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Abstract 

Major and trace element geochemistry have been used to unravel the tectonic setting, source rock composition, 

and depositional environment of sedimentary rocks in the Mamfe formation. Field studies reveal both sub 

tabular and tabular outcrops indicating a post tectonic sedimentary activity for the subtabualar outcrops. Major 

element geochemistry reveals a moderate to high proportion (50-75wt %) of silica for the analyzed samples. 

New discriminant diagrams constructed for usage of adjusted major elements shows samples plotting on 

collision, arc and rift. Another discriminant plot for adjusted major element combined with trace elements shows 

samples plotting on active and passive tectonic setting.  Ratios of highly immobile trace elements such as Cr/Th, 

Th/Sc, Th/Co, and La/Sc conclude a felsic source rock for the studied rocks of the Mamfe formation. Trace 

elements ratios for redox conditions and marine-continental discrimination such as Ni/Co, U/Th, V/Cr, Th/U, 

and Y/Ho show that the sedimentary rocks of the   formation were deposited in a shallow oxygenated 

continental fluvio-lacustrine environment. 
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1. Introduction   

The weathering of preexisting igneous and metamorphic rocks leads to the formation of sediments. These 

sediments parked in a junk may undergo sedimentary differentiation leading to the different sedimentary rocks. 

This differentiation is affected by factors such as the velocity of the transporting medium, mode and agent 

transportation, and, environment of deposition. Detrital sedimentary rocks enclose essential evidence about 

changes in the supply of material from diverse sources over time, and the geochemical compositions of such 

sediments have demonstrated to be a prevailing tool for rebuilding the signature of tectonic settings, the 

composition of the source areas and the provenance of the sediments. Most authors have used the traditional 

method of petrography to decipher the tectonic setting and source rock composition of medium to very coarse 

grained sediment by using ternary diagrams provided by [1], and diamond diagram provided by[2]. The 

petrographic methods recently used by [3] are unclear as the geochemical and mineralogical composition of 

these sediments are from time to time influenced by processes in the course of transportation, sedimentation and 

diagenesis. Trace elements and rare earth elements (REE) are thought to be useful signs of provenance, and 

tectonic setting owing to their reasonably low mobility and insolubility throughout sedimentary processes. The 

determination of the tectonic setting of sediments have been sorted mostly by discriminants and ternary diagram 

proposed by [4,5], although countless studies on sediment geochemistry designate that these diagrams do not 

perform suitably [6,7,8,9]. This work seeks to decipher the tectonic setting, source rock composition and 

depositional environment of the sedimentary rocks of the Mamfe formations in the Mamfe basin.  

2. Geologic setting and stratigraphy 

The Mamfe sedimentary basin situated in West Africa lies between longitude of East 8° 00′ to 90° 30′ and 

latitude of North 5° 30′ to 6° 30′(Figure 1). This basin has been described as a rift splay which is genetically 

linked to the Benue trough.  

The rift is thought to be form from the reactivation of the E-W Mylonitic zone within the Pan African basement 

[10,11] related the formation of this basin to the opening of the South Atlantic Ocean, associated to the drifting 

of the Gondwanaland followed by the separation of the Africa plate from the South American plate.  

Reference [12] deduced the presence of clastic dykes and soft sediments deformation structures within this 

basin. He concluded that these clastic dykes are extrusive, formed from tectonovolcanic activities. His 

assumptions were based on the concomitant plunging angle of the clastic dykes and the magmatic dykes and the 

non-discordant nature of the clastic dykes and the basement rocks. This basin is believed to be composed 

predominantly of continental sediments consisting mainly of conglomerate, arkosic sandstone, mudstone, 

limestone, and evaporates [3,13]. 
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Figure 1: Simplified geologic map of the Mamfe Basin showing the study areas modified from [15]. 

