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Abstract 

Arsenic compounds such as sodium arsenite (SA) and arsenic trioxide (ATO) are toxic to human. Primarily, we 

pursued to outline the cell death modes caused by arsenic compounds and to address what proteins would be 

responsible for arsenite-induced cytotoxicity. Both SA and ATO substantially exhibited cytotoxic activity in 

L929 cells. Necrostatin-1 (Nec-1) treatment significantly protected cell death mediated by arsenic compounds, 

suggesting that cells are committed to die in a programmed necrotic way. A geldanamycin analog DMAG 

destabilized receptor interacting protein 3 (RIP3) and concomitantly protected cells from SA toxicity. Using 

interfering RNAs, we eventually found that RIP3 was responsible for its antagonizing effects on SA. Therefore, 

it is proposed that arsenic compounds execute necroptotic cell death of L929 via a RIP3 dependent pathway.  

Keywords: Arsenite; Heat shock protein 90; Programmed necrosis; Receptor interacting protein 3. 

1. Introduction 

 Arsenic compounds are one of the most environmentally hazardous substances so that they are classified as 

human carcinogens [1, 2]. In chemistry, arsenic compounds have various oxidation states. Both pentavalent 

[arsenate, AS
5+

] and trivalent [arsenite, AS
3+

] species are most prevalent in the nature and exhibit toxicological 

effects on human [2].  
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Particularly, arsenite acts as a double-edged sword, that is, it is associated with various cancers, including 

tumors of the lung, skin, bladder, and liver [3-5] while arsenic trioxide (ATO) has been widely used in the 

treatment of relapsed acute promyelocytic leukemia (APL) and human immunodeficiency virus (HIV) type 1 [6-

8]. As can be inferred from harnessing of arsenite as an anticancer drug, arsenite has been reported to cause cell 

death in a caspase-dependent manner [9-12]. With caspase activation, generation of oxidative stress was 

suggested to be essential for arsenite-mediated cytotoxicity. On the contrary, there have been the report that 

arsenic trioxide (ATO) is effectively used in treatment of malignancies via a caspase-independent pathway. 

Specifically, ATO induces autophagy in T-lymphocytic leukemia and myelodysplastic syndrome, and notably in 

malignant gliomas, which show resistance to various commonly used therapies [13-16]. Also, it is involved in 

triggering a caspase-independent necrotic cell death via the mitochondrial pathway [17, 18].  When it comes to 

cell death, necrosis and apoptosis are exclusively distinctive in the aspects of morphology and its underlying 

molecular events [19, 20]. Meanwhile, a specialized necrosis coined “programmed necrosis or necroptosis” has 

been generally regarded as an alternative cell death mode activated under the specific condition when tumor 

necrosis factor alpha (TNFα)-mediated apoptotic machinery is defective [21]. Besides TNFα, it has been 

possibly suggested that a few chemicals and heavy metals can induce necroptosis-like cell death, distinct from 

apoptosis [22]. Similar to TNFα-mediated necroptosis, chemicals- or heavy metal-induced cell death is reversed 

by necrostatin-1 (Nec-1), a specific inhibitor receptor interacting protein 1 (RIP1) [23-25] . Once TNFα receptor 

(TNFR) ligated, RIP1 functions as a scaffolding protein of TNFα signaling, and transmits death signals to 

downstream effectors by forming complex with RIP3. Therefore, RIP1 and RIP3 are proposed to be crucial 

proteins that can determine cell death in favor of necroptosis when cells are subjected to stresses [26-28]. Here, 

we hypothesized that a chemical but not TNFα could also induce necroptosis through RIP1 or RIP3. 

