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Abstract 

The space-time fractional Phi-four (PF) equation is measured as a particular case of the familiar Klein-Fock-

Gordon (KFG) model and plentiful quantum effects can be investigated through the PF model’s solutions. In 

this article, the auxiliary equation method (AEM) is employed to attain the traveling wave solutions and in this 

purpose, the complex wave transformation and Maple software are utilized. The constructed wave solutions are 

the form likely, hyperbolic, exponential, rational, and trigonometric functions as well as their integration. The 

physical significance of the obtained solutions for the specific values of the integrated parameters in the course 

of representing graphs and understood the physical phenomena. It is shown that the AEM is powerful, effective 

and simple and provide more general traveling wave solutions to the NLEEs. 
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1. Introduction 

In recent times, nonlinear fractional partial differential equations (NLFPDE) which is initially define in 1695, 

are considered as one of the significant and fundamental branches in physical science [1],  particularly  for  

disclosing  various novel  properties  of  compound  phenomena  in  different  fields  such  as nuclear physics,  

atomic  physics, quantum mechanics, solid-state physics, optical physics and more. Throughout this context, 

several effective nonlinear models have been derived by scholars to investigate the exact solution of FPDEs in 

multiple studies such as the first integral method [2], the auxiliary equation method [3-6], the two variable 

(𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion method [7], the extended tanh-function method [8], the transformed rational function 

method [9], the variational iteration method [10], the finite difference method [11], the Sine-Gordon expansion 

Method [12], the MSE method [13-15], the modified Kudryashov method[16],the Fourier transform method 

[17], the Exp-function method [18], the Modified 𝑒𝑥𝑝(−Ω(𝜉))-expansion function method [19], the test function 

method [20], the (𝐺′ 𝐺⁄ )-expansion method [21-24], the Logarithmic transformation method [25], the fractional 

sub-equation method [26], etc. In this study, we consider the well-known nonlinear space-time fractional Phi-

four (PF) equation [37] such as: 

𝜕2𝛼𝑢(𝑥,𝑡)

𝜕𝑡2𝛼 −
𝜕2𝛼𝑢(𝑥,𝑡)

𝜕𝑥2𝛼 + 𝑢(𝑥, 𝑡) − 𝑢3(𝑥, 𝑡) = 0; 𝑡 > 0,    𝑎𝑛𝑑  0 < 𝛼 ≤ 1.     (1.1) 

Here𝛼is the order of fractional derivative.  In recent years, the nonlinear space-time fractional Phi-four equation 

is handled through a variety of well-organized and powerful methods for developing several solitary traveling 

wave solutions. For example, the approach ofexp(−Φ(𝜉) and the modified Kudryashov[27], the generalized 

Kudryashov method [28],the New extended direct algebraic scheme[29], the Weierstrass elliptic function 

method[30], the Mapping technique[31], the unified technique [32], the modified Simple equation method[33], 

tanh function method[34], etc. are the leading approaches to explore the exact solutions of the Phi-four model. 

Here, our declared approach is efficient and deliver more general closed form traveling wave solutions to the 

fractional NPDEs. As per statistical assessment, there are no fruitful studies found yet on our preferred Phi-four 

equation by the aid of our declared auxiliary equation method to extract traveling wave solutions with the 

conformable derivative.  The main objective of this study is to exact more general close form wave solutions of 

space- time fractional Phi-four equation by applying the auxiliary equation method. We have compare our result 

with the result found from the generalized (𝐺′ 𝐺⁄ )-expansion method. We also have depicted the attained 

solutions by taking the suitable values of parameters and explain the physical important. So, we can claim that 

our proposed study on space-time fractional Phi-four equation with the aid of the auxiliary equation method is 

novel in the sense of conformable derivative. The rest of the article is set in the following: We sketch the 

definition of the conformable derivative in section 2. In section 3, we explain the method briefly. In section 4, 

we extract the traveling wave solutions and compare the results of the attained solitons and finally we discuss 

the conclusions. 