Stratigraphically, Reference [14] documented five series of sedimentary rocks in the Eastern part of the Mamfe 

basin from bottom to top as the: Manyu sandy clay and Lower conglomeratic sandstone series, Upper 

conglomeratic sandstone series, Clayey sandstone series, Cross River sandstone series. Reference [10] reviewed 

the five series propose by [14] into four stratigraphic formations, which are from top to base as the: Cross River 

formations, Baso, Ngeme, Nfaitok with each subdivided into different members. Reference [15] clustered the 

sedimentary facies of the basin into the Mamfe formation, which he sub-divided into the Etoko-okoyong, 

Nfaitok and Manyu members, all underlain by Precambrian basement rock (Figure.2).  

 

Figure 2: Generalized stratigraphic framework of the Mamfe Basin[15] 
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3. Material and Methodology  

The methodology approached used in this worked were grouped in to field and laboratory studies. Field studies 

entails the identification of the different sedimentary facies, while describing their physical feature such as 

color, texture, structure and dilute acid reaction. In the laboratory 14 samples of mixed shales and sandstones 

were performed for geochemical analysis. Fresh samples harvested from surface outcrops were crushed to 

powder at the institute of mining and geological research, Cameroon (IRGM). Samples were collected from road 

cuttings and river beds outcrops.  The 14 samples were analyzed for major, trace and rare earth elements 

contents by x ray fluorescence (XRF) and inductively coupled plasma– mass spectrometry (ICP–MS) at the 

mineral laboratory at Vancouver university, British Columbia, Canada. Standard sample preparation and 

analytical techniques were used following procedures used in [13] for ICP-MS analyses [16]  for XRF analyses. 

For XRF, 0.2g powdered samples were mixed with sodium metaborate and lithium metaborate of 0.9g. the 

mixture was put in a furnace of 1000oC. The liquid was allowed to cool and then redissolve in 100ml nutric acid 

at 4% and hydrochloric acid at 2%. The results after passing the solution through x ray fluorescence were 

corrected to avoid spectral interference of elements.  For ICPMS, 0,5g of the samples were first treated with 

dilute nitric acid to react with any carbonate, then evaporated to dryness followed by dissolution in a nitric-

hydrofluoric acid mix. The samples were evaporated to dryness and concentrated nitric and hydrofluoric acid 

was added to them three times over three days. The samples were then dissolve again in a 2% nitric double 

distilled water solution and diluted to 1000 times for MS. The USGS standards were run for calibration and 

accuracy was generally within 10% and precision 5%.   For tectonic setting, new methods discriminant 

functions of [8] will be used.  The new method proposed [9], concentrated on major element. Samples with 

adjusted silica (SiO2)adj between 35% and 95%  were subdivided into high-silica and low-silica groups (Table 

2). The subscript adj in (SiO2)adj refers to the SiO2 value obtained after volatile-free adjustment of the ten 

major-elements to 100 wt.%, with the prior conversion of reported Fe concentration (FeO or Fe2O3) as Fe2O3t 

(total Fe) from appropriate atomic or molecular weights. This adjustment ascertained an identical treatment to 

all samples and standardized the future use of the proposed diagrams. After all adjustment, the discriminant 

functions (DF1and DF2 of the sediments were calculated differently for both sediments of low and high silica. 

The formulas used in these work retrieved from [8]  are seen in table1. In the work of [9], the same method was 

used for major and trace elements adjustment. This method added the calculation of the isometric log ratio of the 

elements in the sediments and calculated only one discriminant functions for major elements (DF(A-P)M) and 

major elements combine with trace elements (DF(A-P)MT) as seen in table 2. For better understanding in using 

these methods see supplementary sheets of [8].  For the source rock composition, ratios for ranges of trace 

elements like Cr/Th, Th/Sc, Th/Co, and La/Sc will be used in this work, whereas for depositional environment 

and conditions interpretation, the different sedimentary facies recognized on the field will be associated 

following [17,18,19] to ascertained the depositional environment, while Trace elements ratios such Th/U, U/Th, 

Ni/Co, and, V/Cr [20, 21, 22] will be used to decipher depositional conditions. 

