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Abstract 

The Phonon dispersion curves of liquid Ni near its melting temperature have been investigated using two 

different models: Takeno-Goda and Hubbard-Beeby. Bretonnet-Silbert (BS) pseudo-potential has been used for 

the interatomic potential calculation. The pair distribution function g(r) obtained by Variational Modified 

Hypernatted Chain (VMHNC) method. The phonon dispersion data thus obtained is in good agreement with 

those of Gopala and his colleagues Also the first minimum in 𝟂𝟂(k) for longitudinal phonon modes and the first 

maximum in the static factor S(k) occur nearly at the same value of k according to the framework of Ziman’s 

Formalism. In addition, stiffness constants (C11 and C44) and compressibility have been calculated and 

compared with the available experimental data. 

Keywords: BS Pseudopotential theory; Variational Modified Hypernatted Chain (VMHNC) method. 

1. Introduction  

1.1 Bretonnet and Silbert (Bs) Model of Pseudo Pot1ntial 

An approximation for the simplified description of complex system effective potential is used. Pseudo Potential 

offers a calculation tool that increases the range of problems in solid that can be brought within the 

computational reach.  
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There are many pseudo potential model for liquid transition metals. As we have used Bretonnet-Silbert (BS) 

model in our calculation, we discuss it. Bretonnet and Silbert (BS) have proposed a model potential [1] to 

describe s and d bands of a liquid transition metal. The bare potential is written as  

𝑊𝑊𝑖𝑖(𝑟𝑟) =

⎩
⎪
⎨

⎪
⎧� 𝐵𝐵𝑚𝑚

(𝑖𝑖) exp �
−𝑟𝑟
𝑚𝑚𝑎𝑎𝑖𝑖

�                 𝑖𝑖𝑖𝑖 𝑟𝑟 < 𝑅𝑅𝑐𝑐𝑐𝑐

2

𝑚𝑚=1

−𝑧𝑧𝑖𝑖𝑒𝑒2

𝑟𝑟
                                        𝑖𝑖𝑓𝑓 𝑟𝑟 > 𝑅𝑅𝑐𝑐𝑐𝑐

                                                        (1) 

Where, 𝑅𝑅𝑐𝑐 is the core radius, 𝑎𝑎 is the softness parameter, Z is the effective s-electron occupancy number and 

𝐵𝐵1and 𝐵𝐵2 are the Dirichlet coefficients. 

1.2 Vmhnc Theory 

For brief review of the main features of VMHNC, the initial equation of all integral equation theories of liquid 

can written as  [5,6,7] 

ℎ(𝑟𝑟) = 𝑐𝑐(𝑟𝑟) + 𝜌𝜌�𝑑𝑑𝑟𝑟′ℎ(|𝑟𝑟 − 𝑟𝑟′|)𝑐𝑐(𝑟𝑟)                           ( 2) 

Where, c(r) is direct correlation function,ℎ(𝑟𝑟) = 𝑔𝑔(𝑟𝑟) − 1, where h(r) is total correlation function(r) is pair 

distribution function. 

This relation can be written as 

𝑐𝑐(𝑟𝑟) = ℎ(𝑟𝑟) − log{𝑔𝑔(𝑟𝑟)𝒆𝒆𝜷𝜷𝜷𝜷(𝒓𝒓)+𝜷𝜷(𝒓𝒓)}                                  (3) 

Where, ϕ is interatomic potential, β is (kT)-1 the inverse of temperature times the Boltzmann constant β(r) bridge 

function. 

So the configurational part of the VMHNC free energy functional is,  

𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽,𝜌𝜌, 𝜂𝜂) = 𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽,𝜌𝜌, 𝜂𝜂) − 𝜟𝜟(𝟎𝟎)(𝜂𝜂)              (4) 

  taking,   

𝜟𝜟(𝟎𝟎)(𝜂𝜂) =  𝑓𝑓𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝜂𝜂) − 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝(𝜂𝜂) − 𝜕𝜕∅(𝜂𝜂) 

𝜕𝜕∅(𝜂𝜂) is a fittimg function where 𝜕𝜕∅(𝜂𝜂) =  𝑓𝑓𝑐𝑐𝑐𝑐(𝜂𝜂) − 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝(𝜂𝜂)  

Where, fpyv(η) and fcs(η) the py virial and free energy. 

