteed. Moreover, convergence of the synchronization

errors can be made arbitrarily small by adjusting the parameters gains £z, A and7.

Proof 1. We construct a Lyapunov function candidate according to the different variables. Accordingly, from

systems (13) and (14), we obtain: € =y, —bx —d.

1
Constructing the first partial Lyapunov function as: V, = Eef , the derivative part of derivation of this function

is obtained as follows :
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V,=eé =—1e’+e(y,+1e—bx —d) (19)

when A > 0 is a constant value introduced in order to construct a first negative part of derivative of Lyapunov

function.

On other hand, we have €, =Y, — kl. Using formulas (13) and (14) we get

&, =—X,+(A-b)y,—z,-bax +a,[exp(x)—-1]-ap (v,~2z)-a,9(x,y,) - Ad
The second partial Lyapunov function is constructed as follows

1
w=w+§§

One gets:

vz :v1+esé3 :_lelz _77322 +€, (_Xz +€ +17€, +(A_b)y2 -1 _bl/lxi+a2bl|:exp(xl)_1:|_a1bl(vl_Zl)_aSblg (X11 yl)_/ld)
(20)

where 77 >0

Finally, the dynamics error é5 is derived from (13) and (17) as follows

&, =%, —K, =y, —aF (z,)+u(t) —k, = u(t) + w(t)

éa =Y, _aF(Zz)_el_ﬂez _(/l_b)yﬁ +22 +blﬂ’xl_a2xl|:exp(xl)_l:|_a1bl(vl_21)+a39 (X1'Y1)
(21)

Where
0 if x <x,
9'(% %)= 2% (% =%y ) ity <x, (22)
(Xl_Y1)(X1+Y1_2Xm)+(x1_y1)(X1+Y1) if ylzxm

The last Lyapunov function is then constructed as

1
V=w+§§
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Then, the derivative of V is:
V, =V, +e,8, =—Ae’ —ne’ — ue; +e,(ue,—e, +u(t) +w(t)) (23)
V, =—e’ —nel — ue? +e,(ue, —e, + W(t) — e, +e, —w(t))
where g2 0. Substituting EQ.(15), we get :
V, =-Ae’ —nel — ue? <0.

Hence, the time derivative \/3 is negative as long as the term in braces is positive. According to Lyapunov stability

theory, the synchronization of the two systems is then achieved and the error variables of the system e; (t)approach

zero with the lapses of times, i.e.,

lime (t)=0 (i=1,2,3)

t—0
This completes the proof.

Corollary 1. The following variables

Hl(xl’ Y1 21) =17
H, (%, y1.2) =bx + 4z +d (24)
H3(X1’ Yir Zl) = _Zblﬂ’xl +a2b1 exp(xl)_albl (Vl - Zl)_a3b19 (Xl’ yl)_(/1+77)d —a,

And

Sl(XZ’ y21zz): Z,
Sz(XZryz'Zz):yz"'lzz (25)
S:(%,,Y,,2,) =% —(A+n-b)y, - Anz,

Avre considered as observable variables of systems (13) and (14) only if the errors

6,=2,-1, =Sl(XZ'yZ'ZZ)_Hl(X11y1’Zl)
€ =Y, _kl :Sz(xz’yzizz)_Hz(Xv)ﬁvzl)
€ = Xz_kz :SS(X21Y2122)_H3(X11Y1121)
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Verify that

lime, (t) =1im(S; (X, ¥,.2,)—H; (%, ¥,,2,)) =0, (i=1,2,3)

t—0 t—o
The construction of observable variables completes the method.
4. Computer experiments

We have theoretically showed that the systems (13) and (14) which respectively represent Hartley and Colpitts
oscillators can be synchronized if the controller is of the form (15). This controller has been derived by

constructing progressively the error equations and the Lyapunov functions. To verify the effectiveness of the

proposed control technique, let the drive system with initial conditions (0.02,-8.16,-0.84,0.42) and the

response system with initial conditions(0.2,0.5,0.5). The parameters 8, =10.706638, a, = 0.000036 ,
a, =0.011737,

900
—x2
800 - K2
700 B
600 [~ -
500 [~ |
400 - 4
300~ 4
200 B
100r~ -
i
2.5 L L L L L L L L L 100 } r : : r r r : : r
5 0 15 20 25 30 35 40 45 50 0 0.5 1 15 2 25 3 3.5 4 45 5
() (b)
2
ok 4
2 i
I
all —z2 i
| K1
Y 4
|
8 i
10 ‘L |
12t il
14 4
l16 - 4
-18 -
o 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(©

Figure 5: Evolution of the state variables of the master and slave systems in the presence of the controller
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-300 e3 -

-400 -~ 4

-500 ~ 1

-600 ~ 1

-700 [~ -

-800 1

-900 r r r r r r r c r
o]

Figure 6: Graphs of synchronization errors €, , €,, €, with normalized timet (A =71 = u =20)

b, =0.001020,b, =0.00625, b=0.67,d =0.96, ¢ =1.115223,&=1,X, =-56.36, are keep

constants during present computations.