 

 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2019) Volume 48, No  3, pp 37-51 

41 
 

Table 1: Discriminant function equations for new discrimination diagrams using major elements 

Group 

names 

Silica proportion ranges for calculation of discriminant functions 

Arc-Rift-

Col 

For low silica (>35%-≤ 63%) 

DF1= (0.608×ln(TiO2/SiO2)adj)+ (-1.854×ln(Al2O3/SiO2)adj)+ (0.299×ln(Fe2O3t/SiO2)adj)+ (-

0.550×ln(MnO/SiO2)adj)+ (0.120×ln(MgO/SiO2)adj)+ (0.194×ln(CaO/SiO2)adj)+ (-

1.510×ln(Na2O/SiO2)adj)+ (1.94×ln(K2O/SiO2)adj)+ (0.003×ln(P2O5/SiO2)adj)-0.294. 

DF2= (-0.554×ln(TiO2/SiO2)adj)+ (-0.995×ln(Al2O3/SiO2)adj)+ (1.765×ln(Fe2O3t/SiO2)adj)+ (-

1.391×ln(MnO/SiO2)adj)+ (-0.034×ln(MgO/SiO2)adj)+ (0.225×ln(CaO/SiO2)adj)+ 

(0.713×ln(Na2O/SiO2)adj)+ (0.330×ln(K2O/SiO2)adj)+ (0.637×ln(P2O5/SiO2)adj)-3.631 

 

Arc-Rift-

Col 

For high silica (>63%-≤ 95%) 

DF1= (-0.263×ln(TiO2/SiO2)adj)+ (0.604×ln(Al2O3/SiO2)adj)+ (-1.725×ln(Fe2O3t/SiO2)adj)+ 

(0.660×ln(MnO/SiO2)adj)+ (2.191×ln(MgO/SiO2)adj)+ (0.144×ln(CaO/SiO2)adj)+ (-

1.304×ln(Na2O/SiO2)adj)+ (0.054×ln(K2O/SiO2)adj)+ (-0.330×ln(P2O5/SiO2)adj)+1.588 

DF2= (-1.196×ln(TiO2/SiO2)adj)+ (-1.064×ln(Al2O3/SiO2)adj)+ (0.303×ln(Fe2O3t/SiO2)adj)+ 

(0.436×ln(MnO/SiO2)adj)+ (0.838×ln(MgO/SiO2)adj)+ (-0.407×ln(CaO/SiO2)adj)+ 

(1.021×ln(Na2O/SiO2)adj)+ (-1.706×ln(K2O/SiO2)adj)+ (-0.126×ln(P2O5/SiO2)adj)-1.068 

 

 

Table 2: Discriminant function equations for new discrimination diagrams using major elements and trace 

Name Calculation of discriminant functions 

A-P DF(A-P)M = (3.0005×llr1TiM)+ (2.8243×llr2AlM)+ (-1.596×llr3FeM)+ (-0.7056×llr4MnM)+ (-0.3044×llr5MgM)+ 

(0.6277×llr6CaM)+ (-1.1838×llr7NaM)+ (1.5915×llr8KM)+ (0.1526×llr9PM)-5.9948 

 

DF(A-P)MT = (3.2683×llr1TiMT) + (5.3873×llr2AlMT) + (1.5546×llr3FeMT) + (3.2166×llr4MnMT)+ 

(4.7542×llr5MgMT) + (2.0390×llr6CaMT) + (4.0490×llr7NaMT) + (3.1505×llr8KMT) + (2.3688×llr9PMT) + 

(2.8354×llr10CrMT) + (0.9011×llr11NbMT) + (1.9128×llr12NiMT) + (2.9094×llr13VMT) + (4.1507×llr14YMT) + 

(3.4871×llr15ZrMT) -3.2088 

 

4. Results  

4.1 Field description  

Figure. 3 presents outcrops from where analyzed rocks were sampled. These rocks were collected at Etoko-

Yawo, Nfaitock River, Okoyong. Their variable characteristics are described below. 