1.3 The Takeno-Goda (TG) Model 

The effective potential and pair distribution function g(r) are then used to calculate the longitudinal and 
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transverse phonon frequencies. The product of the static pair-correlation function ‘g(r)’ and the second 

derivative of the interatomic potential 𝑉𝑉(r) is peaked at ‘𝜎𝜎’, which is the hard sphere diameter. The longitudinal 

phonon frequency 𝜔𝜔𝐿𝐿(𝑘𝑘) and transverse phonon frequency 𝜔𝜔𝑇𝑇(𝑘𝑘) based on harmonic approximation according 

to the Takeno-Goda (TG) model [1,2] are given by, 

𝜔𝜔𝐿𝐿
2(𝑘𝑘) = �

4𝜋𝜋𝜋𝜋
𝑀𝑀

�� 𝑑𝑑𝑑𝑑 𝑔𝑔(𝑟𝑟) �𝑟𝑟𝑣𝑣′(𝑟𝑟) �1 −
𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘)
𝑘𝑘𝑘𝑘

� + {𝑟𝑟2𝑣𝑣′′(𝑟𝑟) − 𝑟𝑟𝑣𝑣′(𝑟𝑟)}
∞

𝑟𝑟=0

× �
1
3
−
𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘)
𝑘𝑘𝑘𝑘

−
2𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘)

(𝑘𝑘𝑘𝑘)2 +
2𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘)

(𝑘𝑘𝑘𝑘)3 ��                                                     (5) 
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𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘)
𝑘𝑘𝑘𝑘

� + {𝑟𝑟2𝑣𝑣′′(𝑟𝑟) − 𝑟𝑟𝑣𝑣′(𝑟𝑟)}
∞

𝑟𝑟=0

× �
1
3

+
2𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑘𝑘)

(𝑘𝑘𝑘𝑘)2 −
𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝑘𝑘)

(𝑘𝑘𝑘𝑘)3 ��                                             (6) 

1.4 The Hubbard-Beeby Model  

The longitudinal phonon frequency 𝜔𝜔𝐿𝐿(𝑘𝑘) and transverse phonon frequency 𝜔𝜔𝑇𝑇(𝑘𝑘) are given by the expressions 

due to HB [3], 

𝜔𝜔𝐿𝐿
2(𝑘𝑘) = 𝜔𝜔𝐸𝐸

2 �1 −
3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘𝑘𝑘

−
6𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑘𝑘𝑘𝑘)2 +

6𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑘𝑘𝑘𝑘)3 �                                                                           (7) 

𝜔𝜔𝑇𝑇
2(𝑘𝑘) = 𝜔𝜔𝐸𝐸

2 �1 −
3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜎𝜎
(𝑘𝑘𝑘𝑘)2 +

3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑘𝑘𝑘𝑘)3 �                                                                                              (8) 

Where, 

                𝜔𝜔𝐸𝐸
2 =

4𝜋𝜋𝜋𝜋
3𝑀𝑀

� 𝑔𝑔(𝑟𝑟)𝑟𝑟2𝑉𝑉′′(𝑟𝑟)𝑑𝑑𝑑𝑑                                                                                           (9)
∞

0
 

𝜔𝜔𝐸𝐸 is the maximum phonon frequency. 𝑉𝑉 
′′is the second derivative of the pair potential. M is the atomic mass. 

Both phonon frequencies, i.e. transverse and longitudinal are proportional to the wave vector (k) and obey the 

relationships in the long wavelength limit of the frequency spectrum, 

𝜔𝜔𝐿𝐿 ∝ 𝑘𝑘  𝑎𝑎𝑎𝑎𝑎𝑎  𝜔𝜔𝑇𝑇 ∝ 𝑘𝑘, 

                                                             𝑜𝑜𝑜𝑜,𝜔𝜔𝐿𝐿 = 𝑉𝑉𝐿𝐿𝑘𝑘  𝑎𝑎𝑎𝑎𝑎𝑎  𝜔𝜔𝑇𝑇 = 𝑉𝑉𝑇𝑇𝑘𝑘                                          (10)      

Where VL is the longitudinal sound velocity and VT is the transverse sound velocity. Various elastic properties 

are then determined by the longitudinal and transverse phonon frequencies. We have calculated the stiffness 

constant C11, C44 for Ni at melting temperature using the phonon frequency data in long wave length limit, from 

Schofield‘s equation. And also compressibility has been calculated, the elastic stiffness constants 𝐶𝐶11  and 𝐶𝐶44 
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are related to the angular frequency (𝜔𝜔) and the wave vector (𝑘𝑘) for longitudinal wave and transverse wave 

through the following equations respectively [14]    

𝜔𝜔2𝜌𝜌 = 𝐶𝐶11𝑘𝑘2                                    (11) 

𝜔𝜔2𝜌𝜌 = 𝐶𝐶44𝑘𝑘2                                                                                        (12) 

where, 𝜌𝜌 is the mass density. 

