Some New Identities with Respect to Bihyperbolic Fibonacci and Lucas Numbers

Ayşe Zeynep Azak*
Sakarya University Faculty of Education Mathematics and Science Education Department 54300 Hendek,
Sakarya, Turkey
Email: apirdal@sakarya.edu.tr

Abstract

In this paper, we define bihyperbolic Lucas numbers, bihyperbolic generalized Fibonacci numbers and give some algebraic properties of these numbers. Then, some identities concerning conjugations, Honsberger's identity, negabihyperbolic numbers for bihyperbolic Fibonacci number and bihyperbolic Lucas numbers have been derived. Finally, well-known identities have been represented such as Cassini's, Catalan's, d'Ocagne's identities and Binet formula for bihyperbolic Lucas and bihyperbolic generalized Fibonacci numbers. Also, special cases of these identities and formulas have been given.

Keywords: Bihyperbolic numbers; generalized bihyperbolic Fibonacci numbers; bihyperbolic Lucas numbers; hyperbolic four-complex numbers.

1. Introduction

Hamilton wanted to show the points in space with their coordinates. Thus, he discovered a new number system. Although this number system which was defined by him extended the complex numbers, the multiplication of these numbers has no commutative property [1]. Then, Cockle revealed the tessarine numbers. The set of tessarine numbers were represented as [2].

[^0]$T=\{t=a+i b+j c+k d \mid a, b, c, d \in R\}$
and multiplication of units i, j, k are as follows
$i^{2}=-1, j^{2}=1, k^{2}=-1, i j=j i=k$.

Although the study of repeating the process of building complex numbers upon themselves reaches us tessarines and quaternions, there is an important difference. This difference arises from the fact that the tessarines have commutative property according to the multiplication. Therefore, they can be considered as a kind of commutative quaternions. Furthermore, all nonzero tessarines haven't got inverses.

After Cockle's work on tessarines, Segre has defined bicomplex numbers as follows:
$B C=\left\{q=q_{1}+i q_{2}+j q_{3}+k q_{4} \mid q_{1}, q_{2}, q_{3}, q_{4} \in R\right\}$
where $i^{2}=j^{2}=-1, k^{2}=1, i j=j i=k$ and the algebra of bicomplex numbers are isomorphic to the Tessarines [3]

The set of bihyperbolic numbers are defined by

$$
H_{2}=\left\{q=a_{0}+a_{1} j_{1}+a_{2} j_{2}+a_{3} j_{3} \mid a_{0}, a_{1}, a_{2}, a_{3} \in R ; j_{1}, j_{2}, j_{3} \notin R\right\}
$$

where the multiplication of the units is given by

$$
j_{1}^{2}=j_{2}^{2}=j_{3}^{2}=1, \quad j_{1} j_{2}=j_{2} j_{1}=j_{3}, \quad j_{1} j_{3}=j_{3} j_{1}=j_{2}, \quad j_{2} j_{3}=j_{3} j_{2}=j_{1} .
$$

Bihyperbolic numbers are also called as hyperbolic four complex numbers [4].

Let $q=a_{0}+a_{1} j_{1}+a_{2} j_{2}+a_{3} j_{3}$ and $r=b_{0}+b_{1} j_{1}+b_{2} j_{2}+b_{3} j_{3}$ be two bihyperbolic numbers. Then, the addition and subtraction of these two bihyperbolic numbers can be expressed as follows:
$q \pm r=a_{0} \pm b_{0}+\left(a_{1} \pm b_{1}\right) j_{1}+\left(a_{2} \pm b_{2}\right) j_{2}+\left(a_{3} \pm b_{3}\right) j_{3}$

Besides, the multiplication of these numbers are given by

$$
\begin{aligned}
q \times r= & \left(a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) \\
& +j_{1}\left(a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{3}+a_{3} b_{2}\right) \\
& +j_{2}\left(a_{0} b_{2}+a_{1} b_{3}+a_{2} b_{0}+a_{3} b_{1}\right) \\
& +j_{3}\left(a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}\right) .
\end{aligned}
$$

Bihyperbolic numbers have three different principle conjugations. For any bihyperbolic number $q=a_{0}+a_{1} j_{1}+a_{2} j_{2}+a_{3} j_{3}$, these conjugations are represented as follows [5]:
$\bar{q}^{j_{1}}=a_{0}+a_{1} j_{1}-a_{2} j_{2}-a_{3} j_{3}$
$\bar{q}^{j_{2}}=a_{0}-a_{1} j_{1}+a_{2} j_{2}-a_{3} j_{3}$
$\bar{q}^{j_{3}}=a_{0}-a_{1} j_{1}-a_{2} j_{2}+a_{3} j_{3}$.

Thus, the set of commutative tetranumbers can be considered in two parts as bicomplex and bihyperbolic numbers such that bicomplex numbers are the expansion of complex numbers, while bihyperbolic numbers appear as the expansion of hyperbolic numbers into the fourth dimension. Many studies have been done in the fields of functional analysis, topology, algebra and quantum mechanics regarding bicomplex numbers [6-18]. On the other hand, Nurkan and Güven have defined bicomplex Fibonacci and Lucas numbers. Then, they have obtained d'Ocagnes, Cassini, Catalan identities, Binet formulas and also some identities belonging to these new numbers [19]. In [20], Bicomplex Fibonacci quaternions are introduced. Moreover, some well-known identities, properties of these quaternions have been studied. Finally, a real representation of bicomplex Fibonacci quaternions has been given. Later, Halıcı and Çürük have introduced a new bicomplex number sequence by taking the coefficients of bicomplex number sequence as complex numbers. Also, they have found Binet formula, generating function, Cassini, Catalan, Honsberger, d'Ocagne's, Vajda and Gelin-Cesaro identities [21]. Halıcı has obtained identities regarding Fibonacci numbers by taking the idempotent representation of bicomplex numbers. Then, the generalization of these numbers have been made for this new number system and have been called as Horadam bicomplex numbers. Furthermore, the matrix representation have been given for two important identities [22]. Pogoriu and his colleagues has studied the roots of bihyperbolic polynomials [23]. After that, a partial order of bihyperbolic numbers has been represented concerning the spectral representation of bihyperbolic numbers. Also, conjugates, hyperbolic and real-valued modules, absolute value multiplicative inverse and polar form of these numbers have been introduced [24]. Gürses and and his colleagues have studied dual-generalized complex and hyperbolic generalized complex numbers. They have examined the functions and matrix representations of these numbers. For $J=j$ and $p=1$, they have obtained bihyperbolic numbers [25]. Brod and his colleagues have introduced bihyperbolic Fibonacci, Jacosthal, Pell numbers. Then, they have given well-known identities and summation formulas for these numbers [26]. This work aims to present and extend a new Fibonacci number system which has been firstly described by Brod and his colleagues For this purpose, firstly the definition of the bihyperbolic Lucas numbers and generalized Fibonacci numbers have been given and some algebraic properties have been presented. Afterward, some identities have been described by using three types of conjugates of these numbers. Then, some well-known identities and formula have been established such as negabihyperbolic Fibonacci, identities regarding conjugates and Honsberger identity for bihyperbolic

Fibonacci numbers and d'Ocagne, Cassini, Catalan identities and Binet formula for bihyperbolic Lucas and generalized Fibonacci numbers.

2. Preliminaries

Let W_{n} be n-th generalized Fibonacci number which has the recurrence relation

$$
W_{n}=W_{n-1}+W_{n-2} ; \quad W_{0}=a, \quad W_{1}=b \quad(n \geq 2)
$$

with the nonzero initial values W_{0}, W_{1}. If $W_{0}=0, W_{1}=1$, then we obtain Fibonacci numbers and if $W_{0}=2, \quad W_{1}=1$, then we obtain Lucas numbers [27].

The well-known Binet formulas for Lucas and Fibonacci numbers are given by
$L_{n}=\alpha^{n}+\beta^{n}, \quad F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$
where α and β are the roots of the equation
$x^{2}-x-1=0$
so that $\alpha+\beta=1, \alpha \beta=-1, \alpha-\beta=\sqrt{5}$. Also, Binet formula for generalized Fibonacci numbers is
$W_{n}=\frac{A \alpha^{n}-B \beta^{n}}{\alpha-\beta}$
where $A=W_{1}-W_{0} \beta$ and $B=W_{1}-W_{0} \alpha$ [27]. Furthermore,

$$
\begin{align*}
& A \alpha^{n}=\alpha W_{n}+W_{n-1} \tag{1}\\
& B \beta^{n}=\beta W_{n}+W_{n-1} \tag{2}
\end{align*}
$$

The set of bihyperbolic Fibonacci numbers is defined by
$H_{2}^{F}=\left\{B H F_{n}=F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3} \mid F_{n}\right.$ is $n-t h$ Fibonacci number $\}$
where
$j_{1}^{2}=j_{2}^{2}=j_{3}^{2}=1, \quad j_{1} j_{2}=j_{2} j_{1}=j_{3}, \quad j_{1} j_{3}=j_{3} j_{1}=j_{2}, \quad j_{2} j_{3}=j_{3} j_{2}=j_{1}$.

Here $j_{s}(s=1,2,3)$ denote unipotent(hyperbolic) imaginary units such that $j_{s} \neq \pm 1$ and $j_{s} \notin R$, [26]. Furthermore, the addition and multiplication on H_{2}^{F} satisfy the commutativeand associative property [26].