Furthermore, we sought to delineate the underlying mechanisms by which arsenite could induce cell death via 

non-apoptotic pathway. To this end, some chemicals were preliminary tested if those chemicals would mediate 

necroptosis-like cell death. In particular, sodium arsenite (SA) could effectively promote cell death in L929, a 

specialized cell line for necroptosis. L929 cells used in this research have been known as a model system of 

necroptosis that can be induced upon TNFα stimulation since they are defective in caspase activation. The cell 

proliferation assay (MTS) and flow cytometric (FACS) data demonstrated that both sodium arsenite and ATO 

were cytotoxic at a 20 M concentration, ATO being slightly more potent than SA. SA-mediated killing effects 

were significantly reversed by Nec-1 but not zVAD, a pan-caspase inhibitor. Furthermore, RNA interference 

study revealed that RIP3 but not RIP1 was responsible for SA-mediated necroptotic cell death. Taken together, 

we suggest that SA induces necroptosis-like cell death via a RIP3-dependent route. This study will provide 

mechanistic basis for understanding SA-triggered signaling pathways leading to cell death, and support its 

clinical feasibility to fight against drug-resistant cancers that can evade apoptosis surveillance. 

2. Materials and Methods 

2.1. Reagents  

Sodium arsenite (SA) and arsenic trioxide (ATO) were obtained from Wako (Richmond, VA, USA). zVAD-fmk 

(zVAD), necrostatin-1 (Nec-1), N-acetylcystein (NAC), butylated hydroxyanisole (BHA), propidium iodide (PI) 

and 2′, 7′-dichlorodihydrofluorescein diacetate (DCFDA) were available from Sigma-Aldrich (St. Louis, MO, 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2020) Volume 53, No  1, pp 51-65 

 

53 
 

USA). The 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG), a geldanamycin (GA) 

derivative, was kindly given from Ulsan National Institute of Science and Technology (UNIST, Ulsan, South 

Korea). Anti-RIP1 and anti-RIP3 were from BD Pharmingen (San Diego, CA, USA) and ProSci (Poway, CA, 

USA), respectively. Cell proliferation assay kit (MTS reagent, a tetrazolium salt) was bought from Promega 

(Madison, WI, USA). HiperFect as a transfection reagent of siRNAs was purchased from Qiagen (Valencia, CA, 

USA). FITC-annexin V (AnxV) detection kit was bought from BD Biosciences (Franklin Lakes, NJ, USA). 

Other chemical reagents used were of analytical grade.  

2.2. Cell line and cell culture 

L929, a mouse fibrosarcoma cell line (ATCC CCL-1) was obtained from American Type Culture Collection 

(ATCC) (Manassas, VA, USA). Cells were grown in high-glucose Dulbecco’s modified Eagle’s (DME) 

medium supplemented with 1% penicillin/streptomycin and 10% fetal bovine serum (FBS), and allowed to 

incubate at 37°C in a 5% CO2 incubator. 

2.3. Dose responses of cells to arsenic compounds and effects of Nec-1 on arsenic chemicals-induced 

cytotoxicity 

L929 cells were cultured in a 96-well plate at a density of 1 x 10
4 

cells/well. Cells were exposed to increasing 

doses of SA and ATO (10-50 M). Furthermore, cells were treated with SA (20 M) and ATO (10 M) at a 

fixed concentration in the presence or absence of 10 M Nec-1 for 24 h. To measure the cell viability, MTS 

assay was performed according to the manufacturer’s protocol.  

2.4. Effects of DMAG on SA-mediated cell toxicity 

Primarily, cellular levels of two necroptosis regulators RIP1 and RIP3 after DMAG pretreatment were examined 

by immunoblot. Cells were pretreated with DMAG (1 and 5 M) for 15h and then were lysed in M-PER reagent 

(PIERCE, Rockford, IL) for 20 min on ice. The resulting lysates were spun in a microcentrifuge for 20 min at 

4°C, and then the supernatants were taken. Aliquots of the cell lysates (20 g) were run on 10% SDS–

polyacrylamide gels (SDS-PAGE), and Western blotting was performed with antibodies against RIP1, RIP3 and 

β-actin. The interest proteins were visualized by enhanced chemiluminescence (ECL) in accordance with the 

manufacturer’s instructions. To examine the effects of DMAG pretreatment on SA- or ATO-caused cytotoxicity, 

cells were pretreated with 1 M DMAG 15 h and then exposed to SA or ATO at 20 M and 10 M, 

respectively. Furthermore, to verify the role of Nec-1 on arsenic compounds after DMAG treatment, DMAG-

pretreated cells were left treated with SA or ATO together with 10 M Nec-1. Following 24 h incubation, cell 

viability was determined by MTS.  

