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Abstract 

Progressed video quality assessment (VQA) methods aim to evaluate the perceptual quality of videos in many 

applications but often prompt to increase computational complexity. Problems derive from the complexity of the 

distorted videos that are of significant concern in the communication industry, as well as the spatial-temporal 

content of the two-fold (spatial and temporal) distortion. Therefore, the findings of the study indicate that the 

information in the spatiotemporal slice (STS) images are useful in measuring video distortion. This paper 

mainly focuses on developing on a full reference video quality assessment algorithm estimator that integrates 

several features of spatiotemporal slices (STSS) of frames to form a high-performance video quality. This 

research work aims to evaluate video quality by utilizing several VQA databases by the following steps: (1) we 

first arrange the reference and test video sequences into a spatiotemporal slice representation. A collection of 

spatiotemporal feature maps were computed on each reference-test video. These response features are then 

processed by using a Structural Similarity (SSIM) to form a local frame quality.  (2) To further enhance the 

quality assessment, we combine the spatial feature maps with the spatiotemporal feature maps and propose the 

VQA model, named multiple map similarity feature deviation (MMSFD-STS). (3) We apply a sequential 

pooling strategy to assemble the quality indices of frames in the video quality scoring. (4) Extensive evaluations 

on video quality databases show that the proposed VQA algorithm achieves better/competitive performance as 

compared with other state- of- the- art methods. 
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1. Introduction 

The rapid distribution of advanced visual information being transmitted globally through communication 

devices and social networks has gain advantages due to its capabilities. Consequently, millions of videos are 

uploaded to these devices each day. However, with a large number of the advanced information transmitted to 

different end-users, the nature of the video quality must be the fundamental concern. Moreover, during the 

purchase, transmission, compression, and reproduction processes, videos experience various distortions, and the 

problem of video quality turns into a focal concern. Different from many signal-handling applications, the 

recipient of video signals is assumed to be human. Thus video quality algorithms must endeavor to assess the 

perceptual quality of videos in a manner that is consistent with human judgment. Powerful and efficient 

objective video quality assessment (VQA) methods are profoundly attractive in current visual communication 

frameworks for the execution of quality control assessment and classification purposes. Straightforward VQA 

algorithms might produce direct augments of image quality assessment (IQA) approaches on frame-by-frame 

bases but often lead to poor performance.  Some of the approaches that go beyond frame-level processing will 

be reviewed further in related work. There are two methods to measure video quality. The first method is 

through subjective evaluation, which takes many subjects to give mean opinion scores (MOS) or difference 

mean opinion scores (DMOS) for each test video. Because of human involvement, the subjective test becomes 

impractical and cumbersome for many VQA applications and also consumes time, costs, and labor. The other 

method is to use the objective VQA algorithms which is more effective and efficient. The objective method has 

three categories. The full reference (FR) algorithms operate by measuring the difference between the distorted 

and the reference video in a way to imitate the human visual system (HVS). Usually, such approaches require 

reference video that for comparison. Reduce reference (RR) algorithm is suitable for some limited situations on 

the bandwidth that predict video quality by using partial reference video information. No reference (NR) 

algorithm assesses the quality without referring to the original high-quality image/video. In this paper, we 

address the task of FR VQA in which a reference video is available to the VQA algorithm. The simplest way for 

VQA is to measure the mean square error (MSE) or peak to signal noise ratio (PSNR) between the reference and 

distorted videos in a frame-by-frame manner. Notwithstanding the simplicity, the PSNR has a weak correlation 

with subjective visual quality. [1-3] The MSE cannot satisfactorily reflect perceptual quality since it does not 

consider the structural information hidden in neighboring pixels. Recent IQA algorithm was successfully used in 

VQA. Although most of the recent VAQ algorithms that depend on a frame-by-frame measurement is effective, 

there is still room to further improve their performances by considering the temporal information of videos in a 

more effective way. Wang and his colleagues [4] were the first to extend the use of structural similarity (SSIM) 

index to VQA through the application of perceptual weights to local regions and whole frames. Subsequently, 

the three-SSIM algorithm [5] further considered the impact of image content. Following the different 

sensitivities of perceptions in human vision, the algorithm divides the contents of video frames into edges, 

textures, and smooth areas. Recently, video parsing applications employ features extracted from a 

spatiotemporal slice (STS). Spatiotemporal MAD (ST-MAD) [6] employs a combination of image frame 

distortion and STS image similarity measures between the reference and distorted videos in the VQA model 