4.1.1 Etoko Yawo site 1 

The outcrop at Etoko has a thickness of 7 meters. The rocks display a steep like tabular structure striking N170E 

with a dip angle of 01º to the SW direction at Yawo. The facies present are sandstones, shales and 

conglomerates. Conglomerate are matrix supported to clast supported with clast size ranging from pebble to 

boulders. Most of the clast are composed of granite, gneiss, quatzites and mica schist (Figure. 3a). The dark grey 

to black shales are interbedded with whitish sandstones of medium grain sizes (Figure. 3b). 
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4.1.2 Nfaitok site 2 

At Nfaitok the outcrop displays a sub-tabular nature with a striking direction of N120E dipping 10NE at 

Nfaitock river (Figure. 3c). The facies present are dark grey sandstones and black shales. The dark grey 

sandstones alongside the black shales reacts vigorously with dilute HCl indicating the presence of carbonates 

minerals. The sandstones are medium grained whereas the shales display a very fine grained texture. The 

succession shows an interbbedding of sandstones and shales. 

4.1.3 Okoyong site 3 

The outcrop in Okoyong (Figure. 3b) comprise predominantly of very coarse-grained sandstones with 

intercalation of shale and conglomerate. Generally, the outcrop appears to be sub-tabular striking N170E with a 

20º dip angle to the SW.  The conglomerates exhibit pebble size clast bounded held together by a sandy matrix.  

The clast composition of the conglomerate is mostly quartzite. 

 

Figure 3: Field photographs of studied outcrops. (a) Site 1, Matrix to clast supported conglomerate, (b) tabular 

dark grey shales intercalated with fine grained whitish sandstones. (c) Site 3, sub-tabular black shales 

intercalated with fine grained massive sandstones and matrix supported conglomerate. (c) Site 2, sub-tabular 

calcareous banded black shales intebedded with massive dark grey sandstones. 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2019) Volume 48, No  3, pp 37-51 

43 
 

4.2 Geochemical description 

Table 3 presents data for adjusted major elements and table 4 constitute data for trace elements and their 

calculated ratio for rock samples collected at Etoko-Yawo, Nfaitok, Okoyong.  

4.2.1 Etoko Yawo site 1 

Four samples were analyzed on this have a high proportion of silica ranging between 50 and 73 wt% after 

anhydrous adjustment (Table 3).  

The Al2O3 proportion of the samples in this site ranges between 10 and 13.5wt% with an average of 13.16wt% 

being almost equal the average value of samples analyzed in Okoyong site 3 (13.36wt%).  

Trace elements ratios of Ni/Co, U/Th, V/Cr, Th/U and Y/Ho have average values of 2.36, 0.37, 3.1, 3.01, and 

30.07 respectively. Ratios of trace elements such as Th/Cr, La/Sc, Th/sc, Th/Co and Cr/Th for the studied 

samples on average have 0.63, 7.37, 1.89,1.26, and 2.86 respectively (Table 4).  

4.2.2 Nfaitok site 2 

Six samples were analyzed on this site have an average to high proportion of silica ranging between 50 and 75 

wt% after anhydrous adjustment (Table 3). The Al2O3 proportion of the samples in this site ranges between 10 

and 15wt% with an average of 13.2w% being almost equal the average value of samples analyzed in Etoko site 

1 and Okoyong site 3 (13.36wt%).  

Trace elements ratios of Ni/Co, U/Th, V/Cr, Th/U and Y/Ho have average values of 2.15, 0.31, 3.2, 3.52 and 

28.04 respectively. Ratios of trace elements such as Th/Cr, La/Sc,  Th/sc, Th/Co and Cr/Th for the studied 

samples on average have 0.67, 7.74, 1.92, 1.15,  and 3.42 respectively (Table 4).  

