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Abstract 

In this paper, an analytic solution which has to do with the series expansion approach is proposed to determine 

the solution of time K-de V equation, specifically by FRDTM. The fractional derivatives are demonstrated in 

the Caputo sense. We compare the obtained results with R-K fourth order Method. It is possible to obtain 

solution closed to exact solution of a partial differential equation. To sum it up all, the accuracy, robustness, 

efficiency and convergence of this techniques are then illustrated through the numerical examples presented in 

this paper. 

 Keywords: Korteureg-de-varies Burger; Reduced differential transform method; approximate solution; Runge-
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1. Introduction 

In recent years fractional differential operators have become the vehicle through which approximate solutions of 

most linear and nonlinear PDEs is determined. The fast changing world  has made fractional  partial differential 

equation to receive the desired  attention in the application in  diverse fields such as , mathematics, biology, 

physics, electrical circuit, fluid mechanics, medicine, and many more [5, 9, 14,  15, 16]. It has been established 

by many researchers that conducting derivatives in non-integer are very robust way of giving a vivid 

descriptions of many physical phenomena including diffusion process, heat conducting, damping law, rheology.  

It is important to note that there is no specific method in general that provides an exact solution in terms of 

fractional equations and hence obtaining approximate solutions is indispensable in science.  

Several methods have been explored and applied to obtain solutions to both linear and non-linear fractional 

equations and among them are: the Adomian Decomposition Method (ADM) [3, 6, 22, 23], the Variational 

Iteration Method (VIM) [3, 21], the Differential Transform Method (DTM) [4, 12, 13] and the Homotopy 

Perturbation Method (HPM) [17, 24]. Most of these methods sometimes require a very huge computations in 

order to obtain approximate solutions. The fractional reduced differential transform method proposed by Keskin 

and Oturanc [7] is therefore to overcome some of these problems already mentioned in terms of highly 

complicated computations. For this method, it is able to lead to some cases both exact and approximate solution 

in a quickly convergent power series. More often, a few numbers of iterations is therefore, required of the series 

solution for numerical purposes and having high accuracy at the same time [18, 19]. This method is very 

efficient, can be relied upon and robust analytically [18, 20].  

In this paper, we propose an approximate analytical solution of the time fractional partial differential equation of 

the order α (0<α ≤ 1) in a series form which rapidly converges to exact solution using FRDTM. In Section 2, the 

basic preliminary on FRDTM and notations on fractional calculus theory have been presented. In Section 3, the 

preliminary on FRDTM has been provided in detail. In Section 4, the fractional reduced differential transform 

method has been applied to determine the approximate solutions (FRDTM) of our partial differential equation. 

Finally, in Section 5 discussion and conclusion of this paper are also presented. 

2. Basic definitions and notations on fractional calculus theory 

This section provides some useful notations and definitions that will be utilized in the subsequent sections. The 

theory of fractional calculus has been around almost the two decades in the literature.  Numerous definitions of 

fractional integrals and derivatives have come up but the first proper definition is attributable to Liouville as 

follows. 

2.1 Definition  

A real function ( ),  0h x x   is said to be in the space ,C R   if there exists a real number q   such 

that ( ) ( )qh x x f x where  ( ) 0,h x C  , and it is said to be in the space 
mC  If 

( ) ,mh C m N  . 
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2.2 Definition  

For a function ( )h x , the Riemann - Liouville fractional integral operator [11] of order 0  , is expressed as 

1

0

0

1
( ) ( ) ( ) , 0, 0

( )

( ) ( )

x

J h x x t h t dt x

J h x h x

  





   






      (2.1) 

The Riemanne - Liouville derivative possesses particular shortcomings when applying in real life situations in 

fractional differential sense which calls for the definition of fractional order initial condition, which have no 

physical meaningful explanation yet. To deal with this obstacle, a modified version of Riemanne - Liouville 

fractional derivative with operator D
 is proposed by Caputo and Mainardi [1]. The Caputo fractional 

derivative provides room for making use of initial and boundary conditions concerning integer order derivatives, 

lead to vivid physical meanings. 