design. Although ST-MAD has excellent performance, the computation complexity is high due to the 

complexity of the MAD model and the HVS-based model. Wang and his colleagues [7] extracted spatial edge 
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features and characteristics of temporal motion from localized space-time regions and used them to represent 

video structures. Notwithstanding some improvement, performance of the VQA model is generally lagging 

behind that of the best IQA models.  To compute video STS image similarity, Peng Yan and his colleagues [8] 

proposed SSTS-GMSD/ STS-GMSD, a simple and efficient VQA framework. As the framework's starting point, 

the motion structural similarity of original and test video STS images is detected using an excellent structural 

similarity algorithm. Because the GMSD algorithm performs well in structural distortion detection, the GMSD 

similarity of STS images is used for video quality evaluation to measure these distortions. Given the high 

performance of STS-based VQA algorithms, they discovered that STS images contain useful information for a 

variety of features. Following a series of experiments to determine the effect of different object motion tracks, 

the VQA model was designed. Based on this studies, we propose an FR-VQA metric called MMSFD-STS that 

produces promising quality prediction accuracy with a simple computational framework. Our method, in 

particular, employs space-time differential change information in the form of spatial gradients and a temporal 

frame map, both of which are stored in the same STS data structure [9, 10]. We create a spatial STS gradient 

magnitude map as well as a temporal STS imaginary map. The gradient is widely used for measuring brightness 

and color variance [11]. It was also used as a successful descriptor in IQA models [12, 13]. Li and his colleagues 

[14] conducted a multi-distorted image quality assessment by combining the image gradient with the statistics of 

local binary pattern (LBP). The gradient of the STS offers comprehensive details on local time-space 

degradation of the video [15,16]. Based on the good performance of the gradient, we calculate the relative 

gradient (RM) map and the gradient orientation (GO) map on the STS along three dimension. In order to 

perform video quality assessment, we calculate the three-dimensional coefficients for each of the reference-

distorted STS map pairs. Such pairs of reference-distorted STS feature maps are then analyzed using SSIM to 

form a quality of the local frame. Since multiple maps are produced containing values that may be distributed 

over different ranges, we therefore apply a sequential pooling strategy to assemble the quality indices of frames 

into the overall video quality.  We make the following contributions as follows. First, we demonstrate that STS 

images alone can predict the perceptual quality of video sequences, which leads to an efficient VQA metric by 

using the MMSFD-STS metric to quantify the discrepancy between the reference and distortion STS images. 

We propose a general framework that transforms video sequence into STS representations of high- performance 

video quality predictor.  A process of subsampling is applied in the STS domain to reduce computational 

complexity, without loss of quality prediction performance. Multiple quality-aware maps are analyzed for the 

STS representations, including gradient magnitude map, relative gradient map, imaginary enhance map, gradient 

orientation maps, and luminance maps in each pixel.  All the adjacent frames are combined to form a group of 

frames (GOF). Finally, we use a sequential pooling approach to assemble the quality indices of the frame into 

one video quality score. The remaining of this paper is structured as follows: Section 2 presents related work; 

Section 3 specifies the method of the proposed VQA; Section 4 presents the experiment setup and result. 

Finally, Section 5 presents the discussion and conclusion. 

2. Related Work 

We introduce some well-known performed (VQA) as follows. First, the National Telecommunications and 

Information Administration (NTIA) [17] developed the Video Quality Metric (VQM) algorithm. The algorithm 

depends on the loss in computing the spatial gradients of the luminance features components and the color 
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impairment of the VQM. The American National Standard Institute (ANSI) and International 

Telecommunications Union Recommendation [18, 19]
 
have adopted VQM as a national standard in the VQEG 

Phase II validation tests. 

Seshadrinathan and his colleagues [20] proposed the Motion-based Video Integrity Evaluation (MOVIE) index. 

In their experiment, the authors propose three MOVIE version: The Spatial MOVIE index, the Temporal 

MOVIE index, and the MOVIE index. Seshadrinathan and his colleagues presented a framework for video 

quality through spatio-temporal quality, temporal quality, and spatial quality measurement and integrated the 

groups of three-dimensional video frames into a Gabor filter bank. They estimate the overall quality by 

combining the spatial and temporal components. In the study [21], the authors suggested that SSIM be tailored 

to VQA ' true motion ' for SS-SSIM, assessing spatial quality and creating an easy temporal metric that would 

lead to a VQA algorithm that could be applied practically in conjunction with SSIM. They combined the 

algorithm of block-based motion evaluation with the SS-SSIM for the evaluation of temporal quality. 