4.3.3 Okoyong site 3 

Four samples were analyzed generally on this site with OK1 and OK19 having a higher silica proportion as 

compared to OK7 and OK11 after anhydrous adjustment (Table 3). Samples of OK1 and OK19 are sandstones 

while the OK7 and OK11 are shales.  

Trace elements ratios of Ni/Co, U/Th, V/Cr, Th/U and Y/Ho have average values of 3.0, 0.27, 2.66, 3.88 and 

28.81 respectively. Ratios of trace elements such as Th/Cr, La/Sc, Th/sc, Th/Co and Cr/Th for the studied 

samples on average have 0.45, 6.51, 1.77,1.05, and 4.25 respectively (Table 4). 

 

 

 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2019) Volume 48, No  3, pp 37-51 

44 
 

Table 3:  Adjusted major elements (wt%) and their calculated discriminant functions 

  Etoko     Nfaitok     Okoyong  

 ET1 ET2 ET3 ET4 FA1 FA2 FA3 FA4 FA5 FA6 OK1 OK2 OK3 OK4 

(SiO2)adj 50.9 73.7 60.6 63.9 52.3 75.9 56.0 56.0 53.0 64.9 46.2 77.4 54.9 76.9 

(TiO2)adj 0.6 0.4 0.6 0.6 0.5 0.3 0.9 0.9 1.0 0.7 0.4 0.3 1.5 0.9 

(AL2O3)adj 13.2 14.1 15.1 14.5 12.9 13.9 16.6 16.6 17.4 14.6 8.7 12.7 27.1 10.4 

(Fe2O3)adj 5.3 2.1 6.3 4.2 6.8 0.7 6.9 6.9 8.5 4.0 14.6 1.4 4.6 3.9 

(MnO)adj 0.4 0.0 0.2 0.2 1.1 0.2 0.2 0.2 0.2 0.2 1.4 0.0 0.0 0.1 

(MgO)adj 10.9 1.5 3.0 3.4 3.6 0.1 3.9 3.9 4.0 3.0 19.0 0.6 3.2 2.1 

(CaO)adj 12.3 0.7 6.6 5.8 15.7 0.3 8.2 8.2 7.7 5.1 3.1 1.0 0.7 0.5 

(Na2O)adj 2.5 3.4 3.8 3.9 4.2 5.4 4.0 4.0 5.2 4.3 0.4 2.4 0.4 1.7 

(K2O)adj 3.7 4.0 3.5 3.3 2.2 3.1 3.2 3.2 2.7 2.9 5.4 4.0 7.3 3.4 

(P2O5)adj 0.2 0.2 0.2 0.2 0.7 0.2 0.2 0.2 0.3 0.2 1.0 0.1 0.3 0.1 

ln(TiO2/SiO2)adj -4.4 -5.3 -4.5 -4.7 -4.7 -5.6 -4.1 -4.1 -4.0 -4.6 -4.7 -5.7 -3.6 -4.5 

ln(Al2O3/SiO2)adj -1.3 -1.7 -1.4 -1.5 -1.4 -1.7 -1.2 -1.2 -1.1 -1.5 -1.7 -1.8 -0.7 -2.0 

ln(Fe2O3/SiO2)adj -2.3 -3.6 -2.3 -2.7 -2.0 -4.7 -2.1 -2.1 -1.8 -2.8 -1.2 -4.0 -2.5 -3.0 

ln(MnO/SiO2)adj -5.0 -8.9 -5.9 -5.8 -3.9 -6.1 -5.6 -5.6 -5.9 -6.0 -3.5 -8.9 -7.1 -7.1 

ln(MgO/SiO2)adj -1.5 -3.9 -3.0 -2.9 -2.7 -6.8 -2.7 -2.7 -2.6 -3.1 -0.9 -4.8 -2.8 -3.6 