2.3 Definition  

The fractional derivative of  h  in the Caputo sense [16] can be stated as 

1 ( )

0

1
( ) ( ) ( ) ( ) ,

( )

x

m m m mD h x J D h x x t h t dt
m

  



    
        (2.2) 

for 
11 , , 0, mm m N x h C        

The major basic characteristics of the Caputo fractional derivative are stated as. 

2.4 Lemma 

 If  1 ,   , 1mm m m N and h C         then 

( )

0

( ) ( ), 0,

( ) ( ) (0 ) , 0,
!

km
k

k

D J h x h x x

x
D J h x h x h x

k

 

  



  



  



       (2.3) 

In this work, the Caputo fractional derivative is used because it provides avenue to utilize the concept of initial 

and boundary conditions to be part in the derivative of the problem. For more details about fractional derivatives 

see [2, 16]. 
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3. Fractional reduced differential transform method 

In this section, we make use of reduced differential transform method for two variable function ( , )u x t  which 

has been proposed in [7, 8].  Suppose a function of two variables  ( , )u x t  which is analytic and differentiated 

continuously in the domain of our interest being studied, and assume that it can be expressed in the form

( , ) ( ) ( )u x t h x f t . 

3.1 Definition  

If function ( ; )u x t is analytic and differentiated continuously with respect to x and t  in the domain of interest, 

then let 

0

1 1
( ) ( , ) ,

! ( 1)

k

k k

t

U x u x t
k k t






 
  

   
      (3.1) 

where the t  -dimensional spectrum function ( )kU x  is referred to as  the transformed function which is called 

  function. 

The differential inverse transform of ( )kU x  is expressed as 

0

( , ) ( ) ,k

k

k

u x t U x t 




                       (3.2) 

putting together  equations. (3.1) and (3.2) leads to 

0 0

1
( ) ( , ) .

( 1)

k
k

k k
k t

U x u x t t
k t








 

 
  

   
       (3.3) 

In real implementation of RDTM and considering ( ) ( )OU x h x  as transformation of initial condition leads to 

 ( ,0) ( )u x h x ,                                     (3.4) 

By considering equation (3.2), the function ( , )u x t can therefore, be approximated by a finite series as   

0

( , ) ( )
n

k

n k

k

u x t U x t 



                                     (3.5) 

A direct iterative computations, leads to the ( )kU x values for 1,2,...,k n .The inverse transformation of the 
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function   
0

( )
n

k k
U x


 is then determined which provides the approximation solution as ( , )nu x t , where n

represents   order of approximate solution obtained. Finally, the exact solution is determined by taking limit of 

the function ( , ) lim ( , )n
n

u x t u x t


 .  

We state some of the basic properties of the reduced differential transformation obtained from equations (3.1) 

and (3.2) which are presented in Table 1. 

Table 1: Reduced differential transformations 

Functional Form  Transformed Form 

( , )u x t  

0

1
( , )

( 1)

k

k k

t

U u x t
k






 
  
   

 

( , ) ( , ) ( , )w x t u x t v x t  ( ) ( ) ( )k k kW x U x V x  

( , ) ( , )w x t cu x t  ( ) ( )k kW x cU x  

( , ) ( , )
N

N
w x t u x t

t









 
( 1)

( ) ( )
( 1))

k k N

k N
W x U x

k






  


 
 

( , ) m nw x t x t  ( ) ( )m

kW x x k n    

( , ) ( , )m nw x t x t u x t  ( ) ( )m

kW x x U k n    

( , ) ( , ) ( , )w x t u x t u x t  

0 0

( ) ( ) ( ) ( ) ( )
k k

k r k r r k r

r r

W x V x U x U x V x 

 

    

( , ) ( , )
N

N
w x t u x t

t









 
( 1)

( ) ( )
( 1))

k k N

k N
W x U x

k

 




  


 
 

( , ) ( , )
m

m
w x t u x t

x





 ( ) ( )
m

k km
W x U x

x





 

 

Remark. In Table1,  stands for Gamma function which is expressed as  

1

0

( ) : , .t zz e t dt z



            (3.6) 

It should be noted that the Gamma function is the continuous extension to the function. In the entire paper we 

will be employing the recursive relation ( 1) ( ), 0z z z z       to compute the value of Gamma function of 

all real numbers by having idea only on the value of the Gamma function between 1 and 2. 
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Now, for illustration purpose we solve the Cahn–Hilliard equation in standard by using the RDTM 

 ( , ) ( ( , )) ( ( , )) 0L u x t R u x t N u x t   ,                   (3.7) 

subject to the initial conditions 

( ,0) ( )u x f x           (3.8) 

where L
t





 denotes  a linear operator,   3( , )N u x t u  has to do with  the remaining linear term. 