2. The Conformable Fractional Derivative (CFD) 

The conformable fractional derivative (CFD) of order 𝜄 > 0 with respect variable 𝑡is recognized by Khalil and 

his colleagues [35] is defined as follows: 
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Consider a function𝑔: (0, ∞) → ℝ, the conformable fractional derivative of 𝑔 is define as. 

ℒ𝑡
𝜄 𝑔(𝑡) = lim𝜀→0

𝑔(𝑡+𝜀𝑡1−𝜄)−𝑔(𝑡)

𝜀
∀𝑡 > 0 and 𝜄𝜖(0,1]. 

The following theorems pass on to the properties fulfilled by the definition: 

Theorem 1.Let us consider𝜄𝜖(0,1] and 𝑔, 𝑄 are 𝜄-differentiable at a point𝑡. Then the following properties carry: 

 ℒ𝑡
𝜄 (𝑐𝑔 + 𝑑𝑄) = 𝑐ℒ𝑡

𝜄 (𝑔) + 𝑑ℒ𝑡
𝜄 (𝑄) 

 ℒ𝑡
𝜄 (𝑡𝑞) = 𝑞𝑡𝑞−𝜄, ∀𝑞 ∈ ℝ 

 ℒ𝑡
𝜄 (𝜏) = 0, ∀𝑢(𝑡) = 𝜏. 

 ℒ𝑡
𝜄 (𝑄𝑔) = 𝑄ℒ𝑡

𝜄 (𝑔) + 𝑔ℒ𝑡
𝜄 (𝑄) 

 ℒ𝑡
𝜄 (

𝑄

𝑔
) =

𝑔ℒ𝑡
𝜄 (𝑄)−𝑄ℒ𝑡

𝜄 (𝑔)

𝑔2  

 ℒ𝑡
𝜄 𝑄(𝑡) = 𝑡1−𝜄 𝑑𝑄

𝑑𝑡
 wherein 𝑡1−𝜄 indicate a fractional conformable function 

for all 𝑐, 𝑑 ∈ ℝ [35]. 

Conformable differential operator satisfies some important types of stuff like the chain law, Taylor series 

expansion and Laplace transforms [36]. 

Theorem 2.Let𝑄 = 𝑄(𝑡)be a 𝜄 conformable differentiable function and 𝑔 is differentiable in the range of 𝑄.Then 

ℒ𝑡
𝜄 (𝑄𝑜𝑔)(𝑡) = 𝑡1−𝜄𝑔′(𝑡)𝑄′(𝑔(𝑡)). 

3. Method Description 

Let a general FNLDE is as follows: 

𝒟(𝜐, 𝐷𝑡
𝛼𝜐, 𝐷𝑥

𝛽
𝜐, 𝐷𝑦

𝛾
𝜐, 𝐷𝑡

2𝛼𝜐 … ) = 0,        (3.1) 

where 𝜐 = 𝜐(𝑡, 𝑥, 𝑦, 𝑧) is wave function, 𝒟 is a polynomial in𝜐(𝑡, 𝑥, 𝑦, 𝑧) and its partial derivatives. It contains 

the utmost order nonlinear terms and derivatives, the subscripts specify partial derivatives. To find the solution 

of (3.1) using the auxiliary equation method, it holds the following steps: 

Step 1: Consider the traveling wave variable 

𝜐(𝑥, 𝑦, 𝑡) = 𝜐(𝜑); 𝜑 = 𝑚
𝑥𝜅

𝜅
+ 𝑛

𝑦𝜇

𝜇
± 𝑘

𝑡𝜌

𝜌
,       (3.2) 

where 𝑘 is the traveling wave velocity and 𝜌, 𝜅, 𝜇are fractional order derivatives (0 < 𝜌 ≤ 1, 𝜅, 𝜇)  and they may 

be equal or not. Applying the transformation (3.2) into (3.1) which allows us to transform the (3.1) into the 

ordinary differential equation (ODE) as:  
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𝒵(𝜐, 𝜐′, 𝜐′′, … ) = 0,        (3.3) 

where the polynomial 𝒵 contain 𝜐(𝜑) and its different derivatives, wherein 𝜐′(𝜑) =
𝑑𝜐

𝑑𝜑
 . 