The elastic stiffness constants can also be calculated from Schofield‘s equations [15]. These are related to 

stiffness constants 𝐶𝐶11  and 𝐶𝐶44 through the following equations [16] 

𝐶𝐶11 = 𝑄𝑄𝑘𝑘𝐵𝐵𝑇𝑇 �3 + 2 𝐼𝐼1
15

+ 𝐼𝐼2
5
�                  (13) 

𝐶𝐶44 = 𝑄𝑄𝑘𝑘𝐵𝐵𝑇𝑇 �1 + 4 𝐼𝐼1
15

+ 𝐼𝐼2
15
�                                   (14) 

Thus the integrals 𝐼𝐼1 and 𝐼𝐼2 are calculated through the use of the RDF and the potential energy derivatives.  

2. Materials and Method 
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Figure 1: Effective potentials for liquid Ni Obtained from BS model Using the following parameterizations  

(T=1773). 
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Figure 2: Pair distribution function ( )rg  for liquid Ni at melting temperature (1773 K) calculated by using BS 

model potentials along with VMHNC. 
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Table 1: The values of the BS model parameter rcut, Z, α , thermodynamic inputs temperature T and ionic 

number densities n [12, 13] are given in Table:1 

Collective dynamics results specifically the curve of longitudinal and transverse frequencies with respect to 

wave number k. The dispersion curves were generated using the method of Takeno Goda [2,3], Hubbard-Beeby 

[4].  

 

Figure 3: Phonon Dispersion (Longitudinal) curve for liquid Ni at melting temperature 

Phonon Dispersion (Longitudinal) From the phonon dispersion curve of Ni, it appears that the first minimum 

in ( )kω  for longitudinal phonon modes and the first maximum in the static structure factor S(k) occur nearly 

at the same value of ( ) [ ]FkAk 23 10 ≈≈
−

.This is within the framework of Ziman’s formalism [11]. It is seen 

that ( )kL
maxω  occurs midway between zero and the structure factor maximum. That is the position of the 

maxima of the longitudinal phonon mode for Ni at ( ) [ ]FkAk ≈≈
−105.1  position of the first minimum of ωl 

is found to be near the position of the first peak of the structure factor data as predicted by Takeno-Goda. 

Oscillations are presented in Lω (k) up to large values of k showing the collective nature of these excitons. 

However, Lω (k) does not show any oscillations. It can be noted that the structure factor S (k) maxima 

corresponds to minima in Lω (k). Thus the first maximum of S (k) coincides with the first minimum of Lω (k) 

while the first minimum of S (k) coincides of 2nd maximum of Lω (k). Therefore when the correlation in S(k) is 

strong as exhibited by the peaks, the corresponding frequency is less. 
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Figure 4: Phonon Dispersion (Transverse) curve for liquid Ni at melting temperature 

The peak of transverse frequency appears at a higher wave vector than that of the longitudinal frequency and 

exhibits no significant oscillatory behavior. The principal peak of the transverse phonon mode for Ni occurs at

( ) 1020.2 −
≈ Ak  

2.1 Elastic Properties: Stiffness Constants And Compressibility 

stiffness constant C11, C44 for Ni at melting temperature are calculated. These constants have been calculated 

using the phonon frequency data in long wave length limit, from Schofield‘s equation. a = Ref. [18]. 

Table 2: Stiffness and compressibility obtained for liquid Ni at melting temperature 

Metal Stiffness 

constant 

From phonon 

frequency 

From 

Scofield’s 

equation 

Gopala 

and his 

colleagues 

Experimental 

Value a 

 

  Ni 

C11 .83 .88 .84      1.02 

C44 .38 .32 .29      

Compressibility 

From C11 1.20 1.13 1.18       .98 

 

3. Conclusion 

In conclusion we would like to summarize the main points of this work. We have presented a comprehensive 

study of the collective dynamics knows as Phonon of Ni at melting temperature. A better agreement can be 

obtained if we can do a better parameterization to obtain the pair-potential and use that to get g(r), however data 

obtained as above agrees well with each other and also with that of Gopala and his colleagues. The Stiffness 

Constants and Compressibility have been calculated and the values are found to be in good agreement with each 

other. 
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