In comparison to an optical flow computation algorithm, these two operations require low computational 

complexity. Besides, they only use neighboring frames on the video rather than using a filter bank that needs 

considerable temporal support. Although the estimated time for temporal vision is about 200–300 milliseconds, 

the scheme will contribute to evaluating instant quality in a real-time scenario without waiting for sufficient 

frames to fill the buffer. The new algorithm, which evaluates structural retention between motion-compensated 

areas in a frame, is known as the motion-compensated structural similarity index (MC-SSIM).  

Reference [22] investigated the nature of spatially localized flickers in pristine digital videos and the potential 

modeling of temporal visual masking of local flicker to improve VQA performance; the paper uses an enhanced 

VQA model by exploiting the psychophysical model of a temporal flicker mask. Specifically, the temporal 

flicker mask model used to expand the well-known MOVIE Index and developed a quantitative model of local 

flicker perception for the use of human subjective studies to more precisely predict Svideo quality. Flicker's 

influence on VQA also examined in terms of the compression bitrate, object motion, and temporal subsampling. 

These steps significantly improve the VQA models by taking into account the effects of temporary visual 

masking on flickering distortions in a perceptual manner by developing a MOVIE in the temporal dimensions 

associated with flickering. However, the method uses a spatiotemporal Gabor filter bank to compute bandpass 

filter responses on reference and distorted videos. Yan and his colleagues [8] decompose the video into several 

units and extract features from the spatiotemporal slice. Inspired by SSIM, the authors compute the gradient 

magnitude similarity (GMS) from the spatial-temporal slice and make use of GMSD to achieve the quality index 

in all directions. They make use of the temporal response to propose FR-VQA metric, name as STS-GMSD. To 

determine the influence of spatial information, the authors added the spatial part of GMSD and lead to another 

VQA metric, named SSTS-GMS. Although it does not improve performance, instead it reduces the linearity 

between the predicted score and the subjective score. Besides, the best performance on the LIVE database was 

V-Slice images that contain more information of motion than the H-Slice images; here, we show that the 

combination of all the slices can be employed to develop the high performance of VQA metric. In [23], the 

authors introduce a Model approach to VQA and decompose the video into spatiotemporal features using a 3D 

gradient that integrate both spatial and temporal slice information to measure video quality. Then for each group 
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of frames (GOF), a three-dimensional gradient masking is employed to obtain each pixel in all directions. Based 

on the index, the authors combined the spatiotemporal gradient differencing GSDST between the reference and 

the distorted video block using the gradient in all directions. The authors believe that using a machine learning 

strategy can improve performance quality. 

FR-VQA matrix is achieved by efficiently using the FR-IQA frame by frame method, and the results are 

weighted into one video index. These per-frame quality estimates can also be broken down over time to 

calculate an overall video quality assessment. Nevertheless, this basic line technique lacks temporal information 

and is not well correlated with the quality perceived by human observers. There are some well-known and 

useful FR-IQA metrics, including GSSIM [24], SSIM [2], MS-SSIM [25], VSNR [26], MAD [27], and VIF 

[28], some of which have been used in VQA model design. We will introduce briefly some state-of-the-art FR-

VQA algorithms that will be used as competitors in this paper to compare with the proposed method. 

Wang and his colleagues [29] proposed the video structural similarity (VSSIM) index with different SSIM 

indices at three levels. At the local region level, the SSIM index of each region is processed for luminance and 

chrominance components, with the luminance component being weighted higher. Finally, the SSIM frame 

weighted by global motion at the sequence level provides an estimate of the quality of the video. Reference [30] 

proposed an algorithm called the STS-Based Motion Structure Similarity (STS-MSPS) and found that STS 

images mainly have two areas of motion structure; the complex motion area, and the simple motion area. In 

their study, they have thus developed a motion structure partition based on the FR-VQA method for STS images 

and attempted to detect their influence in VQA. Information that originates from the structure's changes is used 

to measure the quality of the video. The GMSD algorithm is an excellent perceptual FR-IQA method, among 

other algorithms, to quantize the motion structure distortion. The authors tested the GMSD algorithm in the 

LIVE VQA database. The results show that the GMSD algorithm is the best algorithm for detecting structural 

similarity in STS images. Therefore, the GMSD algorithm is used to compute the motion structure partition 

similarity of STS images. 