Step 2: Here (3.3) can be integrated term by term one or more times.  

Step 3: Suppose that the traveling wave solution of (3.3) can be revealed in the form:  

𝜐(𝜑) = ∑ 𝑐𝑖
𝑁
𝑖=0 𝑎𝑖𝑓(𝜑),          (3.4) 

Where the constants 𝑐𝑖  and 𝑎have to be calculated, Thus 𝑐𝑁 ≠ 0 and 𝑓(𝜑)satisfies the subsequent auxiliary 

equation: 

𝑓′(𝜑) =
1

𝑙𝑛𝑎
{𝑝𝑎−𝑓(𝜑) + 𝑞 + 𝑟𝑎𝑓(𝜑)}.       (3.5) 

The prime locates for derivative with respect to 𝜑 and 𝑝, 𝑞, 𝑟 are real parameters. 

Step 4: The positive integer 𝑁 occurs in (3.4) can be examined by the homogeneous balancing the derivatives of 

highest order and the highest order nonlinear terms arise in (3.3). 

Step 5: Putting (3.4) together with (3.5) into (3.3) and the value of  𝑁  determined in Step 4, we attain 

polynomial in 𝑎𝑖𝑓(𝜑). Taking all the terms of the same power of 𝑎𝑖𝑓(𝜑), where (𝑖 = 1, 2, 3 … ) and equating them 

to zero yields a system of algebraic equations with the values 𝑐𝑖, 𝑝, 𝑞 and 𝑟 and solving the algebraic equations 

give the values of the unknown parameters. As the general solution of (3.5) is known, putting the values of 

𝑐𝑖(𝑖 = 1, 2, 3 … ), 𝑝, 𝑞  and 𝑟 into (3.5), we find out more general types and fresh closed form soliton of the 

fractional NLDE (3.3). 

Step 6: For the different values of 𝑝, 𝑞 and 𝑟 and their relationship, (3.5) provides different types of general 

solutions. 

4. Formulation of the Solutions and Results Discussion 

In this section, we study the space-time fractional Phi-four (PF) equation to estimate several newer and further 

general closed form wave solutions by applying the auxiliary equation method and compare our results with the 

results found from the generalized (𝐺′ 𝐺⁄ )-expansion method. Moreover, we have discussed on the graphical 

depiction and physical clarification for the different natures of attained soliton solutions. 

4.1. Formulation of the solutions to the space-time fractional Phi-four (PF)model 

In this section, we prepare several advance and closed form soliton solutions to the nonlinear space-time 

fractional Phi-four equation. Now we study the well-known nonlinear conformable space-time fractional Phi-

four (PF) model [37] in Eq. (1.1). 
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Consider the travelling wave variable 𝑣(𝜑) = 𝑣(𝑥, 𝑡),  where 𝜑 = 𝑚
𝑥𝛼

𝛼
+ 𝑘

𝑡𝛼

𝛼
then Eq.(1.1) is reduced to an 

ODE as: 

(𝑘2 − 𝑚2)𝑣′′ + 𝑣 − 𝑣3 = 0        (4.1) 

The solutions archived by applying the auxiliary equation method to space-time fractional Phi-four equation are 

given below. Balancing between the uppermost order linear and nonlinear terms appearing in (4.1), gives 

us 𝑁 = 1. Therefore, the solution of (4.1) is: 

𝑣 = 𝑐0 + 𝑐1𝑎𝑓(𝜑).                      (4.2) 

By applying the results of (4.2), (3.5) and (4.1) and connecting the coefficients the powers of 𝑎𝑖𝑓(𝜑) and taking 

zero, we get a set of algebraic equations (for simplicity which are not assembled here) for 𝑐0 , 𝑐1, 𝑝, 𝑞, 𝑟. Solving 

the system of algebraic equations by means of the characteristic computation software Maple, recommend the 

solutions as: 