Choosing appropriated values for 4,7, & is very important. For A =7 = u = 20, Figures. 5 and 6 display the

good results for synchronization. Computer experiments show that synchronization is achieved successfully and
the error signals approach zero smoothly and quickly. We have solved numerically Equations (13) and (14) using

the fourth-order Runge—Kutta algorithm with a time step At = 0.01.
5. Discussion of results

The numerical results clearly demonstrate the effectiveness of the proposed adaptive observer—based method for
synchronizing two non-identical chaotic oscillators of different orders operating in the UHF band. In particular,
successful synchronization between the fourth-order Hartley oscillator and the third-order Colpitts oscillator is
achieved using a single control input, which represents a significant advantage over many existing approaches

that require multiple control laws or full knowledge of system parameters.

Numerical simulations show that the synchronization errors converge rapidly to an arbitrarily small neighborhood
of zero, thereby confirming the robustness of the proposed control strategy. This convergence is achieved despite
the structural dissimilarity of the oscillators, the presence of strong inherent nonlinearities associated with

electronic components, and the absence of any prior knowledge of the upper bounds of the internal system signals.

The use of Lyapunov stability theory provides a rigorous proof of closed-loop system stability. The introduced
adaptive laws effectively compensate for dynamic uncertainties and enable online estimation of unknown terms,
making the proposed approach particularly well suited for real electronic systems operating at high frequencies.
Moreover, synchronization is achieved without requiring an exhaustive parameter identification process, which

further enhances the practical relevance of the method.
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Another important outcome of this study is that synchronization is successfully realized in the UHF band, a
frequency range in which the generation and control of chaotic signals remain particularly challenging. This
feature significantly increases the potential applicability of the proposed scheme, especially in secure

communication systems, chaotic radar applications, and advanced microwave technologies.

Finally, the choice of Hartley and Colpitts oscillators is motivated by practical considerations. These architectures
are widely used and technologically accessible, making them realistic platforms for future experimental
implementation of the proposed synchronization scheme and thereby strengthening the practical impact of the

reported results.

6. Constraints and Limitations of the Study

Despite the encouraging results, several limitations of this study should be acknowledged.

First, the findings are based exclusively on numerical simulations using normalized mathematical models. No
experimental validation has been carried out at this stage, and certain phenomena inherent to real electronic
circuits such as thermal noise, component tolerances, temperature drift, and parasitic electromagnetic couplings

have not been taken into account.

Second, the modeling of the active electronic components relies on piecewise-linear nonlinear approximations.
While these models are commonly adopted for dynamical analysis and control design, they may deviate from the

actual behavior of electronic devices, particularly at very high operating frequencies.

Furthermore, the influence of explicit external disturbances, such as measurement noise or radio-frequency
interference, has not been considered. Therefore, a comprehensive robustness analysis of the proposed

synchronization scheme in the presence of such perturbations remains an open research direction.

Finally, although the synchronization errors can be made arbitrarily small through appropriate tuning of the
adaptive gains, no systematic optimization procedure for selecting these parameters is provided. In addition, the
achieved synchronization is of a practical nature, characterized by convergence to a bounded neighborhood of the
synchronized state rather than strict asymptotic convergence. Nevertheless, this level of synchronization is

generally sufficient for most physical and technological applications.

7.Conclusion

In this work, we have investigated the synchronization of non-identical chaotic oscillators of different orders

operating in the UHF band using an adaptive observer-based approach.

Synchronization between a fourth-order Hartley oscillator and a third-order Colpitts oscillator was successfully

achieved despite strong nonlinearities and structural differences.
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A Lyapunov-based adaptive control law was designed to ensure closed-loop stability and convergence of the
synchronization errors using a single control input, without requiring prior knowledge of system parameters.
Numerical simulations confirm the effectiveness and robustness of the proposed method, demonstrating reliable

chaos synchronization at ultra-high frequencies.

These results highlight the potential of adaptive observer techniques for high-frequency chaotic systems and

provide a promising framework for applications in secure communications and microwave technologies.
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