Once GMSD has been chosen to detect distortion of motion structure in STS images, the two different regions 

(simple and complex areas of motion structure) of STS images on VQA are further studied. Study results show 

that the complex motion areas have a significant more impact on VQA than the simple motion areas, which 

indicate that the HVS is more sensitive to distortion in the complex motion areas. Freita and his colleagues [31]. 

Use separate set features to calculate independently of each other, each set is concatenated to generate a vector 

feature. The feature vector is used as an input to predict the quality score in a random forest regression (RFR). 

Although the proposed approach outperforms state-of-the-art video quality metrics for data sets and distortion 

types, fails to do the best for the other metrics on the data sets. The ViS3 [32] video quality assessment 

algorithm uses STS images on a large timescale.  Besides, the HVS model captures distortion in STS images. 

The ViS3 becomes more complicated as the design model is composed of the MAD and HVS models. 

Based on the above discussion, we then concluded that the STS images are an accurate prediction for perceptual 

quality of video and then contribute to an efficient VQA algorithm by combining multiple map techniques to 

best represent VQA prediction model, such as gradient magnitude map, relative gradient map, imaginary 
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enhance map, gradient orientation maps, and luminance maps in each pixel. The details will be addressed in the 

next section. 

3. VQA Method Proposed 

In this paper, we propose a general framework for video quality assessment which is based on analyzing 

multiple feature maps of spatiotemporal slices. The proposed model of the block diagram is shown in Fig 1.The 

reference and the distorted video are processed into STS representation. Further processes are performed in the 

STS representations to produce an imaginary Gabor enhance map, a gradient magnitude map, a relative gradient 

map (RM),  a gradient orientation (GO) map, and a Luminance map. These feature maps are well defined and 

yield several outputs that are pooled using statistical based strategy to produce the final video quality score 

 

Figure 1:  Block diagram of the proposed method. 

3.1   Spatiotemporal slice images 

We follow the method in [33] to produce images that contain spatiotemporal information. A video can display 

three variables F (x, y, and t). As shown in Figure.2 (a), the extracted slices are only standard video images 

when the video sliced perpendicularly to t dimensions.  However, the slices of the video can also extract images 

containing spatiotemporal information perpendicular to the other two spatial dimensions. The new slices are 

called STS images. Figure.1 (b), shows the extracted slices of STS images taken from the perpendicular to the x-
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dimensions and are referred to as the vertical STS images (V-STS).The extracted STS images were also taken 

perpendicular to the y dimension as shown in Figure.1(c) and is called horizontal STS images (H-STS). 

 

Figure 2:  The slice images are seen in different dimensions of the video. (a) Standard video frames. (b) 

Vertical STS images. (c) Horizontal images of the STS. 

4.  Similarity Feature maps 

Features developed from STS responses have been widely used in many applications of computer vision and 

image/video processing [34]. The most common distortion are structure effect with different orientations and 

scale, sudden changes in texture, contrast and lighting, all of which can affect the appearance of STS. To this 

end, we use much simpler method, which employs the SSIM index to measure various type of luminance 

distortions in X, Y, and T direction. The feature similarity measurement will be conducted by comparing the 

luminance maps Lr(x, y) and Ld (x, y) to formulate luminance similarity maps SL(x, y). 

A 2D Gabor filter can be described as a 2D Gaussian kernel function, modulated by a direction-oriented 

complex sinusoidal plane wave. The Gabor filter can be expressed as a set of two 2D filters—one involves the 

cosine term (i.e., generating the Gabor’s real part, equivalently), and the other involves the sine term (i.e., the 

Gabor’s imaginary part), respectively, as follows 

 
 

2 2

Re 2
[ , ] cos 2 ( cos sin )

2

i j
G i j f i j  




                                                                                (1) 

 
  

2 2

Im 2
[ , ] sin 2 cos sin

2

i j
G i j f i j  




                                                                               (2) 

The parameters j and i determine the directions of the Gabor kennel. The filter response is determined by the 
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Gaussian spread parameter and the radial frequency f of the sinusoid modulator. The orientation  is chosen to 

create a set of Gabor filter. The Gabor filter, however, has a limitation on its bandwidth selection: when the 

bandwidth is set to a value that is larger than 1 octave, its DC response becomes non-negligible. To overcome 

the bandwidth limitation of the Gabor filter as mentioned above, we set the bandwidth to 0.5 and 1 octave 

respectively and chose the best result for this paper. 