By applying the theorems in Table1 above, we can construct the following recursive relation: 

   ( 1) ( ) ( , ) ( ) ( )k k kk U x R U x t N U x U x         (3.9) 

where  ( , )kR U x t , ( )kU x  and  ( , )kN U x t  denote the transformations of  ( , )R u x t , 

( , )u x t  and  ( , )N u x t  correspondingly. Now equation (3.8), which is the initial condition can be arranged 

as: 

0( ) ( )U x f x                                     (3.10) 

In order to obtain all other iterations, we initially substitute equation (3.10) into equation (3.9) and then we 

determine the values ( )kU x . 

0

( , ) ( )
n

k

k

k

u x t U x t


          (3.11) 

where  n  represents  the number of iterations employ to obtain the approximate solution. Thus, the exact 

solution of the problem is stated as ( , ) lim ( , ).nu x t u x t   

4. Application  

Applying the RDTM to the one dimensional partial differential equation, we have the following relation 

Example 1 Consider the following Korteureg-de – varies (generalized) partial differential equation [10, 24] 

3 5 ,  t x xu u u x              (4.1) 
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with initial condition 

0( ,0) sinu x x           (4.2) 

where ( , )u u x t is a function of the variables x  and t . 

Then, by applying the basic properties of the reduced differential transformation, we can obtain the transformed 

form of equation (4.1) as 

   
5 3

1 5 3

( 1)
( ) ( ) ( )

( 1)
k k k

k
U x U x U x

k x x



 


    
  
     

     (4.3) 

where the t  -dimensional spectrum function ( )kU x is the transformed function. 

From the initial condition (4.2) we write 

0( ) sinU x x            (4.4) 

Substituting (4.4) into (4.3), we obtain the following ( )kU x  values successively 

0U = sinx ,
1

2 ( )
U

(2 )

cosx 







,

2

4 ( )sin

(3 )

x
U






 


,

3

8 ( )

(4 )

cosx
U






 


…..   (4.5) 

We continue in this manner and after a few iterations, the differential inverse transform of  
0

( )
n

k k
U x


  will 

give the following approximate solution: 

0

( , ) ( ) k

k

k

u x t U x t




           (4.6) 

2 3

0 1 2 3( ) ( ) ( ) ( ) .....U x U x t U x t U x t      
                    (4.7) 

2 ( ) 4 ( ) 16 ( )
...

(2 ) (3 ) (5 )

cosx sinx sinx
Sinx

  

  

  
  

  
     (4.8) 

2 3 42 ( ) 4 ( ) 8 ( ) 16 ( )
...

(2 ) (3 ) (4 ) (5 )

cosx sinx cosx sinx
Sinx t t t t      

   

   
   

   
  (4.9) 

Hence, the approximate solution is obtained. Now, the numerical results of RTDM are computed for different 
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values of 0.6, 0.8, 0.9, 1.0       and different values of x and t . The numerical solution of 

RDTM is compared with RK4 method and graphs are subsequently shown. 

Example 2. Consider the following the Korteureg-de-varies equation [10, 24] 

3 22 0,  t x x xu u u u v u x               

 (4.10) 

with initial condition 

0( ,0) cosu x x          

 (4.11) 

where ( , )u u u t  is a function of the variables x  and t  . 

Then, by using the basic properties of the reduced differential transformation, we can find the transformed form 

of equation (4.7) as 

   
2 3

1 2 3
0

( 1)
( ) 2 ( ) ( ) ( )

( 1)

k

k r k r k k

r

k
U x U U x v U x U x

k dx x x



 
 



     
    
     

  

 (4.12) 

where the t -dimensional spectrum function ( )kU x are the transformed function. 