2.5. RIP1- or RIP3-specific siRNA design, synthesis and transfection 

Interference RNAs targeting RIP1 or RIP3 were specifically designed as described below. In brief, siRNA 

sequences were deduced from uploading cDNA sequences into the query form of the Integrated DNA 
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Technologies (IDT) Web server. The resulting siRNAs were synthesized by Bioneer (Daejeon, South Korea). 

After repetitive testing of siRNAs prepared, a specific siRNA that can downregulate RIP1 or RIP3 expression 

was finally chosen for subsequent experiments. The siRNA sequences for RIP1 and RIP3 were listed in the 

previous article [26]. For reference, TNFα-related apoptosis-inducing ligand receptor 4 (TR4) siRNA was used 

unless otherwise stated. Transfection of siRNAs into cells was carried out as previously described [26]. Briefly, 

either RIP1 or RIP3 siRNA (100 nM) selected was transfected into 0.25 ml culture media of L929 cells using 

HiperFect (6 l) as a transfection agent according to the instruction manual provided by the supplier. On the 

next day, the cells were exposed to arsenite or arsenite plus Nec-1. Cytotoxicity was determined by MTS assay 

24 h after exposure to arsenic compounds, and expressed as % viability of treated group relative to the untreated 

control. 

2.6. Flow cytometric analyses 

L929 cells were plated at 2 x 10
5
 cells/each well of the tissue culture plates. For FACS analyses (FACSVerse 

instrument, BD Bioscience, CA), cells were treated with various combinations of test compounds under 

examination for 24 h, and then stained with AnxV and PI. For statistical significance, at least 10,000 cellular 

events were acquired per sample to get the % cell death quantified.  

2.7. Intracellular ROS detection 

Cells were treated with 5 M cell-permeant 2′, 7′-dichlorodihydrofluorescein diacetate (DCF-DA) fluorescent 

probe for 1 h, and then dissociated with trypsin. Flow cytometer is employed to detect intracellular ROS 

production in collected cells. A total of 10,000 events were recorded for the fluorescence of DCFDA on FL-1 

channel (520 nm). 

2.8. Statistics 

The results obtained were expressed as mean ± standard deviation from at least three independent experiments. 

The significance was set at p < 0.05 for each analysis using student’s t-test. 

3. Results 

3.1. Dose responses of L929 to arsenic compounds for their cytotoxicity, and protection from arsenite-

mediated cytotoxicity by Nec-1 

Of most common trivalent arsenic compounds, SA and ATO were tested in L929 cells to plot dose-response 

curves for cytotoxicity. As indicated in MTS assay of Fig. 1A, SA was toxic over 10~20 M concentrations 

whereas ATO killed cells more drastically even at a lower concentration of 10 M, and thereafter, both SA and 

ATO kept cells viable at a 50% level. As an effort to roughly outline SA-mediated cell death, a RIP1 inhibitor 

Nec-1, which regulates programmed necrosis, was employed (Fig. 1B).  
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Figure 1: Dose responses of L929 to arsenic compounds, and protective effects of Nec-1 against arsenic 

compounds. (A) To plot dose-response curves of cells to sodium arsenite (SA) and arsenite trioxide (ATO), cells 

were exposed to various concentrations of arsenic chemicals, ranging from 10 to 50 M for 24 h. (B) Also, a 

RIP1 specific inhibitor Nec-1 was employed to delineate cell death mode caused by arsenite. Cells were treated 

with either SA (20 M) or AT (10 M) in the presence or absence of Nec-1. Cell toxicity was measured by 

MTS assay according to the manufacturer’s protocol and expressed as % viability relative to control group. (C) 

Flow cytometric analyses of cells exposed to arsenite alone or arsenite plus Nec-1. Cells grown in a 12 well-

plate were treated with SA or ATO (10 and 20 M) in the absence or presence of 10 M Nec-1 for 24 h, and 

then stained with AnxV and PI. Each cell in the live or dead cell populations was analyzed by FACS. 