Since the HVS is highly sensitive to the edge information (e.g., [35, 36, 37]), this motivates us to exploit the 

imaginary part Gabor filter (i.e., GIm [i, j]) to convolve with the luminance component of the reference and the 

distorted counterpart along each direction 

ImHH L G                                                                                                                                                  (3) 

ImVV L G                                                                                                                                                    (4) 

ImTT L G                                                                                                                                                     (5) 

Where the symbol "⨂" denotes the convolution operation; hh  and vh  denotes the prewitt filters along the 

horizontal and vertical directions. Using the representation of (1) and (2), the magnitudes of the reference image 

r and the distorted image d, denoted by mr and md along with the STS images, are computed as follows: 

   
2 2

Re Im[ , ] [ , ]r r r
m G i j G i j                                                                                                                 (6) 

   
2 2

Re Im[ , ] [ , ]d d d
m G i j G i j                                                                                                                 (7) 

The gradient is an effective feature to capture shifts in structure, contrast changes and textural changes [38] that 

may arise from distortion. Here, we use the real and imaginary parts of the Gabor filter response coefficient to 

calculate two simple gradient-based metrics [12]: the relative gradient magnitude (RM) and the gradient 

orientation (GO) to capture local and global variations of the STS. Specifically, RM and GO are defined as 

follows: 

   
2 2

Re Im: ( ) ( ) ( ) ( ) ( )t t t t t

RM GRA GRAt direction I i I i I i I i I i                                                              (8) 

   
2 2

Re: ( ) ( ) ( ) ( ) ( )h h h h h

RM GRA GRA Imh direction I i I i I i I i I i                                                                     

(9) 

   
2 2

Re Im: ( ) ( ) ( ) ( ) ( )v v v v v

RM GRA GRAv direction I i I i I i I i I i                                                                   
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(10) 

1 Re

Im

( )
  ( ) tan

( )
GO

I i
I i

I i

  
  

 
                                                                                                                                          

(11) 

Where
Re / ( )t

mI I i ,
Re / ( )h

mI I i , and / ( )
m

v

R mI I i indicate the real/imaginary part of the Gabor filter response 

along the horizontal, vertical, and temporal direction, respectively. 

We utilize GIm maps, RM maps, GO maps, GM map, and Luminance maps to enhance the STS content 

representation at all directions. These, together with the original STS and its complemented spatial-temporal 

representation, constitute the map pairs (reference and distorted) that are used to compute the multiple map 

similarity feature (MMSF) at all three dimensions. As indicated below, we obtain the MMSF of each pixel in the 

x, y, and t directions of the response maps mentioned above. r denotes the group of frames from the reference 

video and d denotes the distorted video.  As in SSIM [25], we calculate the multiple map similarity features as 

follows: 

2 2

2 r d

r d

MMSF
c

m m c

m m


 


                                                                                                                                        

(12) 

where rm and dm  are the reference maps and distorted maps in , ,x y and t  response, c represents a positive 

constant providing numerical stability. If rm and dm  are identical, the map will reach the maximum value of 1. 

The brighter the gray level, the greater the similarity, and thus the higher local quality predicted by MMSF. 

The MMSF is used to represent the distinction between STS images and to measure the video distortion 

severity. The outputs of T-STS, V-STS, and H-STS were combined to form the final video quality index of 

MMSF-STS. 

4.1 Spatiotemporal multiple map similarity feature Deviation 

As discussed above, there are three elements to predict the video quality (1) Spatial quality map, (2) H-STS 

quality map, and (3) V-STS quality map. Based on this assumption, we combine all the responses in the three 

elements respectively, and compute the multiple map similarity features of spatiotemporal slices MMSF-STS 

between the reference and distorted videos in x, y, and t directions as shown below; 

_MMSF STS  = 
2 2

1

1

2
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m
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C
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(13) 
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where α, β, and γ are local quality indices of weights of x, y, and t. Here we set α, β, and γ parameters to be 1. 

To determine the average value of the first 10 percent, we sort the _MMSF STS  values for each dimension 

in descending order and compute the average value of the first 10 percent. This process is called average 

percentile[39,40] and is usually applied to clarify the interpretation of scores on standardized tests. After 

obtaining the _MMSF STS  score, we calculate the quality score and denote the percentile average by 

PAR%, along the dimension as: 

_ 10%( _ )MMSF STS PAR MMSF STS                                                                                                   

(14) 

1

(
1

_ _ )
n

i

MMSF STS GMSF STS i
n 

                                                                                                          

(15) 

where n is the total number of pixels in one video frame. A higher score provides better video quality. Average 

pooling assumes that in estimating the image quality, each pixel has the same perceptional quality value. 