Let $B H F_{n}$ and $B H F_{m}$ be bihyperbolic Fibonacci numbers These numbers are represented as
$B H F_{n}=F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3}$
and
$B H F_{m}=F_{m}+j_{1} F_{m+1}+j_{2} F_{m+2}+j_{3} F_{m+3}$
respectively. So, the addition, subtraction and multiplication of two bihyperbolic numbers are defined by

$$
\begin{equation*}
B H F_{n} \pm B H F_{m}=\left(F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3}\right) \pm\left(F_{m}+j_{1} F_{m+1}+j_{2} F_{m+2}+j_{3} F_{m+3}\right) . \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
B H F_{n} \times B H F_{m}= & \left(F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3}\right) \times\left(F_{m}+j_{1} F_{m+1}+j_{2} F_{m+2}+j_{3} F_{m+3}\right) \\
= & F_{n} F_{m}+F_{n+1} F_{m+1}+F_{n+2} F_{m+2}+F_{n+3} F_{m+3} \\
& +j_{1}\left(F_{n+1} F_{m}+F_{n} F_{m+1}+F_{n+3} F_{m+2}+F_{n+2} F_{m+3}\right) \\
& +j_{2}\left(F_{n+2} F_{m}+F_{n} F_{m+2}+F_{n+3} F_{m+1}+F_{n+1} F_{m+3}\right) \tag{4}\\
& +j_{3}\left(F_{n+3} F_{m}+F_{n} F_{m+3}+F_{n+1} F_{m+2}+F_{n+2} F_{m+1}\right) \\
= & B H F_{m} \times B H F_{n} .
\end{align*}
$$

respectively, [26].

3. Properties of Bihyperbolic Fibonacci and Bihyperbolic Lucas Numbers

In this section, we have introduced the conjugates of any bihyperbolic number. Then, some identities which are related to these conjugates and Honsberger identity have been given. Moreover, negabihyperbolic Fibonacci, negabihyperbolic Lucas numbers, Binet, Catalan, Cassini identities for bihyperbolic Lucas numbers have been proven.

Definition 3.1. Let $B H F_{n}$ be bihyperbolic Fibonacci number. Then, there exist three different conjugates of any bihyperbolic Fibonacci number such that

$$
\begin{align*}
& \overline{B H F}_{n}^{j_{1}}=F_{n}+j_{1} F_{n+1}-j_{2} F_{n+2}-j_{3} F_{n+3} \\
& \overline{B H F}_{n}^{j_{2}}=F_{n}-j_{1} F_{n+1}+j_{2} F_{n+2}-j_{3} F_{n+3} \tag{5}\\
& \overline{B H F}_{n}^{j_{3}}=F_{n}-j_{1} F_{n+1}-j_{2} F_{n+2}+j_{3} F_{n+3} .
\end{align*}
$$

Theorem 3.1: Let $B H F_{n}$ and $B H F_{m}$ be two bihyperbolic Fibonacci numbers. Then, the following relations can be given between the conjugates of these numbers:
i) $\left({\overline{B H F_{n}} \times B H F_{m}}^{j_{1}}=\overline{B H F}_{n}{ }^{j_{1}} \times \overline{B H F}_{m}{ }^{j_{1}}=\overline{B H F}_{m}{ }^{j_{1}} \times \overline{B H F}_{n}{ }^{j_{1}}\right.$
ii) $\left({\overline{B H F_{n}} \times B H F_{m}}^{j_{2}}=\overline{B H F}_{n}^{j_{2}} \times \overline{B H F}_{m}^{j_{2}}=\overline{B H F}_{m}{ }^{j_{2}} \times \overline{B H F}_{n}^{j_{2}}\right.$
iii) $\left({\overline{B H F_{n}} \times B H F_{m}}^{j_{3}}=\overline{B H F}_{n}{ }^{j_{3}} \times \overline{B H F}_{m}{ }^{j_{3}}=\overline{B H F}_{m}{ }^{j_{3}} \times \overline{B H F}_{n}{ }^{j_{3}}\right.$

Proof. The proof can be easily seen from the equations (4) and (5).

Theorem 3.2: Let $B H F_{n}$ be bihyperbolic Fibonacci number and $\overline{B H F}_{n}{ }^{j_{1}}, \overline{B H F}_{n}{ }^{j_{2}}, \overline{B H F}_{n}{ }^{j_{3}}$ be three different conjugations of this number. In this case, the following equations are given between the multiplication of the bihyperbolic number $B H F_{n}$ and their different conjugates.
i) $B H F_{n} \times \overline{B H F}_{n}{ }^{j_{1}}=F_{2 n+1}-F_{2 n+5}-2 j_{1} F_{2 n+3}$
ii) $B H F_{n} \times \overline{B H F}_{n}^{j_{2}}=-F_{2 n+3}-2 F_{n+2} F_{n-1}-2 j_{2}\left(F_{n+1}^{2}+F_{n+2} F_{n-1}\right)$
iii) $B H F_{n} \times \overline{B H F}_{n}{ }^{j_{3}}=F_{2 n+3}+2 j_{3}(-1)^{n}$

Proof. i) Considering the equations (4), (5) and using the identity $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$ [28]

$$
\begin{aligned}
B H F_{n} \times \overline{B H F}_{n}{ }^{j_{1}}= & {\left[\left(F_{n}^{2}+F_{n+1}^{2}\right)-\left(F_{n+2}^{2}+F_{n+3}^{2}\right)\right] } \\
& +2 j_{1}\left[F_{n} F_{n+1}-\left(F_{n+1}+F_{n}\right)\left(F_{n+2}+F_{n+1}\right)\right] \\
= & F_{2 n+1}-F_{2 n+5}+2 j_{1}\left(-F_{n+2}^{2}-F_{n+1}^{2}\right) \\
= & F_{2 n+1}-F_{2 n+5}-2 j_{1} F_{2 n+3} .
\end{aligned}
$$

ii) From the equations (4), (5) and the identities $F_{n+1}^{2}-F_{n}^{2}=F_{n+2} F_{n-1}[29], F_{n} F_{m}+F_{n+1} F_{m+1}=F_{n+m+1}$
[28], we get

$$
\begin{aligned}
B H F_{n} \times \overline{B H F}_{n}^{{ }_{2}} & =-\left(F_{n+1}^{2}-F_{n}^{2}\right)-\left(F_{n+3}^{2}-F_{n+2}^{2}\right)+2 j_{2}\left(F_{n} F_{n+2}-F_{n+1} F_{n+3}\right) \\
& =-F_{n+2} F_{n-1}-F_{n+4} F_{n+1}+2 j_{2}\left(F_{n} F_{n+2}-F_{n+1} F_{n+3}\right) \\
& =-F_{n+2} F_{n-1}-\left(F_{n+3}+F_{n+2}\right) F_{n+1}+2 j_{2}\left(F_{n}^{2}-2 F_{n+1}^{2}\right) \\
& =-F_{n+2} F_{n-1}-F_{n+3} F_{n+1}-F_{n+2} F_{n+1}-2 j_{2}\left(F_{n+1}^{2}+F_{n+2} F_{n-1}\right) \\
& =-F_{n+2} F_{n-1}-F_{n+3} F_{n+1}-F_{n+2}\left(F_{n}+F_{n-1}\right)-2 j_{2}\left(F_{n+1}^{2}+F_{n+2} F_{n-1}\right) \\
& =-\left(F_{n+3} F_{n+1}+F_{n+2} F_{n}\right)-2 F_{n+2} F_{n-1}-2 j_{2}\left(F_{n+1}^{2}+F_{n+2} F_{n-1}\right) \\
& =-F_{2 n+3}-2 F_{n+2} F_{n-1}-2 j_{2}\left(F_{n+1}^{2}+F_{n+2} F_{n-1}\right)
\end{aligned}
$$

iii) Applying the equations (4), (5) and using the identities $F_{n+1}^{2}-F_{n}^{2}=F_{n+2} F_{n-1}$ $F_{n} F_{m}+F_{n+1} F_{m+1}=F_{n+m+1}$ [28], $F_{m} F_{n+1}-F_{m+1} F_{n}=(-1)^{n} F_{m-n} \quad[30]$ and $F_{-n}=(-1)^{n+1} F_{n} \quad[29,31]$, we have

$$
\begin{aligned}
B H F_{n} \times \overline{B H F}_{n}^{j_{3}} & =F_{n}^{2}-F_{n+1}^{2}-F_{n+2}^{2}+F_{n+3}^{2}+2 j_{3}\left(F_{n} F_{n+3}-F_{n+1} F_{n+2}\right) \\
& =-F_{n-1} F_{n+2}+F_{n+1} F_{n+4}+2 j_{3}(-1)^{n+2} F_{-2} \\
& =-F_{n-1} F_{n+2}+F_{n+1} F_{n+3}+F_{n+1} F_{n+2}-2 j_{3}(-1)^{n} \\
& =-F_{n-1} F_{n+2}+F_{n+3} F_{n+1}+\left(F_{n}+F_{n-1}\right) F_{n+2}-2 j_{3}(-1)^{n} \\
& =\left(F_{n} F_{n+2}+F_{n+1} F_{n+3}\right)-2 j_{3}(-1)^{n} \\
& =F_{2 n+3}-2 j_{3}(-1)^{n}
\end{aligned}
$$