Statistically significance: ***p<0.005 against group in the absence of Nec-1. 

Cells treated with either 20 M SA or 10 M ATO was significantly protected in the presence of Nec-1, 

although cells exposed to ATO was less rescued than those subjected to SA exposure by a necroptosis inhibitor. 

To further examine cell death profiles caused by SA, FACS analyses were carried out after cells were stained 

with PI and AnxV-FITC (Fig. 1C). In line with MTS results, SA at a lower concentration (10 M) did not cause 

cell death substantially. However, nearly 50% of total cells were dead when treated with 20 M SA, revealing 

that one half of dead cell population was double positive for PI and AnxV and the other half was single positive 

for PI. When compared with SA, ATO caused considerably cell death at 10 M concentration, but did not seem 

to exhibit a linear dose response over 10~20 M as anticipated in MTS results. Moreover, Nec-1 treatment 

effectively reduced the dead cell populations consisting of PI-single positive and PI/AnxV-double positive cells 
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which were induced by SA. Unlike SA, though, development of cell death caused by 20 M ATO was not 

reversed by Nec-1 treatment.  

3.2. The protective effects of DMAG on SA-caused cytotoxicity in L929 cells 

Cytotoxic responses of L929 cells to SA were further monitored following treatment of DMAG, an Hsp90 

inhibitor. Primarily, expression levels of key necroptosis regulators RIP1 and RIP3 were investigated when 

Hsp90 was functionally inhibited by DMAG. Immunoblot analysis revealed that DMAG treatment noticeably 

led to degradation of RIP1 and RIP3 in a dose dependent manner (Fig. 2A). 

 

Figure 2: The effects of DMAG on SA-mediated cytotoxicity in L929 cells. (A) RIP1 and RIP3 expression in 

L929 cells which were treated with DMAG. Cells were treated with 1 and 5 M DMAG for 15 h, and then 

harvested cells were lysed to run the resulting lysates onto SDS-PAGE. Transferred membranes were 

immunoblotted with antibody against RIP1 or RIP3. (B) Cytotoxic responses of DMAG-pretreated cells to SA. 

L929 cells were pretreated with 1 M DMAG and then exposed to 20 M SA for 24 h. Nec-1 (10 M) was also 

tested to monitor whether it could still be effective in protecting SA-mediated cell death following DMAG 

pretreatment. Cell viability was evaluated by MTS assay. (C) Flow cytometric analyses of L929, which were 

pretreated with DMAG or vehicle, subjected to SA exposure. L929 cells plated into a 12 well plate were 

pretreated with DMAG for 15 h and then were exposed to 20 M SA for 24 h. The harvested cells were stained 

with AnxV and PI and then cell survival/death profiles were determined by flow cytometry. Shown are the 

representative flow cytometric dot plots of three independent data. ***p<0.005 versus vehicle group. 
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RIP1 proteins disappeared more rapidly than RIP3 upon DMAG exposure. Moreover, MTS and FACS data 

showed that DMAG pretreatment protected effectively cells from SA-mediated cell death (Fig. 2B and 2C). 

Protective effects of DMAG against SA-induced cytotoxicity were more manifested than those of Nec-1. MTS 

data revealed that cells pretreated with DMAG were refractory to SA exposure. Furthermore, flow cytometry 

reinforced that most PI-positive populations in SA-treated group were significantly reduced by DMAG, 

indicating that protective effects of DMAG are fairly superior or equivalent to Nec-1. As expected in MTS 

results, Nec-1 itself exhibited the same antagonizing effects on cells exposed to SA. Cells treated with DMAG 

and Nec-1 was protected from SA toxicity in a similar level to those with DMAG alone.  