However, as the general perception of how local quality degradation differs may differ in distinct regions, we 

use the standard deviation of MMSF-STS as the final quality index which is given by; 

_MMSFD STS  =  
1

22

1 1

1
_ _( )

n

MMSF STS MMSF STSi
n 

 
 

 
                                                         

(17) 

This outcome shows that the higher the MMSFD_STS score, the lower the perceptual image quality if distortion 

is negligible, the MMSFD_STS value will be 0.   Fig 3 shows the framework of proposed multiple map 

similarity feature deviation (MMSFD-STS) for spatiotemporal slice model 
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Figure 3: The framework of the proposed multiple map similarity feature deviation (MMSFD-STS) for 

spatiotemporal slice model. 

5. Experiment and Results 

In this section, we demonstrate the performance of our proposed method on two publicly available video 

databases. The first database is the LIVE VQA quality assessment database [41, 42] from TEXAS.  The second 

database is Ecole Polytechnique Frale de Laussane (EPFL) and Politecneco di Milano (PoliMI) database [43, 

44] over many other approaches for video quality prediction. 

5.1 Performance of MMSFD_STS on the VQA Database 

We use the EPFL-PoliMI VQA database and the LIVE VQA database as the test databases to evaluate the 

effectiveness of the proposed MMSFD_STS algorithm. The LIVE VQA database consists of a group of ten 

high-quality reference videos and a set of 150 distorted videos, all of which are YUV format whose spatial 

resolution is 768 432 . The database has four types of distortion, which include compression artifacts due to 

H.264 and MPEG-2, the error introduced due to transmission over IP network and error imported over wireless 

networks. The mean DMOS values and standard deviation of the DMOS results are indexes in the LIVE video 

database. The EPFL VQA database consists of six original CIF spatial resolution video sequences (   

352 288  pixels) and six original 4CIF spatial resolution video sequences ( 704 576  pixels) coded with 

H.264/AVC and corrupted by simulating the packet loss caused by transmission over an error-prone network. 

Twelve corrupted bit streams were created for each original video sequence by dropping packets according to 

the error pattern. Therefore, 156 video sequences were finally scored by 40 subjects. Subjective scores were also 

made available as mean opinion scores (MOS) carried out at the premises of two academic institutions. For our 

experiment, however, only the Y component was used. We compared our algorithm with well-known VQA FR 
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methods, as depicted in Tables 1 and 2. The experiment measured the objective and subjective values of the 

spearman rank order correlation SROCC and the Pearson linear correlation coefficient PLCC. We applied a 

four-parameter logistic transformation to the predicted raw results, as suggested by VQEG [45], before 

calculating any PLCC value. The transformed formula is as follows; 

 1 2'

2

3

4

1 exp

j

J

Q
Q

 







 

 
  

 

                                                                                                                         

(18) 

where JQ indicates the original FR-VQA objective score, 
'

jQ is the expected video test subjective value for j 

and the parameters 1 , 2 , 3  and 4 are chosen as the free best fit subjective score to predict the overall 

subjective results. Our proposed method (MMSFD-STS) was compared with the conventional metrics (PSNR, 

SSIM, V-VIF, MS-SSIM, VSNR, MOVIE, VQM, and ST-MAD). Note that the origin of PSNR, VSNR, and 

MS-SSIM are derived from the IQA metrics and later extended by applying them on a frame-by-frame basis 

using the LIVE video database and average the scores for every frame. The MMSFD_STS algorithm 

comparison is presented in Table 1 in the LIVE database using SROCC. The PLCC comparison appears in 

Table 2. As shown in Tables 1 and 2, ST-MAD is the highest for distortion of H.262 and distortion of MPEG-2 

in terms of SROCC and LCC. SSTS-GMSD is the highest for IP distortion in terms of LCC. Except for that, our 

MMSFD_STS method achieves the best performance for all. MMSFD-STS is the highest for MPEG-2 

distortion, wireless, and IP distortion in terms of LCC and SROCC. Above all, our method emerged the highest 

performance in terms of ALL Data for SROCC and LCC, respectively. Besides, our method is simple compared 

to the traditional metric. To further probe the results of our proposed method, a scatter plot of the predicted 

scores versus the subjective DMOS scores by the four VQA metrics which can achieve good results is presented 

in Figure 4. As observed in the plots, the proposed method tested on both the LIVE database and the EPFL-

PoLiMi database shows a better relationship between the metric and the subjective quality. 