Theorem 3.3 (Honsberger's Identity). Let $B H F_{n}$ and $B H F_{m}$ be bihyperbolic Fibonacci numbers. Then, for $n, m \geq 0$ Honsberger Identity for bihyperbolic Fibonacci numbers is given by

$$
\begin{aligned}
B H F_{n} \times B H F_{m}+B H F_{n+1} \times B H F_{m+1}= & 2 B H F_{n+m+1}+F_{n+m+2}+F_{n+m+5}+F_{n+m+7} \\
& +2\left(j_{1} F_{n+m+6}+j_{2} F_{n+m+5}+j_{3} F_{n+m+4}\right) .
\end{aligned}
$$

Proof. From the equations (3) and (4), the following equality is found

$$
\begin{aligned}
& B H F_{n} \times B H F_{m}+B H F_{n+1} \times B H F_{m+1}=\left(F_{n}\right. \\
&\left.F_{m}+F_{n+1} F_{m+1}\right)+\left(F_{n+2} F_{m+2}+F_{n+3} F_{m+3}\right) \\
&+\left(F_{n+1} F_{m+1}+F_{n+2} F_{m+2}\right)+\left(F_{n+3} F_{m+3}+F_{n+4} F_{m+4}\right) \\
&+j_{1}\left[\left(F_{n+1} F_{m}+F_{n+2} F_{m+1}\right)\right. \\
&+\left(F_{n} F_{m+1}+F_{n+1} F_{m+2}\right) \\
&+\left(F_{n+3} F_{m+2}+F_{n+4} F_{m+3}\right) \\
&\left.+\left(F_{n+2} F_{m+3}+F_{n+3} F_{m+4}\right)\right] \\
&+ j_{2}\left[\left(F_{n+2} F_{m}+F_{n+3} F_{m+1}\right)\right. \\
&+\left(F_{n} F_{m+2}+F_{n+1} F_{m+3}\right) \\
&+\left(F_{n+3} F_{m+1}+F_{n+4} F_{m+2}\right) \\
&\left.+\left(F_{n+1} F_{m+3}+F_{n+2} F_{m+4}\right)\right] \\
&+j_{3}[\left(F_{n+3} F_{m}+F_{n+4} F_{m+1}\right) \\
&+\left(F_{n+2} F_{m+1}+F_{n+3} F_{m+2}\right) \\
&+\left(F_{n+1} F_{m+2}+F_{n+2} F_{m+3}\right) \\
&\left.+\left(F_{n} F_{m+3}+F_{n+1} F_{m+4}\right)\right] .
\end{aligned}
$$

If the identity $F_{n} F_{m}+F_{n+1} F_{m+1}=F_{n+m+1}$ [28] is considered in the above equality, then the equality becomes

$$
\begin{aligned}
B H F_{n} \times B H F_{m}+B H F_{n+1} \times B H F_{m+1}= & F_{n+m+1}+F_{n+m+3}+F_{n+m+5}+F_{n+m+7} \\
& +2 j_{1}\left(F_{n+m+2}+F_{n+m+6}\right)+2 j_{2}\left(F_{n+m+3}+F_{n+m+5}\right) \\
& +4 j_{3} F_{n+m+4}
\end{aligned}
$$

When the final equation is arranged, the desired result is easily achieved

$$
\begin{aligned}
B H F_{n} \times B H F_{m}+B H F_{n+1} \times B H F_{m+1}= & 2\left(F_{n+m+1}+j_{1} F_{n+m+2}+j_{2} F_{n+m+3}+j_{3} F_{n+m+4}\right) \\
& +F_{n+m+2}+F_{n+m+5}+F_{n+m+7} \\
& +2\left(j_{1} F_{n+m+6}+j_{2} F_{n+m+5}+j_{3} F_{n+m+4}\right) \\
= & 2 B H F_{n+m+1}+F_{n+m+2}+F_{n+m+5}+F_{n+m+7} \\
& +2\left(j_{1} F_{n+m+6}+j_{2} F_{n+m+5}+j_{3} F_{n+m+4}\right) .
\end{aligned}
$$

Definition 3.2. Bihyperbolic Lucas number set is defined by

$$
H_{2}^{L}=\left\{B H L_{n}=L_{n}+j_{1} L_{n+1}+j_{2} L_{n+2}+j_{3} L_{n+3} \mid L_{n} \text { is } n-t h \text { Lucas number }\right\}
$$

where

$$
j_{1}^{2}=j_{2}^{2}=j_{3}^{2}=1, \quad j_{1} j_{2}=j_{2} j_{1}=j_{3}, \quad j_{1} j_{3}=j_{3} j_{1}=j_{2}, \quad j_{2} j_{3}=j_{3} j_{2}=j_{1}
$$

Here $j_{s}(s=1,2,3)$ denote unipotent(hyperbolic) imaginary units such that $j_{s} \neq \pm 1$ and $j_{s} \notin R$.

Theorem 3.4 (Negabihyperbolic Fibonacci and Negahyperbolic Lucas).

Let $B H F_{n}$ and $B H L_{n}$ be bihyperbolic Fibonacci and bihyperbolic Lucas number, respectively. For $n \geq 0$, the identities for negabihyperbolic Fibonacci number and negabihyperbolic Lucas number are given by
i) $B H F_{-n}=-(-1)^{n}\left[B H F_{n}+L_{n}\left(j_{1}+j_{2}+2 j_{3}\right)\right]$
ii) $B H L_{-n}=(-1)^{n}\left[B H L_{n}-5 F_{n}\left(j_{1}+j_{2}+2 j_{3}\right)\right]$.

Proof: Considering the bihyperbolic Fibonacci number $B H F_{n}$, the negebihyperbolic Fibonacci number can be written as

$$
B H F_{-n}=F_{-n}+j_{1} F_{-n+1}+j_{2} F_{-n+2}+j_{3} F_{-n+3} .
$$

Now, if we use the identity $F_{-n}=(-1)^{n+1} F_{n}[29,31]$ and adding and subtracting the terms to the equality, we get

$$
\begin{aligned}
B H F_{-n}= & -(-1)^{n} F_{n}+j_{1}(-1)^{n} F_{n-1}-j_{2}(-1)^{n} F_{n-2}+j_{3}(-1)^{n} F_{n-3} \\
& +j_{1}(-1)^{n} F_{n+1}-j_{1}(-1)^{n} F_{n+1}+j_{2}(-1)^{n} F_{n+2}-(-1)^{n} F_{n+2}+j_{3}(-1)^{n} F_{n+3}-j_{3}(-1)^{n} F_{n+3} \\
= & -(-1)^{n}\left(F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3}\right) \\
& +(-1)^{n}\left[j_{1}\left(F_{n-1}+F_{n+1}\right)+j_{2}\left(-F_{n-2}+F_{n+2}\right)+j_{3}\left(F_{n-3}+F_{n+3}\right)\right] .
\end{aligned}
$$

Finally, if we use the identities, $F_{n-1}+F_{n+1}=L_{n}, F_{n+2}-F_{n-2}=L_{n}, F_{n+3}+F_{n-3}=2 L_{n}$ [28], we find

$$
\begin{aligned}
B H F_{-n} & =-(-1)^{n} B H F_{n}+(-1)^{n}\left(j_{1} L_{n}+j_{2} L_{n}+2 j_{3} L_{n}\right) \\
B H F_{-n} & =-(-1)^{n}\left[B H F_{n}+L_{n}\left(j_{1}+j_{2}+2 j_{3}\right)\right]
\end{aligned}
$$

ii) Considering the bihyperbolic Lucas number $B H L_{n}$, the negebihyperbolic Lucas number can be written as

$$
B H L_{-n}=L_{-n}+j_{1} L_{-n+1}+j_{2} L_{-n+2}+j_{3} L_{-n+3} .
$$

From the identities $L_{-n}=(-1)^{n} L_{n}[29,31]$ and $L_{n-1}+L_{n+1}=5 F_{n} \quad$ [32] gives us

$$
\begin{aligned}
B H L_{-n}= & (-1)^{n}\left(L_{n}+j_{1} L_{n+1}+j_{2} L_{n+2}+j_{3} L_{n+3}\right) \\
& -(-1)^{n} j_{1}\left(L_{n-1}+L_{n+1}\right)+(-1)^{n} j_{2}\left(L_{n-2}-L_{n+2}\right)-(-1)^{n} j_{3}\left(L_{n-3}+L_{n+3}\right) \\
= & (-1)^{n}\left[B H L_{n}-5 j_{1} F_{n}-5 j_{2} F_{n}-j_{3}\left(5 F_{n-2}+\left(L_{n}+L_{n+1}\right)+L_{n}\right)\right] \\
= & (-1)^{n}\left[B H L_{n}-5 j_{1} F_{n}-5 j_{2} F_{n}-j_{3}\left(5 F_{n-2}+\left(L_{n+2}+L_{n}\right)\right)\right] \\
= & (-1)^{n}\left[B H L_{n}-5 j_{1} F_{n}-5 j_{2} F_{n}-5 j_{3}\left(F_{n-2}+F_{n+1}\right)\right] \\
= & (-1)^{n}\left[B H L_{n}-5 j_{1} F_{n}-5 j_{2} F_{n}-5 j_{3}\left(F_{n-2}+F_{n+1}\right)\right] \\
= & (-1)^{n}\left[B H L_{n}-5 F_{n}\left(j_{1}+j_{2}+2 j_{3}\right)\right] .
\end{aligned}
$$