From the initial condition (4.8) we write 

0( ) sinU x x           

 (4.14) 

Now, substituting (4.14) into (4.13), we obtain the following ( )kU x  values successively 

Finally the differential inverse transform of ( )kU x  gives 

0

( , ) ( ) k

k

k

u x t U x t





         

 (4.15) 

2 3

0 1 2 3( ) ( ) ( ) ( ) .....U x U x t U x t U x t      
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 (4.16) 

 
0 1

( ) 2
,   

(2 )

cosx sinx sin x
U cosx U





  
  


,

 
2

( ) 10 2 3 3 2 6 2

(3 )

cosx sin x cos x sinx sin x
U





    
 


, 

3 2

1
( ) ( ) (3 )( 12 8 6 2 16 3 14 4 8 2 7 3 2 4 )

4 (2 ) (4 )
U cosx cos x cos x cos x sinx sin x sin x sin x  

 
            

 

 

  
2

2 (1 136 3 260 2 592 3 99 4 9 240 2 259 3 52 4 )cos x cos x cos x cos x sinx sin x sin x sin x        

  

    2
( ) 2 ( ) 10 2 3 3 2 6 2

(2 ) (3 )

cosx sinx sin x cosx sin x cos x sinx sin x
Cosx t t  

 

       
 

 
+ 

2

1
( ) ( ) (3 )( 12 8 6 2 16 3 14 4 8 2 7 3 2 4 )

4 (2 ) (4 )
cosx cos x cos x cos x sinx sin x sin x sin x  

 
           

 

 

  
2 32 (1 136 3 260 2 592 3 99 4 9 240 2 259 3 52 4 )cos x cos x cos x cos x sinx sin x sin x sin x t         

            

 (4.17) 

Thus, the approximate solution of equation (4.10) is obtained. Now, the numerical results of RTDM are also 

computed for different values of 0.6, 0.8, 0.9, 1.0       for different values of x and t . The 

numerical solution of RDTM is compared with RK4 method and graphs are subsequently shown. 

5. Results and Discussion  

The fractional reduced differential transform has been employed to examine the dynamics of Korteureg-de – 

varies. The equations were solved using different values of  and Runge-Kutta fourth order method. The 

approximate solutions converged rapidly. Then we determine numerical results of the approximate solution for 

varying values of 0.5, 0.7, 1.0      with same values of x  and t . The results are graphically plotted 

and compared with varying values of   are presented in Figure 1 and Figure 2. All the computations were 

carried out in Mathematica 10.0 version.   From Figure 1 (a, c, e) as in equation 4.1, one can see that the values 

of the approximate solution of different grid points and different values of   determined by FRDTM are very 

related   to the values of the Runge-Kutta fourth order method in Figure1  (b, d, f) with high precision and the 

accuracy improves  as the order of approximation goes up.  
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(b) 

 (a) 

(c)           (d) 
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(e)          (f) 

Figure 1:  The approximate solution for equation 4.1 when 0.5, 0.7, 1.0     (a, c, e) and Runge- 

Kutta 4th order (b, d, f) 

Similarly, one can also observe same characteristics in Figure 2 (a, c, e) based on equation 4.2   that the values 

of the approximate solution of different grid points and different values of  which are determined by FRDTM 

matches with the values of the Runge-Kutta fourth order method in Figure2  (b, d, f) with high accuracy and the 

precision. 

 

(a)         (b) 
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(c)          (d) 

 

 

(e)         (f) 

Figure 2:  The approximate solution for equation 4.2 when 0.5, 0.7, 1.0     (a, c, e) and Runge- 

Kutta 4th order (b, d, f) 

6. Conclusion 

In this present work, we have explored and demonstrated the power of FRDTM and  apply  to obtain 

approximate analytical solution of fractional Korteureg-de – varies for varying values of   and the results 

obtained in 4.1 and 4.2 are very close to the Rumge-Kutta 4th order results respectively. The method is employed 

directly without applying technique such linearization, transformation, discretization or even compelling 
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assumptions. The robustness of this method is shown from the computation results. The FRDTM presents a vital 

advancement in many fields over other current methods since it requires less computations as compare to other 

techniques available. In future we anticipate to apply this method to deal with other nonlinear fractional PDEs 

which are always characterized with many fields such as Biology, Environmental dynamics Mathematics and 

Engineering. 
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