ln(CaO/SiO2)adj -1.4 -4.7 -2.2 -2.4 -1.2 -5.4 -1.9 -1.9 -1.9 -2.5 -2.7 -4.3 -4.3 -5.1 

ln(Na2O/SiO2)adj -3.0 -3.1 -2.8 -2.8 -2.5 -2.6 -2.6 -2.6 -2.3 -2.7 -4.6 -3.5 -4.9 -3.8 

ln(K2O/SiO2)adj -2.6 -2.9 -2.8 -3.0 -3.2 -3.2 -2.9 -2.9 -3.0 -3.1 -2.2 -3.0 -2.0 -3.1 

ln(P2O/SiO2)adj -5.4 -6.2 -5.7 -5.8 -4.3 -6.2 -5.6 -5.6 -5.3 -6.0 -3.9 -6.5 -5.3 -6.3 

DF1 -2.2 -3.9 -3.3 -3.6 -4.1 -6.1 -3.5 -3.5 -4.2 -4.0 1.7 -3.6 0.4 -2.0 

DF2 -1.8 3.2 0.8 -0.2 -0.7 0.5 0.1 0.1 1.1 0.0 -2.4 3.4 -0.8 0.6 

Table 4: Trace elements (ppm) and their calculated ratio 

   Etoko-Yawo   Nfaitok      Okoyong  

 ET1 ET2 ET3 ET4 FA1 FA2 FA3 FA4 FA5 FA6  OK1 OK2 OK3 OK4 

Cr 20 30 20 30 20 40 30 30 20 40  50 30 20 30 

Th 10.8 9 15.74 18.23 21.6 3.6 20.6 17.9 27.5 8.6  11.3 7.05 24.1 4 

U 4.7 5.3 6.7 7.17 8.7 1.1 3.3 5.9 10.7 2.4  4.3 1.4 7.1 0.9 

V 66 36 82.3 95.33 55 18 112 83 145 92  60 23 158 23 

Y 18.7 13.1 21.23 32.5 35.5 23.1 43.3 18.3 37.9 21.1  26.2 11.9 55.8 13.3 

Ni 28 15 31.1 27.33 28 19 47 30 47 10  120 19 41 24 

Co 14.9 3.4 12.6 13.83 13.7 7.4 17.3 13.2 22.8 8  65.5 4.2 12.2 10.6 

Ho 0.69 0.47 0.76 0.75 1.18 0.82 1.42 0.65 1.37 0.73  0.79 0.42 2.02 0.48 

La 37 50.2 65.3 49.7 95.9 16.2 83.2 66.3 100 48.7  49.6 22.6 118.5 17.9 

Sc 8 4 8.57 9.57 6 5 12 7 14 9  5 3 21 3 

Cr/Th 1.85 3.33 1.27 1.65 0.93 11.11 1.46 1.68 0.73 4.65  4.42 4.26 0.83 7.5 

V/Cr 3.3 1.2 4.12 3.18 2.75 0.45 3.73 2.77 7.25 2.3  1.2 0.77 7.9 0.77 

Th/Cr 0.54 0.3 0.79 0.61 1.08 0.09 0.69 0.6 1.38 0.22  0.23 0.24 1.21 0.13 

Th/U 2.3 1.7 2.35 2.54 2.48 3.27 6.24 3.03 2.57 3.58  2.63 5.04 3.39 4.44 

Th/Co 0.72 2.65 1.25 1.32 1.58 0.49 1.19 1.36 1.21 1.08  0.17 1.68 1.98 0.38 

Th/Sc 1.35 2.25 1.84 1.9 3.6 0.72 1.72 2.56 1.96 0.96  2.26 2.35 1.15 1.33 
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U/Th 0.44 0.59 0.43 0.39 0.4 0.31 0.16 0.33 0.39 0.28  0.38 0.2 0.29 0.23 