Let $B H L_{n}$ and $B H L_{m}$ be two elements in $B H_{L}$. Then, the following equalities can be written

$$
\begin{equation*}
B H L_{n}=L_{n}+L_{n+1} j_{1}+L_{n+2} j_{2}+L_{n+3} j_{3} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
B H L_{m}=L_{m}+L_{m+1} j_{1}+L_{m+2} j_{2}+L_{m+3} j_{3} . \tag{7}
\end{equation*}
$$

Thus, using (6) and (7) the addition, substraction, multiplication and conjugates are given by

$$
\begin{equation*}
B H L_{n} \pm B H L_{m}=\left(L_{n}+j_{1} L_{n+1}+j_{2} L_{n+2}+j_{3} L_{n+3}\right) \pm\left(L_{m}+j_{1} L_{m+1}+j_{2} L_{m+2}+j_{3} L_{m+3}\right) \tag{8}
\end{equation*}
$$

$$
\begin{align*}
B H L_{n} \times B H L_{m}= & \left(L_{n}+j_{1} L_{n+1}+j_{2} L_{n+2}+j_{3} L_{n+3}\right) \times\left(L_{m}+j_{1} L_{m+1}+j_{2} L_{m+2}+j_{3} L_{m+3}\right) \\
= & L_{n} L_{m}+L_{n+1} L_{m+1}+L_{n+2} L_{m+2}+L_{n+3} L_{m+3} \\
& +j_{1}\left(L_{n+1} L_{m}+L_{n} L_{m+1}+L_{n+3} L_{m+2}+L_{n+2} L_{m+3}\right) \tag{9}\\
& +j_{2}\left(L_{n+2} L_{m}+L_{n} L_{m+2}+L_{n+3} L_{m+1}+L_{n+1} L_{m+3}\right) \\
& +j_{3}\left(L_{n+3} L_{m}+L_{n} L_{m+3}+L_{n+1} L_{m+2}+L_{n+2} L_{m+1}\right) \\
= & B H L_{m} \times B H L_{n} .
\end{align*}
$$

and

$$
\begin{align*}
& \overline{B H L}_{n}^{j_{1}}=F_{n}+j_{1} F_{n+1}-j_{2} F_{n+2}-j_{3} F_{n+3} \\
& \overline{B H L}_{n}^{j_{2}}=F_{n}-j_{1} F_{n+1}+j_{2} F_{n+2}-j_{3} F_{n+3} \tag{10}\\
& \overline{B H L}_{n}^{j_{3}}=F_{n}-j_{1} F_{n+1}-j_{2} F_{n+2}+j_{3} F_{n+3} .
\end{align*}
$$

respectively.

Theorem 3.5: Let $B H L_{n}$ and $B H L_{m}$ be two bihyperbolic Lucas numbers. Then, the following relations can be given between the conjugates of these numbers:
i) $\left({\overline{B H L_{n}} \times B H L_{m}}^{j_{1}}=\overline{B H L}_{n}{ }^{j_{1}} \times \overline{B H L}_{m}{ }^{j_{1}}=\overline{B H L}_{m}{ }^{j_{1}} \times \overline{B H L}_{n}{ }^{j_{1}}\right.$
ii) $\left({\overline{B H L_{n}} \times B H L_{m}}^{j_{2}}=\overline{B H L}_{n}^{j_{2}} \times \overline{B H L}_{m}^{j_{2}}=\overline{B H L}_{m}{ }^{j_{2}} \times \overline{B H L}_{n}^{j_{2}}\right.$

Proof. The proof is straightforwardly obtained by using the equations (9) and (10).

Theorem 3.6: $\overline{B H L}_{n}{ }^{j_{1}}, \overline{B H L}_{n}{ }^{j}, \overline{B H L}_{n}{ }^{j}{ }^{3}$ be three different conjugations of the bihyperbolic number $B H L_{n}$. Then, the following equalities hold:
i) $B H L_{n} \times \overline{B H L}_{n}{ }^{j_{1}}=(-5)\left(L_{2 n+3}-2 j_{1} F_{2 n+3}\right)$
ii) $B H L_{n} \times \overline{B H L}_{n}^{j_{2}}=-\left(2 L_{n-1} L_{n+2}+5 F_{2 n+3}\right)-2 j_{2}\left(L_{n+1}^{2}-L_{n-1} L_{n+2}\right)$
iii) $B H L_{n} \times \overline{B H L}_{n}{ }^{j_{3}}=5\left(F_{2 n+3}+2 j_{3}(-1)^{-n}\right)$

Proof. i) From the equations (9) and (10), it follows that

$$
B H L_{n} \times \overline{B H L}_{n}^{j_{1}}=L_{n}^{2}+L_{n+1}^{2}-L_{n+2}^{2}-L_{n+3}^{2}+2 j_{1}\left(L_{n} L_{n+1}-L_{n+2} L_{n+3}\right)
$$

Then, using the the identities $L_{n}^{2}+L_{n+1}^{2}=5 F_{2 n+1}$ [32] and $F_{n+2}-F_{n-2}=L_{n}$ [32], it is seen that

$$
\begin{aligned}
B H L_{n} \times \overline{B H L}_{n}^{j_{1}} & =\left(L_{n}^{2}+L_{n+1}^{2}\right)-\left(L_{n+2}^{2}+L_{n+3}^{2}\right)+2 j_{1}\left[L_{n} L_{n+1}-\left(L_{n+1}+L_{n}\right)\left(L_{n+2}+L_{n+1}\right)\right] \\
& =5 F_{2 n+1}-5 F_{2 n+5}+2 j_{1}\left[-L_{n+1}^{2}-L_{n+2}\left(L_{n+1}+L_{n}\right)\right] \\
& =5 F_{2 n+1}-5 F_{2 n+5}-2 j_{1}\left(L_{n+2}^{2}+L_{n+1}^{2}\right) \\
& =5\left(F_{2 n+1}-F_{2 n+5}\right)-10 j_{1} F_{2 n+3} \\
& =-5\left(L_{2 n+3}+2 j_{1} F_{2 n+3}\right) .
\end{aligned}
$$

ii) Taking into account the identities (9) and (10), we reach
$B H L_{n} \times \overline{B H L}_{n}{ }^{j}=L_{n}^{2}-L_{n+1}^{2}+L_{n+2}^{2}-L_{n+3}^{2}+2 j_{2}\left(L_{n} L_{n+2}-L_{n+1} L_{n+3}\right)$

On the other hand, replacing the identities $L_{n+1}^{2}-L_{n}^{2}=L_{n+2} L_{n-1}$ [32], $L_{n} L_{m}+L_{n+1} L_{m+1}=5 F_{n+m+1}$ [33] in the above equality, we obtain the following equation

$$
\begin{aligned}
B H L_{n} \times \overline{B H L}_{n}^{j_{2}} & =\left(L_{n}^{2}-L_{n+1}^{2}\right)+\left(L_{n+2}^{2}-L_{n+3}^{2}\right)+2 j_{2}\left(L_{n} L_{n+2}-L_{n+1} L_{n+3}\right) \\
& =-\left(L_{n-1} L_{n+2}+L_{n+1} L_{n+4}\right)+2 j_{2}\left(L_{n} L_{n+1}-L_{n+1} L_{n+2}-L_{n+1}^{2}\right) \\
& =-\left[L_{n-1} L_{n+2}+L_{n+1}\left(L_{n+3}+L_{n+2}\right)\right]+2 j_{2}\left[L_{n} L_{n+1}-L_{n+1}\left(L_{n+1}+L_{n}\right)-L_{n+1}^{2}\right] \\
& =-\left[L_{n-1} L_{n+2}+\left(L_{n+1} L_{n+3}+L_{n} L_{n+2}\right)+L_{n-1} L_{n+2}\right]-2 j_{2}\left[L_{n} L_{n+1}-L_{n+1}\left(L_{n+1}+L_{n}\right)-L_{n+1}^{2}\right] \\
& =-5 F_{2 n+3}-2 L_{n-1} L_{n+2}-2 j_{2}\left(L_{n+1}^{2}+L_{n-1} L_{n+2}\right) .
\end{aligned}
$$

iii) Again, by using the equations (9) and (10), we have

$$
B H L_{n} \times \overline{B H L}_{n}^{j_{3}}=L_{n}^{2}-L_{n+1}^{2}-L_{n+2}^{2}+L_{n+3}^{2}+2 j_{3}\left(L_{n} L_{n+3}-L_{n+1} L_{n+2}\right) .
$$