3.3. Role of RIP1 or RIP3 on SA-executed cell death      

 

Figure 3: The differential effects of RIP1 or RIP3 knockdown on SA-mediated cell death. (A) Expression levels 

of RIP1 and RIP3 following a RNA interference targeting RIP1 or RIP3. Silencing protocols were carried out as 

described in Materials and Methods. To check the outcomes of RNA interferences, L929 cell lysates were 

prepared and subjected to SDS-PAGE for immunoblotting with antibodies against RIP1 or RIP3. (B) Effects of 

RIP1 or RIP3 knock-down on SA-mediated cytotoxic activity. Following siRNA transfection, the cells were 

subjected to stimuli such as arsenite or arsenite plus Nec-1. Cytotoxicity in L929 cells was determined by MTS 

assay 24 h after exposure to arsenic compounds, and expressed as % viability of treated group relative to the 

untreated control. (C) Flow cytometric analyses of L929, which were knocked-down with RIP1 or RIP3 

siRNAs, subjected to SA exposure. RIP1 or RIP3 knocked-down L929 cells were stimulated with 20 M SA for 

24 h. The subsequent cells were stained with AnxV and PI, quadrant profiles of which were determined by flow 

cytometry. Shown are representative data out of at least three independent measurements. ***p<0.005 against 

mock group. 
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To address which death-specific molecules could be involved in arsenic compounds-mediated cytotoxicity, 

expression levels of RIP1 or RIP3 were reduced by using RNA interferences (Fig. 3). Western blot 

demonstrated that down-regulation of either RIP1 or RIP3 was well verified in cells transfected with siRNA 

specific to it (Fig. 3A). In this experiment, transient down-regulation of RIP1 or RIP3 itself did not affect cell 

viability considerably (data not shown). Responses of cells to SA were investigated following the knock-down 

of either RIP1 or RIP3 gene (Fig. 3B). As shown in MTS data, interference of RIP3, but not of RIP1 protected 

significantly cells from SA-mediated toxicity. Interestingly, Nec-1 failed to relieve the toxicity of SA in RIP1 

knocked-down cells. For more details, FACS analyses were carried out with cells subjected to the same 

conditions as above (Fig. 3C). It was of note that RIP1 silencing rendered cells sensitive to SA as compared with 

mock control group. Roughly, PI-positive cells in RIP1-silenced group were increased as double as those in 

mock group. By contrast, RIP3 silencing protected cells from SA toxicity. Unlike RIP1 knocked-down cells, 

intriguingly, application of Nec-1 to cells transfected with mock or siRIP3 effectively rescued cells from SA-

mediated toxicity.  

3.4. Intracellular ROS production and antioxidants’ effects in SA-treated L929 cells 

Cell death modalities and intracellular ROS in SA-treated L929 cells were determined by flow cytometer (Fig. 

4A and 4B). The flow cytometric analyses demonstrated that SA-mediated cell death was significantly rescued 

by both ROS scavengers, NAC and BHA (Fig. 4A). Specifically, SA treatment caused cells to be in the upper 

right quadrant being double-positive for AnxV and PI. AnxV
+
/PI

+
 double positive events (40 %) in cells 

exposed to SA were reduced to as low as 2~3 % by either NAC or BHA. Consistent with AnxV/PI data, ROS-

positive live population was considerably increased when L929 cells were subjected to SA exposure (Fig. 4B). 

After treatment of cells with either SA alone or SA in combination with ROS scavengers, changes in ROS 

production were analyzed in flow cytometry (Fig. 4B). ROS production in cells treated with SA was remarkable, 

as indicated by an increase (30 %) in events of P1 region relative to non-stimulated group (NS). Not only NAC 

but also BHA obviously reversed SA-induced ROS generation although the scavenging effect of NAC appeared 

to be more effective than that of BHA.   
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Figure 4: The involvement of ROS in SA-induced cytotoxicity. L929 cells were preincubated with 5 mM NAC 

or 0.1 mM BHA for 1 h, and then exposed to 20 M SA for 24 h. Each treated group was stained with AnxV 

and PI for analyzing cell death modality (A). Another set of experiments was undertaken for the same treated 

group as above, and then cells was stained with 5 M DCFDA for 1hr and then subjected to flow cytometric 

analyses for intracellular ROS detection (B). The same numbers of events, gated from SSC/FSC plot of treated 

group, were represented in histogram for DCF fluorescence intensity. Percentage of a population within P1 

region showing events with high fluorescence intensities was determined to compare ROS levels generated 

between treated groups. All data are representative of three independent flow cytometric analyses. 