Ni/Co 1.88 4.41 2.47 1.98 2.04 2.57 2.72 2.27 2.06 1.25  1.83 4.52 3.36 2.26 

Y/Ni 0.67 0.87 0.68 1.19 1.27 1.22 0.92 0.61 0.81 2.11  0.22 0.63 1.36 0.55 

La/Sc 4.6 12.6 7.6 5.2 0.36 2.22 0.27 0.36 0.14 33.2  9.9 7.5 5.6 6.0 

Y/Ho 27.1 27.9 27.9 43.3 30.1 28.2 30.5 28.2 27.7 28.9  28.3 27.6 27.7 28.8 

 

5. Discussion  

5.1 New discriminant diagrams and tectonic setting 

[8,9] emphasizes on the usage of the new discriminant function to decipher the tectonic setting of the settings of 

sediments. These new methods from several test performed by them has a higher chance as compared to the old 

diagrams used by [5,6]. Due to this facts, [27] proposed that the realization of the plate tectonic settings of 

sedimentary rocks using diagrams [5][6] are unsatisfactory because it does not incorporate a coherent statistical 

treatment of composition[23]. Also, the discrimination diagrams [6] were unable to differentiate arc sediments 

from those of continental rift and collision. From discriminant diagrams [8,9] the studied rocks from the Mamfe 

formations plots in the domain of arc, collision, and rift (Figure 4a, b). Also, in Figure.5, the samples plot in the 

domain of passive with some falling within the domain of active margin (Figure 5a, b). The collision, arc and 

active tectonic setting with respect to the geology of Africa and Cameroon in particular seems impossible due to 

their passive margin tectonic characteristic. However, there are possibilities that the samples which were plotted 

in the collision, arc and active field reflect the complex history of the Pan African orogeny. This orogeny was a 

tectono-thermal event, some 500Ma ago, resulting in the opening and closure of large Proterozoic oceanic 

realms as well as accretion and collision of buoyant crustal blocks [24].  

 

Figure 4: (a) New discriminant-function multi-dimensional diagram for high-silica clastic sediments from three 

tectonic settings (arc, continental, rift, and collision), (b) New discriminant-function multi-dimensional diagram 

for low-silica clastic sediments from three tectonic settings (arc, continental rift, and collision) [8]. 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2019) Volume 48, No  3, pp 37-51 

46 
 

 

Figure 5: (a) New major element (M) based multidimensional discriminant function diagram for the 

discrimination of active (A)and passive(P) margin settings. (b) New combined major and trace element (MT) 

based multidimensional discriminant function diagram for the discrimination of active (A)and passive(P) margin 

settings after[9],. 

The Pan-African belt in central Africa (Cameroon) consists of Neoproterozoic supracrustal assemblage, 

deformed granitoids, and medium- to high-grade Neoproterozoic metamorphic rocks, which are interpreted to 

have formed in a continental collision zone[24][25]  This suggestion visualizes an ancient collisional setting for 

the source rocks and implies the relative importance of the source areas in controlling the composition of the 

studied sediments. 

5.2 Trace elements ratios and source rock composition 

According to[26], nickel and chromium proportions in sedimentary rocks may be used to depict their source 

rock composition. To him, Ni and Cr proportions inferior to 100 ppm and inferior to 150 ppm respectively 

specifies a felsic source rock composition. The proportion of the studied samples are inferior to 100 and 150 

ppm for Ni (For study samples; Ni=) and Cr (For study samples; Cr=) respectively thus, implying a felsic source 

rock provenance. According tol[27], the La/Sc and Th/Sc ratios of mafic sediments are always inferior to 

sediments derived from mafic rocks.  