Table1: Comparison of LIVE database results by SROCC. 

VQA Wireless IP H.264 MPEG-2 ALL Data 

SSIM 0.5233 0.4559 0.6514 0.5545 0.5257 

MS-SSIM 0.7289 0.6534 0.7313 0.6684 0.736 

V-VIF 0.5507 0.4736 0.6807 0.6116 0.571 

VSNR 0.7019 0.6894 0.6460 0.5915 0.6755 

PSNR 0.6574 0.4167 0.4585 0.3862 0.5397 

VQM 0.7214 0.6383 0.6520 0.7810 0.7026 

MOVIE 0.8109 0.7157 0.7664 0.7733 0.7890 

ST-MAD 0.8099 0.7758 0.9021 0.8461 0.8251 

SSTS-GMSD 0.8116 0.7855 0.7917 0.8151 0.8383 

ViS3 0.8372 0.7885 0.7685 0.7362 0.8168 

MMSFD_STS 0.8476 0.7992 0.7886 0.8314 0.8432 
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Table 2: Comparison of LIVE database results by LCC. 

VQA Wireless IP H.264 MPEG-2 ALL Data 

SSIM 0.5401 0.5119 0.6656 0.5491 0.5444 

MS-SSIM 0.7170 0.7219 0.6919 0.6415 0.5756 

V-VIF 0.5488 0.5102 0.6911 0.6415 0.5756 

VSNR 0.6992 0.7341 0.6216 0.5980 0.6896 

PSNR 0.6690 0.4645 0.5492 0.3891 0.5621 

VQM 0.7324 0.6480 0.6459 0.7860 0.7236 

MOVIE 0.8386 0.7622 0.7902 0.7595 0.8116 

ST-MAD 0.8591 0.8065 0.9155 0.8560 0.8332 

SSTS-GMSD 0.8403 0.8267 0.8166 0.8218 0.8416 

ViS3 0.8473 0.8164 0.7890 0.7510 0.8263 

MMSFD_STS 0.8596 0.7684 0.7890 0.8273 0.8499 

Table3: Performance comparison on EPFL-PoliMl video database. 

 

 

 

 

 

 

 SROCC  PLCC 

Algorithm EPFL PoliMl EPFL       PoliMl 

VSi3 

ST-MAD 

MMSFD_STS 

SSTS-GMSD 

0.9023 

0.9075 

0.9665 

0.9419 

0.8731 

0.9465 

0.9584 

0.9476 

0.9214       0.8570 

0.9017        0.9489 

0.9588      0.9680 

0.9547      0.9545 
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Figure 4: The scatter plots of the objective VQA scores versus DMOS for all videos in the LIVE video quality 

database and EPFL-PoliMi video quality database. (a) Proposed method tested on the EPFL database, (b) 

Proposed method tested on the PoliMl database. (c) Proposed method tested on LIVE database. (d) ViS3 method 

tested on LIVE database. (e) ST-MAD method tested on LIVE database. (f) SSTS-GMSD method tested on 

LIVE database. 

5.3. Performance of MMSFD_STS on the EPFL-PoliMi video database 

Tables 3 show MMSFD_STS performance in the EPFL-PoLiMi database. The EPFL-PoLiMi database provides 

subjective outcomes from two academic institutions; we separate our experiment using the mean opinion value 

(MOS) of both academic institutions. In that study, we conducted a more intensive EPFL-PoLiMi VQA 

database experiment and then validated the effectiveness of MMSFD_STS with SSTS-GMSD, ViS3 and ST-

MAD algorithms, as these state-of- the- art FR-VQA model provide results comparable to the proposed metric 

in terms of the correlation scores shown in Tables 3. These study indicate that MMSFD_STS is the best-

performing algorithm in terms of SROCC and LCC. Since the MOS of the two academic institutions is slightly 

different, the SROCC and LCC fluctuate slightly. We, therefore, claim that our multiple map response well to 

smaller and higher size video database resolution. The score on the SROCC and LCC demonstrates that the 

correlation of spatiotemporal features of our method is an effective way to predict video quality.  