4. Discussion 

Arsenite plays pleiotropic effects on a variety of biological events, including inflammation, cell survival and 

death. Specifically, arsenite is proposed to invoke vascular inflammation and further to develop pathology of 

vascular disease by enhancing the TNFα-induced VCAM-1 expression via regulation of AP-1 and NF-κB 

activities [29]. In addition, it has recently been revealed that embryonic stem cells exposed to SA do not make 

self-renewal and undergo apoptotic death via suppression of AKT and Stat3 activation [30]. In this article, it has 

been demonstrate that cell cycle is arrested on G2/M and apoptosis is later executed by the mitochondrial 

pathway. Furthermore, ATO has been reported to have differential effects on death modes of cells derived from 

various tissues [31-33]. Specifically, HeLa, calf pulmonary artery endothelial cells (CPAEC) and human 

umbilical vein endothelial cells (HUVEC) undergo apoptotic cell death when treated with ATO. However, there 
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have been still contradictory reports that arsenic compounds cause cell death in a caspase-independent manner. 

ATO triggers caspase-independent necrotic cell death via Bcl-XL-sensitive mitochondrial pathway [17]. 

Moreover, blockade of glutathione synthase by buthionine sulfoximine (BSO) augments ATO-mediated 

necrosis, reasoning that ROS are substantially involved in necrosis-like cell death.  Initially, an alternative cell 

death mode called programmed necrosis or necroptosis has been introduced to describe the backup cell death 

unmasked when the default cell death (apoptosis) is defective upon TNFα stimulation. Besides an inflammatory 

cytokine TNFα, however, a number of chemicals or heavy metals have been reported to provoke necroptosis-

like cell death. Shikonin and alkylating agent cause cell death with non-apoptotic features by various criteria 

[34, 35]. Notably, severe DNA damage by alkylating agent is suggested to activate PARP-1 that overuses NAD
+
 

as a substrate, eventually causing energy crisis and necrosis [36]. Whatever it may be TNFα or other necrotic 

death inducers, application of Nec-1 effectively block cells from undergoing necroptotic cell death. 

Accordingly, it is tempting to speculate that chemicals or heavy metals, like TNFα-induced necroptosis, may 

also require a series of its associated proteins for mediating necroptotic cell death.  Meanwhile, DMAG is an 

inhibitor of Hsp90, which is required for stability and activity of a variety of client proteins. Among the 

interacting proteins of Hsp90, RIP1 has been already known as a client protein, and RIP3 has recently been 

suggested to be a putative client candidate of it [22, 37]. In fact, the functional disruption of Hsp90 results in 

degradation of death domain kinase RIP, and subsequent suppression of TNFα-induced NFκB activation, 

proposing that RIP1 is necessary for TNFα/NFκB signal transduction [37, 38]. As a result, RIP1 depletion 

sensitizes cells to TNFα by switching from necrosis to apoptosis, indicating that RIP1 can function as an 

apoptosis suppressor in L929 cells [39]. Under the condition that RIP1 and RIP3 were destabilized by an Hsp90 

inhibitor, in our result, SA-mediated cytotoxic activities were considerably ameliorated compared with vehicle 

group, reckoning that either RIP1 or RIP3 contributes to reduction of cellular damage caused by SA. However, 

it could not be ruled out that other client proteins than RIPs might be responsible for the protective effects of 

DMAG. To address what necroptosis-regulating proteins are involved in the refractory response of DMAG-

treated cells to SA exposure, RNA interferences targeting RIP1 or RIP3 were primarily employed. Intriguingly, 