Now, applying the identities $L_{n+1}^{2}-L_{n}^{2}=L_{n+2} L_{n-1} \quad$ [32], $\quad L_{n} L_{m}+L_{n+1} L_{m+1}=5 F_{n+m+1}$ $(-1)^{n-1}\left(L_{m} L_{n+1}-L_{m+1} L_{n}\right)=5 F_{m-n}$ [33] and $F_{-n}=(-1)^{n+1} F_{n}$ [29,31], we can get

$$
\begin{aligned}
B H L_{n} \times \overline{B H L}_{n}^{j_{3}} & =-\left(L_{n+1}^{2}-L_{n}^{2}\right)-\left(L_{n+3}^{2}-L_{n+2}^{2}\right)+2 j_{3}\left(L_{n} L_{n+3}-L_{n+1} L_{n+2}\right) \\
& =-L_{n-1} L_{n+2}+L_{n+1} L_{n+4}-10 j_{3}(-1)^{-n} F_{-2} \\
& =-L_{n-1} L_{n+2}+L_{n+1} L_{n+3}+L_{n+1} L_{n+2}+10 j_{3}(-1)^{-n} \\
& =-L_{n-1} L_{n+2}+L_{n+3} L_{n+1}+\left(L_{n}+L_{n-1}\right) L_{n+2}+10 j_{3}(-1)^{-n} \\
& =\left(L_{n} L_{n+2}+L_{n+1} L_{n+3}\right)+10 j_{3}(-1)^{-n} \\
& =5 F_{2 n+3}+10 j_{3}(-1)^{n} .
\end{aligned}
$$

Theorem 3.7 Let $B H L_{n}$ and $B H L_{m}$ be any elements of bihyperbolic Lucas and bihyperbolic Fibonacci number set, respectively. Then, there are relationships between these numbers and their conjugates as follows:
i) $B H F_{n}+\overline{B H F}_{n}^{j_{1}}+\overline{B H F}_{n}^{j_{2}}+\overline{B H F}_{n}^{j_{3}}=4 F_{n}$
ii) $B H L_{n}+\overline{B H L}_{n}^{j_{1}}+\overline{B H L}_{n}^{j_{2}}+\overline{B H L}_{n}^{j_{3}}=4 L_{n}$.

Proof. From the equations (8) and (10), we get

$$
\begin{aligned}
& B H F_{n}+\overline{B H F}_{n}^{j_{1}}=2\left(F_{n}+j_{1} F_{n+1}\right) \\
& B H F_{n}+\overline{B H F}_{n}^{j_{2}}=2\left(F_{n}+j_{2} F_{n+2}\right) \\
& B H F_{n}+\overline{B H F}_{n}^{j_{3}}=2\left(F_{n}+j_{3} F_{n+3}\right)
\end{aligned}
$$

If the three equalities which is obtained above add side by side with each other, we get

$$
\begin{aligned}
& B H F_{n}+\overline{B H F}_{n}^{j_{1}}+B H F_{n}+\overline{B H F}_{n}^{j_{2}}+B H F_{n}+\overline{B H F}_{n}^{j_{3}}=2\left(F_{n}+j_{1} F_{n+1}\right)+2\left(F_{n}+j_{2} F_{n+2}\right)+2\left(F_{n}+j_{3} F_{n+3}\right) \\
& 3 B H F_{n}+\overline{B H F}_{n}^{j_{1}}+\overline{B H F}_{n}^{j_{2}}+\overline{B H F}_{n}^{j_{3}}=2\left(B H F_{n}+2 F_{n}\right) \\
& B H F_{n}+\overline{B H F}_{n}^{j_{1}}+\overline{B H F}_{n}^{j_{2}}+\overline{B H F}_{n}^{j_{3}}=4 F_{n} .
\end{aligned}
$$

The proof of $\mathbf{i i}$) is analogous.

Theorem 3.8 There exist the following identities between bihyperbolic Fibonacci and bihyperbolic Lucas numbers.
i) $B H F_{n}+B H L_{n}=2 B H F_{n+1}$
ii) $B H L_{n-1}+B H L_{n+1}=5 B H F_{n}$.

Proof.

i) By direct calculations of the equation (3) and the definition of bihyperbolic Fibonacci number yields to

$$
\begin{aligned}
B H F_{n}+B H L_{n}= & F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3} \\
& +L_{n}+j_{1} L_{n+1}+j_{2} L_{n+2}+j_{3} L_{n+3} \\
= & F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3} \\
& +\left(F_{n-1}+F_{n+1}\right)+j_{1}\left(F_{n}+F_{n+2}\right)+j_{2}\left(F_{n+1}+F_{n+3}\right)+j_{3} \\
= & F_{n+1}+j_{1} F_{n+2}+j_{2} F_{n+3}+j_{3} F_{n+4} \\
& +\left(F_{n}+F_{n-1}\right)+j_{1}\left(F_{n}+F_{n+1}\right)+j_{2}\left(F_{n+1}+F_{n+2}\right)+j_{3}\left(F_{n+2}+F_{n+3}\right) \\
= & B H F_{n+1}+F_{n+1}+j_{1} F_{n+2}+j_{2} F_{n+3}+j_{3} F_{n+4} \\
= & 2 B H F_{n+1} .
\end{aligned}
$$

ii) Applying the similar method of i), we find

$$
\begin{aligned}
B H L_{n-1}+B H L_{n+1}= & L_{n-1}+j_{1} L_{n}+j_{2} L_{n+1}+j_{3} L_{n+2} \\
& +L_{n+1}+j_{1} L_{n+2}+j_{2} L_{n+3}+j_{3} L_{n+4} \\
= & \left(F_{n-2}+F_{n-1}\right)+4 F_{n} \\
& +j_{1}\left[\left(F_{n-1}+F_{n}\right)+4 F_{n+1}\right] \\
& +j_{2}\left[\left(F_{n}+F_{n+1}\right)+4 F_{n+2}\right] \\
& +j_{3}\left[\left(F_{n+1}+F_{n+2}\right)+4 F_{n+3}\right] \\
= & 5\left(F_{n}+j_{1} F_{n+1}+j_{2} F_{n+2}+j_{3} F_{n+3}\right) \\
= & 5 B H F_{n} .
\end{aligned}
$$

Theorem 3.9 (Binet Formula). Let $B H L_{n}$ be bihyperbolic Lucas number. For $n \geq 1$, Binet Formula is given by

$$
B H L_{n}=\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n}
$$

such that
$\alpha=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{1-\sqrt{5}}{2}, \quad \hat{\alpha}=1+j_{1} \alpha+j_{2} \alpha^{2}+j_{3} \alpha^{3}, \hat{\beta}=1+j_{1} \beta+j_{2} \beta^{2}+j_{3} \beta^{3} .$,

Proof. If the Binet formula of Lucas numbers is written in the equation (6) and rearranged, we get the desired one as follows

$$
\begin{aligned}
B H L_{n} & =\alpha^{n}+\beta^{n}+j_{1} \alpha^{n+1}+\beta^{n+1}+j_{2} \alpha^{n+2}+\beta^{n+2}+j_{3} \alpha^{n+3}+\beta^{n+3} \\
& =\left(1+j_{1} \alpha+j_{2} \alpha^{2}+j_{3} \alpha^{3}\right) \alpha^{n}-\left(1+j_{1} \beta+j_{2} \beta^{2}+j_{3} \beta^{3}\right) \beta^{n} \\
& =\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n} .
\end{aligned}
$$

where $\hat{\alpha}=1+j_{1} \alpha+j_{2} \alpha^{2}+j_{3} \alpha^{3}$ and $\hat{\beta}=1+j_{1} \beta+j_{2} \beta^{2}+j_{3} \beta^{3}$.

Now, Catalan and Cassini identities for bihyperbolic Lucas numbers will be obtained by the help of Binet formula of bihyperbolic numbers.

Teorem 3.10 (Catalan's Identity). Let $B H L_{n}, B H L_{n-m}$ and $B H L_{n+m}$ be bihyperbolic Lucas numbers. For $m \leq n$ and $n \geq 1$, the Catalan's identity for bihyperbolic Lucas numbers is given by

$$
B H L_{n+r} \times B H L_{n-r}-B H L_{n}^{2}=(-1)^{n-m}\left(L_{2 m}-2(-1)^{m}\right)\left(2 j_{1}+3 j_{3}\right) .
$$

Proof. Considering the Theorem 3.6 for the bihyperbolic Lucas numbers $B H L_{n}, B H L_{n-m}$ and $B H L_{n+m}$, one can write the following identities

$$
B H L_{n}=\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n}, \quad B H L_{n+m}=\hat{\alpha} \alpha^{n+m}+\hat{\beta} \beta^{n+m}, \quad B H L_{n-m}=\hat{\alpha} \alpha^{n-m}+\hat{\beta} \beta^{n-m}
$$

Using the above identities, the equation (9) and the identity $L_{n}=\alpha^{n}+\beta^{n}$, we have

$$
\begin{aligned}
B H L_{n+m} \times B H L_{n-m}-B H L_{n}^{2} & =\left(\hat{\alpha} \alpha^{n+m}+\hat{\beta} \beta^{n+m}\right)\left(\hat{\alpha} \alpha^{n-m}+\hat{\beta} \beta^{n-m}\right)-\left(\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n}\right)^{2} \\
& =\hat{\alpha} \hat{\beta}\left(\alpha^{n-m} \beta^{n+m}+\alpha^{n+m} \beta^{n-m}-2 \alpha^{n} \beta^{n}\right) \\
& =\hat{\alpha} \hat{\beta} \alpha^{n-m} \beta^{n-m} \frac{\left(\alpha^{n-m} \beta^{n+m}+\alpha^{n+m} \beta^{n-m}-2 \alpha^{n} \beta^{n}\right)}{\alpha^{n-m} \beta^{n-m}} \\
& =\hat{\alpha} \hat{\beta} \alpha^{n-m} \beta^{n-m}\left(\beta^{2 m}+\alpha^{2 m}-2(\alpha \beta)^{m}\right) \\
& =\left(2 j_{1}+3 j_{3}\right)(-1)^{n-m}\left(L_{2 m}-2(-1)^{m}\right) .
\end{aligned}
$$

such that

$$
\hat{\alpha} \hat{\beta}=\left(1+j_{1} \alpha+j_{2} \alpha^{2}+j_{3} \alpha^{3}\right)\left(1+j_{1} \beta+j_{2} \beta^{2}+j_{3} \beta^{3}\right)=2 j_{1}+3 j_{3} .
$$