We demonstrated that MMSFD-STS3 performs well in predicting video quality by testing it on various video-
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quality databases. It not only excels at VQA for entire databases with varying types and levels of distortion, but 

it also performs well on videos with a specific type of distortion. Our performance evaluation shows that 

MMSFD-STS3 outperforms or is statistically tied with current state-of-the-art VQA algorithms. Our analysis 

also reveals that MMSFD-STS outperforms ST-MAD, ViS3, and SSTS-GMSD in predicting the quality of 

videos from specific databases. 

5.4. Running Time 

We examine the proposed algorithm running time and compare it with the existing algorithms. We selected 

tr16_25fps.yuv from both the reference and distorted videos in the LIVE database. All the algorithms were 

performed on Dell computer with an Intel(R) i5-8500 CPU@3.00GHz, 8.00 GB RAM, 64-bit Microsoft 

window 10, and 2019 MATLAB software. The video to be tested consist of 216 frames with 432 768  

resolution. All MATLAB source code were downloaded from the author's website. As shown in Table 4, our 

proposed algorithm has the fastest running time than other competitive algorithms. 

Table 4: Runtime comparison of the STS-based VQA algorithms. 

VQA algorithms Running time (s) Ratio to MMSFD-STS 

ST-MAD 399.45 2.22 

ViS3 

SSTS-GMSD 

342.05 

270.60 

1.90 

1.51 

MMSFD-STS 179.84 1 

5.5. Discussion 

As shown in the LIVE VQA database, our proposed algorithm (MMSFD_STS) shows a strong relationship with 

human perception of video than most of the algorithms studied in other papers. The performance of the 

MMSFD_STS indicates that by analyzing the dissimilarities of STS images, temporal video distortion can be 

well captured. In both video databases, we found that the object background has more horizontal and vertical 

motion. The MMSFD-STS perform well in predicting video quality when combining all the directional features. 

It not only excels at VQA for LIVE database, but it also performs well on EPFL-PoliMI video database. 

Performance on the EPFL-PoliMI video database demonstrates the efficacy of the proposed algorithm. The 

values of the parameters α, β, and γ are set to 1, 1, and 1, respectively, and are modified to carry out this 

experiment. In this experiment, three different values of α, β, and γ are used. To conduct our experiment, we 

chose the best performance to perform the experiment. MMSFD_STS shows better predictions on EPFL-PoliMI 

databases than LIVE database. MMSFD showed higher SROCC and LCC than either ST-MAD or ViS3 alone. 

We observe different relative performances depending on the database.  Nonetheless, ST-MAD has the highest 

SROCC and LCC for H.262 distortion and MPEG-2 distortion. SSTS-GMSD, on the other hand, exhibits high 

IP distortion in terms of LCC. The SSTS-GMSD extracts features from videos that are promising for FR-VQA 

model design using gradient magnitude; in this case, we used multiple algorithms to extract the features.  The 

combined features shows the best results as compared with the state of the algorithm including SSTS-GMSD 

model.      
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Although our proposed approach is the best models and the best running time performance compared to other 

state-of-the-art models, it still fails to perform well for some of the distortions in the LIVE database. However, 

in ALL data, our method still performs well. MMSFD-STS, however, is not without limitations. One significant 

limitation is the potentially large memory requirements for long videos. The STS images of a long video may 

necessitate a prohibitively large width or height for the time dimension. One solution in this case would be to 

divide the video into small chunks across time. Another limitation of MMSFD-STS is that it only considers the 

luminance component of the video at the moment. Additional gains may be realized by taking chrominance 

degradations into account. Another potential enhancement would be to use a more accurate pooling model of the 

spatiotemporal responses used in the spatiotemporal dissimilarity stag.  In our future work, we will extend the 

experiment validation on the other video databases. We would also apply our experiment to individual 

directions and compare it to the state of the art. 

6. Conclusion 

In this paper, we studied and proposed a novel computational efficient digital video quality assessment (VQA) 

algorithm named multiple map similarity feature deviation (MMSFD-STS).  The involved procedure of the 

algorithm includes the framework for VQA based on spatiotemporal slices. We developed a framework that can 

capture multiple features in digital video and constructed a MMSFD-STS index. We combined all the features 

and constructed a VQA index. We also demonstrated the ability of the VQA index to predict human opinion 

scores on an extensive database of videos. The performance of several leading objective VQA algorithms was 

evaluated using the results of the study. The proposed algorithm developed as part of this paper has proven to 

perform very well in this study and shown to be competitive with other state-of-the-art methods. 
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