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Abstract 

Scroll waves in excitable media can anchor to non-excitable inclusions.  We study in a generic three-

dimensional medium how external fields can unpin anchored scroll waves and destroy them.  We find that 

external fields of increasing amplitude progressively deform the scroll wave's center of rotation (filament).  

Sufficiently large field force both segments of the anchored filament to align with the field.  For smaller 

inclusions, the two segments of the filament get so close to each other that they collapse and the scroll wave is 

destroyed.  For larger inclusions, the two segments stabilize at a distance that allows them to coexist and they 

are both oriented in the direction of the external field.  In this configuration, they are insensitive to the presence 

to external fields and the scroll wave cannot be unpinned.  The existence of such a stable scroll wave 

configuration may pose problems for defibrillation approaches that are based on unpinning. 

Keywords: Type your keywords here, separated by semicolons: Excitable media, scroll wave, anchoring, 

unpinning, arrhythmia mechanisms 

1. Introduction 

Excitable media encompass a broad class of highly nonlinear, distributed non-equilibrium systems of physical, 

chemical, and biological systems [1], including nerve and cardiac tissues [2]. 

------------------------------------------------------------------------ 
* Corresponding author.  

E-mail address: czemlin@odu.edu. 

355 
 

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied


International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 17, No  1, pp 355-361 

Many three-dimensional excitable media allow the existence of self-sustained, rotating waves called scroll 

waves [3]. The most relevant such medium is cardiac tissue, in which scroll waves present as life-threatening 

arrhythmias [2]. Because of their medical relevance, substantial effort has been directed at understanding the 

dynamics of scroll waves and at devising methods to eliminate them. 

The stability of scroll waves increases dramatically if the attach to heterogeneities in the medium in a process 

called anchoring [2,4,7].  Unanchored, the scroll wave drifts through the medium and may be destroyed 

spontaneously by several mechanisms.  Once anchored, the scroll wave rotates stably and can only be destroyed 

if it is first unpinned (removed from the heterogeneity, [8-10]  or more drastic interventions are taken (such as 

activation of most of the medium during defibrillation). 

Recent studies have shown that filaments are repelled by unexcitable inclusions, but that this repulsion can be 

overcome and filaments can anchor if the external field is sufficiently strong [11].  In the present paper, we 

demonstrate the mechanism by which unpinning takes place in 3D and estimate the necessary external field 

amplitude for unpinning scroll wave filaments (compared to the amplitude needed to anchor them). 

2. Materials and Methods 

Numerical simulations were carried out in a generic reaction-diffusion model of an excitable medium with 

Barkley kinetics [12]: 

𝜖𝜖𝜖𝜖_𝑡𝑡 𝑢𝑢 = 𝑢𝑢(1− 𝑢𝑢)(𝑢𝑢 − (𝑣𝑣 + 𝑏𝑏)/𝑎𝑎) + ∇ ⋅ 𝐷𝐷∇u 

𝜕𝜕𝑡𝑡𝑣𝑣 = 𝑢𝑢 − 𝑣𝑣, 

where 𝑢𝑢 is the activator variable and𝑣𝑣 the inhibitor variable. The external field is introduced by making the 

diffusion tensor 𝐷𝐷space dependent, 𝐷𝐷(𝒙𝒙) = 𝐷𝐷0 + 𝑬𝑬 ⋅ 𝒙𝒙 the diffusivity tensor, so that𝑬𝑬 acts as an external field.  

Without loss of generality, we assumed that 𝑬𝑬 is oriented along the 𝑥𝑥-axis.  No-flux boundary conditions were 

set both at the border of the inclusion and at external medium boundaries. The values of the kinetic parameters 

𝑎𝑎, 𝑏𝑏, and 𝜖𝜖are given in the caption of Fig.1; they were chosen such that in an unperturbed system (𝑬𝑬 = 0), the 

spiral rotation was stationary and scroll wave filaments had positive tension [13].We induced spiral and scroll 

waves as previously described [14]. 

3. Results 

For small fields (𝑬𝑬 = 0.01), filaments that drift towards an unexcitable inclusion are deflected by it.  Figure 1 

shows how a filament in such a small field drifts towards in unexcitable inclusion, is deflected by the inclusion, 

and continues to drift in its original direction after it has passed the inclusion.  This result is consistent with our 

previous report of scroll wave repulsion by an unexcitable inclusion [11]. 

When the external field is increased, the filament overcomes the repulsion and anchors to the inclusion.  Figure 

2 shows how the filament attaches and how the ends of the filament subsequently move in the direction of the 

external field 𝑬𝑬.  The stationary state of the filament is the result of a) the drift that pulls the filament in the 

direction of 𝑬𝑬 and b) the filaments tension, i.e. its intrinsic tendency to shorten and therefore become 
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straighter.Further increase of the external field leads a stationary filament that is more strongly curved (see Fig. 

2B). 

 

Figure 1.  Filament deflection for small fields (𝑬𝑬 = 0.01).  A: Side view.  Rod-shaped objects represent the 

filament at different moments of time, all superimposed in one Panel to illustrate the motion of the filament.  

Labels from “0” to “200” indicate the time at which each position is reached, in units of scroll wave rotations.   