Teorem 3.11 (Cassini's Identity). Let $B H L_{n}$ be bihyperbolic Lucas number. For $n \geq 1$, Cassini's Identity is

$$
B H L_{n-1} \times B H L_{n+1}-B H L_{n}^{2}=5(-1)^{n-1}\left(2 j_{1}+3 j_{3}\right)
$$

Proof. Considering the Theorem 3.6 for the bihyperbolic Lucas numbers $B H L_{n}, B H L_{n-1}$ and $B H L_{n+1}$, one can write the following equalities
$B H L_{n}=\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n}, \quad B H L_{n+1}=\hat{\alpha} \alpha^{n+1}+\hat{\beta} \beta^{n+1}, \quad B H L_{n-1}=\hat{\alpha} \alpha^{n-1}+\hat{\beta} \beta^{n-1}$

Using the above equalities and the equation (9), we find the desired.

$$
\begin{aligned}
B H L_{n-1} \times B H L_{n+1}-B H L_{n}^{2} & =\left(\hat{\alpha} \alpha^{n+1}+\hat{\beta} \beta^{n+1}\right)\left(\hat{\alpha} \alpha^{n-1}+\hat{\beta} \beta^{n-1}\right)-\left(\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n}\right)^{2} \\
& =\hat{\alpha} \hat{\beta}\left(\alpha^{n-1} \beta^{n+1}+\alpha^{n+1} \beta^{n-1}-2 \alpha^{n} \beta^{n}\right) \\
& =\hat{\alpha} \hat{\beta} \alpha^{n} \beta^{n}\left(\alpha^{-1} \beta+\alpha \beta^{-1}-2\right) \\
& =\hat{\alpha} \hat{\beta} \alpha^{n} \beta^{n} \frac{\left(\beta^{2}+\alpha^{2}-2 \alpha \beta\right)}{\alpha \beta} \\
& =5(-1)^{n-1}\left(2 j_{1}+3 j_{3}\right)
\end{aligned}
$$

where $\hat{\alpha} \hat{\beta}=2 j_{1}+3 j_{3}, \alpha \beta=-1, \quad \alpha^{2}+\beta^{2}-2 \alpha \beta=5$.

The same equality can be obtained by writing 1 instead of m in Theorem 3.10.

Teorem 3.12 (d'Ocagne's Identity). Let $B H L_{n}, B H L_{n-m}$ and $B H L_{n+m}$ be bihyperbolic Lucas numbers. For $n \leq m$ and $n \geq 0, \quad m \geq 0$, the following identity holds.
$B H L_{m+1} \times B H L_{n}-B H L_{m} \times B H L_{n+1}=\left(2 j_{1}+3 j_{3}\right)\left(L_{n} L_{m-1}-L_{m} L_{n-1}\right)$

Proof. Using Theorem 3.6 and equation (9), we reach

$$
\begin{align*}
B H L_{m+1} \times B H L_{n}-B H L_{m} \times B H L_{n+1} & =\left(\hat{\alpha} \alpha^{m+1}+\hat{\beta} \beta^{m+1}\right)\left(\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n}\right)-\left(\hat{\alpha} \alpha^{m}+\hat{\beta} \beta^{m}\right)^{2} \\
& =\hat{\alpha} \hat{\beta}\left(\alpha^{n} \beta^{m+1}+\alpha^{m+1} \beta^{n}-\alpha^{n+1} \beta^{m}-\alpha^{m} \beta^{n+1}\right) \tag{11}\\
& =\hat{\alpha} \hat{\beta}(-\alpha \beta)\left(-\alpha^{n-1} \beta^{m}-\alpha^{m} \beta^{n-1}+\alpha^{n} \beta^{m-1}+\alpha^{m-1} \beta^{n}\right) .
\end{align*}
$$

On the other hand

$$
\begin{align*}
L_{n} L_{m-1}-L_{m} L_{n-1} & =\left(\alpha^{n}+\beta^{n}\right)\left(\alpha^{m-1}+\beta^{m-1}\right)-\left(\alpha^{m}+\beta^{m}\right)\left(\alpha^{n-1}+\beta^{n-1}\right) \tag{12}\\
& =-\alpha^{n-1} \beta^{m}-\alpha^{m} \beta^{n-1}+\alpha^{n} \beta^{m-1}+\alpha^{m-1} \beta^{n}
\end{align*}
$$

Substituting the equation (12) into the equation (11), we obtain

$$
B H L_{m+1} \times B H L_{n}-B H L_{m} \times B H L_{n+1}=\left(2 j_{1}+3 j_{3}\right)\left(L_{n} L_{m-1}-L_{m} L_{n-1}\right) .
$$

where $\hat{\alpha} \hat{\beta}=2 j_{1}+3 j_{3}, \quad \alpha \beta=-1$.

4. Bihyperbolic Generalized Fibonacci Numbers

In this section, we give the definition of bihyperbolic generalized Fibonacci numbers. Then,

Binet formula, Catalan, Cassini and d'Ocagne identities are proven for these numbers. Finally, the special cases of these identities will be mentioned.

Definition 4.1.

Let W_{n} be n-th generalized Fibonacci number. Then, n-th bihyperbolic generalized Fibonacci number is defined by

$$
\begin{equation*}
B H W_{n}=W_{n}+j_{1} W_{n+1}+j_{2} W_{n+2}+j_{3} W_{n+3} \tag{13}
\end{equation*}
$$

such that their coefficients are generalized Fibonacci numbers. Here, j_{1}, j_{2}, j_{3} denotes the hyperbolic imaginary units $\left(j_{k}^{2}=1, \quad j_{k} \neq \mp 1, \quad k=1,2,3\right)$ and multiplication of base elements are as follows:
$j_{1}^{2}=j_{2}^{2}=j_{3}^{2}=1, \quad j_{1} j_{2}=j_{2} j_{1}=j_{3}, \quad j_{1} j_{3}=j_{3} j_{1}=j_{2}, \quad j_{2} j_{3}=j_{3} j_{2}=j_{1}$.

Also, bihyperbolic generalized Fibonacci numbers satisfies the recurrence relation such that
$B H W_{n}=B H W_{n-1}+B H W_{n-2}$

Moreover, first two elements of these numbers are given by

$$
\begin{aligned}
& B H W_{0}=a+b j_{1}+(a+b) j_{2}+(a+2 b) j_{3} \\
& B H W_{1}=b+(a+b) j_{1}+(a+2 b) j_{2}+j_{3}(2 a+3 b)
\end{aligned}
$$

respectively.

Teorem 4.1. Binet formula for bihyperbolic generalized Fibonacci number is given by

$$
\begin{equation*}
B H W_{n}=\frac{A \hat{\alpha} \alpha^{n}-B \hat{\beta} \beta^{n}}{\alpha-\beta} \tag{14}
\end{equation*}
$$

where $\hat{\alpha}=1+\alpha j_{1}+\alpha^{2} j_{2}+\alpha^{3} j_{3}$ and $\hat{\beta}=1+\beta j_{1}+\beta^{2} j_{2}+\beta^{3} j_{3}$.

Proof. Let $B H W_{n}$ be bihyperbolic generalized Fibonacci number. Replacing the Binet formula which is given for generalized Fibonacci numbers, we get

$$
\begin{aligned}
B H W_{n} & =\frac{A\left(1+\alpha j_{1}+\alpha^{2} j_{2}+\alpha^{3} j_{3}\right) \alpha^{n}-B\left(1+\beta j_{1}+\beta^{2} j_{2}+\beta^{3} j_{3}\right)}{\alpha-\beta} \\
& =\frac{A \hat{\alpha} \alpha^{n}-B \hat{\beta} \beta^{n}}{\alpha-\beta} .
\end{aligned}
$$

Corollary 4.1: For any integer $n, W_{n}=F_{n}, \quad F_{0}=0, \quad F_{1}=1$, Binet formula for bihyperbolic Fibonacci numbers appears as follows

$$
B H F_{n}=\frac{\hat{\alpha} \alpha^{n}-\hat{\beta} \beta^{n}}{\alpha-\beta} \quad(\text { see [26]). }
$$

Corollary 4.2: For any integer $n, W_{n}=L_{n}, \quad L_{0}=2, \quad L_{1}=1$, Binet formula for bihyperbolic Fibonacci numbers appears as follows

$$
B H L_{n}=\hat{\alpha} \alpha^{n}+\hat{\beta} \beta^{n} \quad(\text { see Theorem 3.9) }
$$