RIP3 knockdown effectively protected cells from SA-induced cytotoxicity whereas RIP1 silencing rendered 

cells more sensitive to SA. It can be suggested that RIP3 but not RIP1 is prerequisite for SA-mediated cell 

death. We have already demonstrated that either TNFα or zVAD causes cell death in a RIP3- or RIP1-dependent 

pathway, respectively. Therefore, it might be plausible that SA could transmit directly its death signal to RIP3 

via an unidentified route. Otherwise, SA could provoke TNFα secretion from L929 cells, which are 

subsequently liable to undergo necroptotic cell death via death receptor. Moreover, exposure of RIP1 knocked-

down L929 cells to SA was not rescued by Nec-1 treatment, suggesting that adequate expression of RIP1 is 

essential for protective efficacy of Nec-1 against necroptosis. Nec-1 has been initially developed as a 

necroptosis inhibitor targeting specifically RIP1. However, it has been proposed that Nec-1 can have off-target 

effects or may target other molecules than RIP1. According to our latest results, Nec-1 protects cells from either 

TNFα or zVAD, which is proposed to transmit death signal through a RIP3- or a RIP1-dependent route, 

respectively [22]. Moreover, Nec-1 has been reported to exerts RIP1-dependent and –independent effects in the 

process of necroptosis and T cell activation [40]. Although there remain controversies regarding authentic 

molecular target of Nec-1, it is still evident that protective effects of Nec-1 depends on RIP1 expression.  
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Figure 5: A proposed schematic model for SA-mediated cell death in L929 cells. Both RIP1 and RIP3, two 

well-known key regulators of TNFα-mediated necroptosis, are also required for SA-induced cytotoxicity. RIP3 

in combination with RIP1 can execute SA-mediated necroptosis, which can be reversed by a RIP1-specific 

inhibitor Nec-1. RIP1 knockdown via RNA interference enhances cytotoxic response to SA considerably, 

promoting necroptotic cell death. However, even Nec-1 treatment did not protect L929 with low levels of RIP1 

from SA toxicity. Symbols – and + indicate protection and promotion of necroptosis, respectively, and a symbol 

X represents that Nec-1 is not effective on SA-induced necroptotic cell damage at the low levels of RIP1. 

Among several possible mechanisms for SA cytotoxicity, ROS have been suggested to be one of decisive 

mediators to execute cell death. Low doses of arsenite induce ROS production and ROS-associated 

mitochondrial membrane depolarization [41, 42]. During SA-mediated tumor promotion, hydrogen peroxide is a 

key player of signaling pathway for activation of p70
s6k

 and extracellular signal-regulated kinase [43, 44]. As 

with being consistent with SA-caused time-dependent viability loss (MTS data), in our results, SA induced ROS 

production in a time dependent manner. Both a potent antioxidant NAC and a lipophilic ROS scavenger BHA 

blocked ROS generation from SA-treated cells, protecting cells from SA-mediated damage. This result was 

different from previous data showing the contradictory effects of two ROS scavengers against TNFα-induced 

ROS [21, 22]. It has been reported that BHA but not NAC neutralizes TNFα-generated ROS production with 

effective protection of TNFα-induced necroptosis. It suggests that intracellular sources and reactive 

intermediates of ROS produced by TNFα can be different from those produced by SA. Although both TNFα and 

SA require RIP3 to promote caspase-independent cell death, intracellular reactive intermediates including ROS 

can be differently induced in a death content-specific manner. As summarized in Fig. 5, SA induces necroptosis-

like cell death in a RIP3 dependent manner. Expression levels of another key necroptotic protein RIP1 affect 
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SA-induced cell death significantly. In fact, knockdown of RIP1 by RNA interference makes L929 cells more 

sensitive to TNFα than normal levels of RIP1 do. Also, a RIP1 specific inhibitor Nec-1 effectively reverses SA-

mediated toxicity in the presence of RIP1 while it does not in RIP1 knocked-down cells. This study suggests 

that expression of RIP1 can regulate positively or negatively SA-mediated necroptosis. For instances, basal 

levels of RIP1 can to some extent suppress RIP3-mediated necroptosis, but depletion of cellular RIP1 by 

silencing can render cells more sensitive to SA.   

5. Conclusion 

In conclusion, we propose that SA mediates necroptotic cell death of L929 cells via a RIP3-dependent pathway. 

Extensive efforts will be further carried out to disclose its underlying mechanisms and identification of proteins 

relevant to arsenite-mediated cell death. These consequences will provide perspectives on the feasibility of SA’s 

clinical use or on chemo-preventive strategy against SA. 
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