The spherical object in front of the filaments is the inclusion.  The dashed arrow indicates the drift direction, the 

solid arrow the direction of the external field. B: Top view.  Medium parameters were 𝜖𝜖 = 0.02, 𝑎𝑎 = 0.9, 

𝑏𝑏 = 0.05, 120 × 120 × 120nodes,𝛥𝛥𝛥𝛥 = 0.25, 𝐷𝐷 = 0.5. 

 

 

Figure 2. Filament anchoring and bending for intermediate fields (𝑬𝑬 = 0.02 in Panel A, 𝑬𝑬 = 0.04 in Panel B).  

Notations as in Fig.1. 

If the external field is sufficiently large, the free ends of the filament move so far to the side that they leave the 

upper and lower faces of our medium.  Both segments of the filament straighten out and approach each other in 

the process.  Eventually, the distance between the two segments becomes too small for the two associated scroll 

waves to coexist.  This situation is analogous to pushing two counter-rotating spirals closer and closer together; 
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eventually there will not be enough space between the filaments for the waves to pass through and both filament 

segments collapse, starting from the inclusion.  Figure 3 illustrates this process. Once the filament has detached 

(see the filament snapshot labeled “182”), its tension quickly pulls it towards the boundary of the medium on 

which the filament ends are located, and the filament disappears at  𝑡𝑡 = 190 (measured in spiral periods). 

 

Figure 3.  Filament unpinning for large fields (𝑬𝑬=0.05).  A: Side view.  Note that the last filament snapshots 

(182, .., 188) have been spaced more closely in time to better illustrate the process of unpinning. 

Our most interesting finding is that the mechanism of unpinning described in the previous paragraph fails for 

sufficiently large inclusions.  If the inclusion is sufficiently large, the two filament segments can settle in a 

configuration in which they are both completely aligned with the external field, yet separated far enough to 

allow for their coexistence (see Fig. 4).  Since the filament segments are then aligned with the external field, the 

field no longer exerts a force on them, and it will not be possible to unpin such filaments with any strength of 

field.   This may have important consequences for defibrillation strategies in the heart that are based on 

unpinning:  If scroll waves are anchored to sufficiently large heterogeneities, it may be impossible to unpin them 

with external fields.   

 

Figure 4.  For large anchors (𝑟𝑟 = 4) and large fields (𝑬𝑬 = 0.1), filaments align with the field and cannot be 

unpinned.  The plane just right of the center of the medium indicates the boundary between medium in which 

waves can propagate (to the left), and medium in which low diffusion (due to the gradient in diffusion) makes 

wave propagation impossible.     A: Side view.  B: Top view. 
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The interaction of drifting filaments with unexcitable inclusions can thus be summarized as follows:  Below a 

certain threshold drift speed, the filament cannot overcome the repulsion of the inclusion and is deflected by it.  

Sufficient drift speed will cause the filament to anchor.  As long as the drift speed is below a second threshold, 

the filament stays anchored and is only more and more deformed as the external field is increased.  Above the 

second threshold, the filament fully aligns with the external field.  If the inclusion is sufficiently large, this leads 

to a stable configuration of the two filament segments that is no longer sensitive to external fields.  If the 

inclusion is so small that two attached, parallel filament segments cannot coexist and the filament collapses. 

Table 1.  Anchoring and unpinning for different field strengths and inclusion sizes. 

 𝑬𝑬=0.005 𝑬𝑬=0.01 𝑬𝑬=0.02 𝑬𝑬=0.04 𝑬𝑬=0.05 𝑬𝑬=0.1 

𝑟𝑟 = 1 Not anchored Anchored Anchored Anchored Unpinned Unpinned 

𝑟𝑟 = 2 Not anchored Not anchored Anchored Anchored Unpinned Unpinned 

𝑟𝑟 = 4 Not anchored Not anchored Not anchored Anchored Anchored Anchored 

 

Table 1 summarizes our anchoring and unpinning results for three different inclusion sizes.   For 𝑟𝑟=1, 

attachment occurs around 0.075, while detachment occurs around 0.045; for 𝑟𝑟=2, attachment occurs around 

0.15, while detachment occurs around 0.045; for𝑟𝑟 = 4, attachment occurs around 0.3 and there is no 

detachment.. 

4. Discussion 

We have shown the detailed 3D dynamics of anchoring of filaments to unexcitable inclusions and how they 

assume their stationary shape.  We have also shown that for sufficiently strong external fields, the anchored 

filament becomes unstable and detaches from the inclusion if the inclusion is sufficiently small, but that  

The results presented here are fully consistent with earlier work, which was directed at quantifying the forces 

the filament experiences when it approaches an unexcitable obstacle [11].  They are also consistent with a 

different study that determined the shape of a filament that is anchored at both ends and exposed to an external 

field [15].  In that paper, the filament assumed the shape of a hyperbolic cosine, in observance of the geodesic 

principle.  In our current manuscript, two branches of the filament go from the inclusion to opposite directions, 

but each branch again has the shape of a hyperbolic cosine as the geodesic principle prescribes. 

5. Conclusions 

External fields are only effective for unpinning scroll waves if they are anchored to sufficiently small inclusions.  

For larger inclusions, the filament segments can align with the external field so that they are no longer affected 

by it.  
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