Theorem 4.2. For all positive integers n and m and $n \geq m$, Catalan identity for bihyperbolic generalized Fibonacci number is given by

$$
B H W_{n+m} B H W_{n-m}-B H W_{n}^{2}=\frac{(-1)^{n-m+1}\left(2 j_{1}+3 j_{3}\right)\left[(A+B) W_{2 m-1}+(\beta A+\alpha B) W_{2 m}-2(-1)^{m} A B\right]}{5} .
$$

Proof. Applying the Binnet formula for generalized Fibonacci number, we have

$$
\begin{aligned}
B H W_{n+m} B H W_{n-m}-B H W_{n}^{2} & =\frac{\left(A \hat{\alpha} \alpha^{n+m}-B \hat{\beta} \beta^{n+m}\right)\left(A \hat{\alpha} \alpha^{n-m}-B \hat{\beta} \beta^{n-m}\right)-\left(A \hat{\alpha} \alpha^{n}-B \hat{\beta} \beta^{n}\right)^{2}}{(\alpha-\beta)^{2}} \\
& =\frac{-A B \hat{\alpha} \hat{\beta}\left(\alpha^{n-m} \beta^{n+m}+\alpha^{n+m} \beta^{n-m}-2 \alpha^{n} \beta^{n}\right)}{(\alpha-\beta)^{2}} \\
& =\frac{-A B \hat{\alpha} \hat{\beta}\left(\alpha^{2 m}+\beta^{2 m}-2 \alpha^{m} \beta^{m}\right)(\alpha \beta)^{n}}{(\alpha-\beta)^{2}(\alpha \beta)^{m}} \\
& =\frac{-A B \hat{\alpha} \hat{\beta}\left(\alpha^{2 m}+\beta^{2 m}-2 \alpha^{m} \beta^{m}\right)(\alpha \beta)^{n}}{(\alpha-\beta)^{2}(\alpha \beta)^{m}}
\end{aligned}
$$

Substituting the equations (1), (2) and $\hat{\alpha} \hat{\beta}=2 j_{1}+3 j_{3}$, into the last equality and rearranging, we reach the desired result as follows:

$$
\begin{aligned}
B H W_{n+m} B H W_{n-m}-B H W_{n}^{2} & =\frac{(-1)^{n-m+1}\left(2 j_{1}+3 j_{3}\right)\left[B\left(\alpha W_{2 m}+W_{2 m-1}\right)+A\left(\beta W_{2 m}+W_{2 m-1}\right)-2 A B(\alpha \beta)^{m}\right]}{5} \\
& =\frac{(-1)^{n-m+1}\left(2 j_{1}+3 j_{3}\right)\left[(A+B) W_{2 m-1}+(\alpha B+\beta A) W_{2 m}-2 A B(-1)^{m}\right]}{5} .
\end{aligned}
$$

Corollary 4.3: For any integer $n, W_{n}=F_{n}, \quad F_{0}=0, \quad F_{1}=1$, Catalan identity is obtained for bihyperbolic Fibonacci numbers as follows

$$
B H F_{n+m} B H F_{n-m}-B H F_{n}^{2}=\frac{(-1)^{n-m+1}\left(2 j_{1}+3 j_{3}\right)\left[2 F_{2 m-1}+F_{2 m}-2(-1)^{m}\right]}{5} .
$$

If the identity $F_{m}^{2}=\frac{2 F_{2 m-1}+F_{2 m}-2(-1)^{m}}{5}$ is considered, we get

$$
B H F_{n+m} B H F_{n-m}-B H F_{n}^{2}=(-1)^{n-m+1}\left(2 j_{1}+3 j_{3}\right) F_{m}^{2} . \quad \text { (see [26]). }
$$

Corollary 4.4: For any integer $n, W_{n}=L_{n}, \quad L_{0}=2, \quad L_{1}=1$, Catalan identity is obtained for bihyperbolic Lucas numbers

$$
B H L_{n+m} B H L_{n-m}-B H L_{n}^{2}=(-1)^{n-m}\left(2 j_{1}+3 j_{3}\right)\left(L_{2 m}-2(-1)^{m}\right) \quad \text { (see Theorem 3.10). }
$$

If the identity $L_{m}^{2}=L_{2 m}+2(-1)^{m}$ is taken into account, the above identitycan be represented in a different way. Namely,

$$
B H L_{n+m} B H L_{n-m}-B H L_{n}^{2}=(-1)^{n-m}\left(2 j_{1}+3 j_{3}\right)\left(L_{m}^{2}-4(-1)^{m}\right) .
$$

Theorem 4.3. For $n \geq 1$, Cassini identity for bihyperbolic generalized Fibonacci number holds

$$
B H W_{n+1} B H W_{n-1}-B H W_{n}^{2}=(-1)^{n} A B\left(2 j_{1}+3 j_{3}\right) .
$$

Proof. Applying the Binnet formula for generalized Fibonacci number, we can deduce that

$$
\begin{aligned}
B H W_{n+1} B H W_{n-1}-B H W_{n}^{2} & =\frac{\left(A \hat{\alpha} \alpha^{n+1}-B \hat{\beta} \beta^{n+1}\right)\left(A \hat{\alpha} \alpha^{n-1}-B \hat{\beta} \beta^{n-1}\right)-\left(A \hat{\alpha} \alpha^{n}-B \hat{\beta} \beta^{n}\right)^{2}}{(\alpha-\beta)^{2}} \\
& =\frac{-A B \hat{\alpha} \hat{\beta}\left(\alpha^{n-1} \beta^{n+1}+\alpha^{n+1} \beta^{n-1}-2 \alpha^{n} \beta^{n}\right)}{(\alpha-\beta)^{2}} \\
& =\frac{-(\alpha \beta)^{n} A B \hat{\alpha} \hat{\beta}\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)}{(\alpha-\beta)^{2} \alpha \beta}
\end{aligned}
$$

For $\alpha^{2}+\beta^{2}-2 \alpha \beta=5, \quad \alpha \beta=-1, \quad \hat{\alpha} \hat{\beta}=2 j_{1}+3 j_{3},(\alpha-\beta)^{2}=5$, we get

$$
B H W_{n+1} B H W_{n-1}-B H W_{n}^{2}=(-1)^{n} A B\left(2 j_{1}+3 j_{3}\right) .
$$

Corollary 4.5: For any integer $n, W_{n}=F_{n}, \quad F_{0}=0, \quad F_{1}=1$, Cassini identity is obtained for bihyperbolic Fibonacci numbers as follows

$$
B H F_{n+1} B H F_{n-1}-B H F_{n}^{2}=(-1)^{n}\left(2 j_{1}+3 j_{3}\right) \text { (see [26]). }
$$

Corollary 4.6: For any integer $n, W_{n}=L_{n}, \quad L_{0}=2, \quad L_{1}=1$, Cassini identity is obtained for bihyperbolic Lucas numbers as follows

$$
B H L_{n+1} B H L_{n-1}-B H L_{n}^{2}=5(-1)^{n-1}\left(2 j_{1}+3 j_{3}\right) \text { (see Theorem 3.11). }
$$

Theorem 4.4. Let n and m any integers d'Ocagne identity for bihyperbolic generalized Fibonacci number is

$$
B H W_{m+1} B H W_{n}-B H W_{m} B H W_{n+1}=\left(2 j_{1}+3 j_{3}\right)\left(W_{n} W_{m-1}-W_{n-1} W_{m}\right) .
$$

Proof. From the Binnet formula for generalized Fibonacci number, the following result is straightforwardly obtained.
$B H W_{m+1} B H W_{n}-B H W_{m} B H W_{n+1}=\frac{\left(A \hat{\alpha} \alpha^{m+1}-B \hat{\beta} \beta^{m+1}\right)\left(A \hat{\alpha} \alpha^{n}-B \hat{\beta} \beta^{n}\right)-\left(A \hat{\alpha} \alpha^{m}-B \hat{\beta} \beta^{m}\right)\left(A \hat{\alpha} \alpha^{n+1}-B \hat{\beta} \beta^{n+1}\right)}{(\alpha-\beta)^{2}}$

$$
\begin{aligned}
& =\frac{A B \hat{\alpha} \hat{\beta}\left(-\alpha^{n} \beta^{m+1}-\alpha^{m+1} \beta^{n}+\alpha^{n+1} \beta^{m}+\alpha^{m} \beta^{n+1}\right)}{(\alpha-\beta)^{2}} \\
& =\frac{A B \hat{\alpha} \hat{\beta}\left[(\alpha-\beta) \alpha^{n} \beta^{m}-(\alpha-\beta) \alpha^{m} \beta^{n}\right]}{(\alpha-\beta)^{2}} \\
& =\frac{A B \hat{\alpha} \hat{\beta}^{n}\left(\alpha^{n} \beta^{m}-\alpha^{m} \beta^{n}\right)}{(\alpha-\beta)(\alpha \beta)^{m}}
\end{aligned}
$$

Considering the equations (1), (2) and $\hat{\alpha} \hat{\beta}=2 j_{1}+3 j_{3}$, for the last equation and rearranging the terms, we find the desired.