Reference [28]  denotes that, the ratios of relatively immobile trace elements such as Cr/Th, Th/Sc, Th/Co, and 

La/Sc appropriate indicators of determining source rock composition of sedimentary rocks. The ratios of these 

elements resulting from mafic, and felsic sediments judge against those of the present study (Table 5) confirms 

that our data are inside the range of felsic source rocks.  
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Table 5: Trace element calculated ratios of the studied sites 

  Mamfe formation samples1       Range of sediments2 

 Site 1avg (n=4) Site 2avg(n=6) Site 3avg(n=4) Felsic Mafic 

Th/Cr 0.63 0.67 0.45 0.13-2.7 0.018-0.046 

La/Sc 7.73 7.74 6.51 2.51-16.3 0.43-0.86 

Th/Sc 1.89 1.92 1.77 0.84-20.5 0.05-0.22 

Th/Co 1.23 1.15 1.05 0.67-19.4 0.04-1.4 

Cr/Th 2.89 3.42 4.25 4.0-15.0 25-500 

1This study, 2(Cullers 2002), avg=average 

5.3 Field and depositional environment 

Outcrops observe in the field display dissimilarities in their structural occurrence with some being tabular and 

others sub-tabular. This dissimilarity may signpost post-deposition tectonic activity for the sub-tabular outcrops, 

which may justify a changes in their depositional environment when compared to the tabular outcrops that may 

have been probably deposited after the tectonic interval [17,18,19]  used facies association to decipher the 

depositional setting of sedimentary rocks within sedimentary basins. The presence of poorly sorted clast to 

matrix supported conglomerates associated with non bioturbated medium to coarse grained sandstones in the 

study area signpost a fluvial channel depositional setting [18,19] . The dark grey to black carboniferous shales 

with organic matter may results from accumulation of plant materials and clay in stable conditions signposting a 

coastal swamp environment. This environment suggest low energy condition associated to low sedimentation 

rates [18]. The distinct horizontal orientation coupled with lateral continuity, dark grey to black color, very fine 

– fine grained and calcareous composition of the shales in the study area signpost a lacustrine depositional 

setting [13]. Nonetheless, the depositional environment determined above cannot be precisely decided from field 

characteristics. The geochemical analysis presented in this work will enhance valuable evidence towards 

establishing the depositional settings. 

5.4 Trace elements and depositional environment 

Vanadium, Ni, U, Co, and Th are sensitive to redox conditions [21,22,29,30,31]  and their ratios permit the 

understanding of the depositional conditions of sediments.  According to plots from[13]  developed from trace 

elements ratio, most of the studied samples were deposited in an oxic environment. The Ni/Co plots used [12]  

compared to the ratios of studied samples also signpost oxic conditions at the time of their deposition.  Abigail 

and his colleagues [31]  disclose a strongly Y/Ho ratio (elemental Y/Ho 40–90) for phanerozoic seawater. 

Bokanda and his colleagues [13]  proposed that, the Th/U >2 depicts continental environments while Th/U ratio 

of less than 2 disclose a marine environment. Compositionally the studied samples are distinguishable from 

those of the Phanerozoic seawater as they have a weak positive to average chondrite Y/Ho ratio (29.7, n=25) 

and also a Th/U ratio of >2. The unsatisfactory similarity of the studied samples to marine Y/Ho dismisses a 

marine influence on their depositional settings whereas their Th/U ratio confirms a continental influence for 
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their deposition setting. 

6. Conclusion  

The major and trace elements geochemical results of the studied sedimentary facies unveil the following 

conclusions: 

(1) The studied outcrops exhibit variable structural dip directions signifying that post sedimentary tectonic 

activity affected some of the studied outcrops. This may denote a time gap between non-tectonized and 

tectonized outcrops.  

 (2) The samples signpost a passive and active tectonic setting from new discriminant function diagram and 

disclose a felsic parent rock composition from trace element ratios of Cr/Th, Th/Sc, Th/Co, and La/Sc. 

(3) The outcrops of study area disclose conglomerate, sandstones and shales of variable characteristics 

disclosing a fluvial and highly vegetated lacustrine swamp depositional environment setting.  

 (5) The continental fluvial and lacustrine environment may have probably been some elevated areas in the 

sedimentary basin. This is based on the presence of oxic conditions inferred from trace elements ratios 

of U/Th, Ni/Co and V/Cr. 
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