$$
\begin{aligned}
B H W_{m+1} B H W_{n}-B H W_{m} B H W_{n+1} & =\frac{\hat{\alpha} \hat{\beta}\left[\left(\alpha W_{n}+W_{n-1}\right)\left(\beta W_{m}+W_{m-1}\right)-\left(\alpha W_{m}+W_{m-1}\right)\left(\beta W_{n}+W_{n-1}\right)\right]}{(\alpha-\beta)} \\
& =\frac{\hat{\alpha} \hat{\beta}(\alpha-\beta)\left(W_{n} W_{m-1}-W_{n-1} W_{m}\right)}{(\alpha-\beta)} \\
& =\left(2 j_{1}+3 j_{3}\right)\left(W_{n} W_{m-1}-W_{n-1} W_{m}\right) .
\end{aligned}
$$

Corollary 4.7: For any integer $n, W_{n}=F_{n}, \quad F_{0}=0, \quad F_{1}=1$, d'Ocagne identityfor bihyperbolic Fibonacci numbers becomes
$B H F_{m+1} B H F_{n}-B H F_{m} B H F_{n+1}=\left(2 j_{1}+3 j_{3}\right)\left(F_{n} F_{m-1}-F_{n-1} F_{m}\right)$

On the other hand, if we use d'Ocagne identity $F_{m} F_{n+1}-F_{n} F_{m+1}=(-1)^{n} F_{m-n}$, d'Ocagne identity is obtained for bihyperbolic Fibonacci numbers as follows
$B H F_{m+1} B H F_{n}-B H F_{m} B H F_{n+1}=(-1)^{n-1}\left(2 j_{1}+3 j_{3}\right) F_{m-n}$ (see [26]).

Corollary 4.8: For any integer $n, W_{n}=L_{n}, L_{0}=2, L_{1}=1$, d'Ocagne identity is obtained for bihyperbolic Lucas numbers
$B H L_{m+1} B H L_{n}-B H L_{m} B H L_{n+1}=\left(2 j_{1}+3 j_{3}\right)\left(L_{n} L_{m-1}-L_{n-1} L_{m}\right) \quad$ (see Theorem 3.12).

5. Conclusion

In this paper, three different conjugates for bihyperbolic Fibonacci numbers have been defined and have been reached to new results regarding these numbers. Correspondences of the Honsberger identity and the negative Fibonacci numbers for bihyperbolic Fibonacci numbers have been found. Then, the concept of bihyperbolic Lucas number have been introduced and some important identities have been obtained. On the other hand, the bihyperbolic Fibonacci number theory have been extended by taking the coefficients of bihyperbolic numbers as generalized Fibonacci numbers. Finally, special cases have been mentioned. Recently, involvement of Fibonacci numbers in the fields of high energy physics, quantum mechanics, cryptology and coding has accelerated the work on these numbers.For this purpose, polynomials, trigonometric identities and matrix representations of Fibonacci numbers are discussed. Therefore, we hope that this new Fibonacci number system and identities that we have found will offer a new perspective to the readers.

Acknowledgements

This research received no external funding.

References

[1]. W.R. Hamilton. Lectures on Quaternions. Dublin: Hodges and Smith, 1853.
[2]. J. Cockle. "On certain functions resembling quaternions and on a new imaginary in algebra." The London, Edinburg and Dublin Philosophical Magazine and Journal of Science, vol. 33, no. 3, pp. 435439, 1848.
[3]. C. Segre. "Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici." Mathematische Annalen, vol 40, pp. 413-467, 1892.
[4]. S. Olariu, Complex Numbers in n Dimensions. North-Holland Mathematics Studies, vol. 190, Amsterdam, Boston: Elsevier, 2002, pp. 51-148.
[5]. F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti, P. Zampetti. The Mathematics of Minkowski Space-time with an Introduction to Commutative Hypercomplex Numbers. Basel, Boston, Berlin: Birkhäuser Verlag, 2008.
[6]. D. Alpay, M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa. Basics of Functional Analysis with Bicomplex Scalars and Bicomplex Schur Analysis. Springer Briefs in Mathematics. Springer, 2014.
[7]. F. Colombo, I. Sabadin, D.C. Struppa. "Bicomplex holomorphic functional calculus." Mathematische. Nachrichten, vol. 287, no. 13, pp. 1093-1105, 2013.
[8]. R. Gervais Lavoie, L. Marchildon, D. Rochon. "Infinite-dimensional bicomplex Hilbert spaces." Annals of Functional Analysis, vol. 1, no. 2, pp. 75-91, 2010.
[9]. R. Gervais Lavoie, L. Marchildon, D. Rochon. "Finite-dimensional bicomplex Hilbert spaces." Advances in Applied Clifford Algebras, vol. 21, no. 3, pp. 561-581, 2011.
[10]. R. Kumar, H. Saini. "Topological bicomplex modules." Advances in Applied Clifford Algebras, vol. 26, no. 4, pp. 1249-1270, 2016.
[11]. R. Kumar, K. Singh, H. Saini, S. Kumar. "Bicomplex weighted Hardy spaces and bicomplex C^{*} -
algebras." Advances in Applied Clifford Algebras, vol. 26, no. 1, pp. 217-235, 2016.
[12]. M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa, A. Vajiac. "Bicomplex numbers and their elementary functions." Cubo, vol. 14, no. 2, pp. 61-80, 2012.
[13]. M.E. Luna-Elizarraras, C.O. Perez-Regalado, M. Shapiro. "On linear functionals and Hahn-Banach theorems for hyperbolic and bicomplex modules." Advances in Applied Clifford Algebras, vol. 24, pp. 1105-1129, 2014.
[14]. M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa, A. Vajiac. Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers. Frontiers in Mathematics, New York: Springer, 2015.
[15]. M.E. Luna-Elizarraras, C.O. Perez-Regalado, M. Shapiro. "On the bicomplex Gleason-Kahane Zelazko theorem." Complex Analysis and Operator Theory, vol. 10, no. 2, pp. 327-352, 2016.
[16]. K. Manzoor. "A note on bicomplex linear operators on bicomplex Hilbert spaces." International Journal of Mathematics Trends and Technology, vol. 36, no. 3, pp. 218-224, 2016.
[17]. D. Rochon, M. Shapiro. "On algebraic properties of bicomplex and hyperbolic numbers." Annals of Oradea University-Mathematics Fascicola, vol. 11, pp. 71-110, 2004.
[18]. D. Rochon, S. Tremblay. "Bicomplex quantum mechanics II: the Hilbert space." Advances in Applied Clifford Algebras, vol. 16, no. 2, pp. 135-157, 2006.
[19]. S.K. Nurkan, İ.A. Güven. "A note on bicomplex Fibonacci and Lucas numbers." International Journal of Pure Applied Mathematics, vol. 120, no. 3, pp. 365-377, 2018
[20]. F.T. Aydın. "Bicomplex Fibonacci quaternions." Chaos Solitons and Fractals, vol. 106, pp. 147-153, 2018.
[21]. S. Halıcı, Ş. Çürük. "On bicomplex numbers with coefficients from the complex Fibonacci sequence." Notes on Number Theory and Discrete Mathematics, vol. 25, no. 3, pp. 126-137, 2019.
[22]. S. Halıc1. On Bicomplex Fibonacci Numbers and Their Generalization. Models and Theories in Social Systems, Studies in Systems, Decision and Control, Vol. 179, pp.509-524, Springer Cham, 2019.
[23]. A.A. Pogorui, R.M. Rodrigez-Dagnino, R.D. Rodrigez-Said. "On the set of zeros of bihyperbolic polynomials." Complex Variables and Elliptic Equations, vol. 53, no. 7, pp. 685-690, 2008.
[24]. M. Bilgin, S. Ersoy. "Algebraic properties of bihyperbolic numbers." Advances in Applied Clifford Algebras, vol. 30, no. 13, pp. 1-17, 2020.
[25]. N. Gürses, N., G.Y. Şentürk, S. Yüce. "A Study on Dual-Generalized Complex and Hyperbolic Generalized Complex Numbers." Gazi University Journal of Science, vol. 34, no. 1, pp. 180-194, 2021.
[26]. D. Brod, A. Syznal-Liana, I. Wloch. "On Some Combinatorial Properties of Bihyperbolic Numbers of the Fibonacci Type." Mathematical Methods in the Applied Sciences, vol. 44, no. 6, pp. 4607-4615, 2021.
[27]. A.F. Horadam. "A generalized Fibonacci sequence." The American Mathematical Monthly, vol. 68, pp. 455-459, 1961.
[28]. S. Vajda. Fibonacci and Lucas Numbers and The Golden Section. England: Ellis Horwood Limited Publ., 1989.
[29]. R.A.Dunlap. The Golden Ratio and Fibonacci Numbers. NewJersey, London, Singapore, HongKong: World Scientific Pub. Co. Pte. Ltd., 1997.
[30]. E.W. Weisstein. "Fibonacci Number", MathWorld, Internet:http://mathworld.wolfram.com/Fibonacci Number.html.
[31]. D. Knuth. "Negafibonacci Numbers and Hyperbolic Plane". The Annual Meeting of the Math. Association of America, Fairmonth Hotel, San Jose, 2008.
[32]. T. Koshy. Fibonacci and Lucas Numbers with Applications. USA: A Wiley-Intersience Publication, 2001.
[33]. F. Köken, D. Bozkurt. "On Lucas numbers by the matrix method." Hacettepe Journal of Mathematics and Statistics vol. 39, no. 4, pp. 471-475, 2010.

[^0]: * Corresponding author.