𝑐0 = ±
𝑞

√𝑞2−4𝑝𝑟
 ,     𝑐1 = ±

2𝑟

√𝑞2−4𝑝𝑟
,     𝑘 = ±√𝑚2 +

2

𝑞2−4𝑝𝑟
.     (4.3) 

Family 1:  When 𝑞2 − 4 𝑝𝑟 < 0 and 𝑟 ≠ 0, we reach the soliton solutions: 

𝑣1(𝑥, 𝑡) = ±𝑖tan (
√4 𝑝𝑟−𝑞2

2
𝜑),        (4.4) 

𝑣2(𝑥, 𝑡) = ∓𝑖cot (
√4 𝑝𝑟−𝑞2

2
𝜑).        (4.5) 

Family 2: When 𝑞2 − 4 𝑝𝑟 > 0 and 𝑟 ≠ 0, the solutions turn into the form: 

𝑣3(𝑥, 𝑡) = ∓tanh (
√𝑞2−4 𝑝𝑟

2
𝜑),         (4.6) 

𝑣4(𝑥, 𝑡) = ∓coth (
√𝑞2−4 𝑝𝑟

2
𝜑).        (4.7) 

Family 3: When 𝑞2 + 4 𝑝2 < 0, 𝑟 ≠ 0 and 𝑟 = −𝑝, we achieved the solutions: 

𝑣5(𝑥, 𝑡) = ±𝑖tan (
√−(𝑞2+4 𝑝2) 

2
𝜑),         (4.8) 

𝑣6(𝑥, 𝑡) = ∓𝑖cot (
√−(𝑞2+4 𝑝2) 

2
𝜑).         (4.9) 

Family 4: When 𝑞2 + 4 𝑝2 > 0, 𝑟 ≠ 0 and 𝑟 = −𝑝, we get the solutions: 
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 𝑣7(𝑥, 𝑡) = ∓tanh (
√(𝑞2+4 𝑝2) 

2
𝜑),        

 (4.10) 

 𝑣8(𝑥, 𝑡) = ∓coth (
√(𝑞2+4 𝑝2) 

2
𝜑).        

 (4.11) 

Family 5: When 𝑞2 − 4 𝑝2 < 0 and 𝑟 = 𝑝, the solutions turn into the form: 

 𝑣9(𝑥, 𝑡) = ±𝑖tan (
√−(𝑞2−4 𝑝2)

2
𝜑),         

 (4.12) 

 𝑣10(𝑥, 𝑡) = ∓𝑖cot (
√−(𝑞2−4 𝑝2)

2
𝜑).         

 (4.13) 

Family 6: When 𝑞2 − 4 𝑝2 > 0 and 𝑟 = 𝑝, our attained the solutions: 

 𝑣11(𝑥, 𝑡) = ∓tanh (
√(𝑞2−4 𝑝2)

2
𝜑),         

 (4.14) 

 𝑣12(𝑥, 𝑡) = ∓coth (
√(𝑞2−4 𝑝2) 

2
𝜑).       

 (4.15) 

Family 7: When 𝑞2 = 4𝑝𝑟,  we found the trivial solution. Therefore, the solution omitted here. 

Family 8: When 𝑟𝑝 < 0, 𝑞 = 0 and 𝑟 ≠ 0, we found: 

 𝑣13(𝑥, 𝑡) = ∓tanh(√−𝑟𝑝𝜑),         

 (4.16) 

 𝑣14(𝑥, 𝑡) = ∓coth(√−𝑟𝑝𝜑).         

 (4.17) 

Family 9: When 𝑞 = 0 and 𝑝 = −𝑟, we achieved the solution: 

 𝑣15(𝑥, 𝑡) = ± (
1+𝑒(−2 𝑟𝜑)

−1+𝑒(−2 𝑟𝜑)).         

 (4.18) 

Family 10: When 𝑝 = 𝑟 = 0, the obtained solution has no physical significance and not written here. 
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Family 11: When 𝑝 = 𝑞 = ℎ and 𝑟 = 0, we attain the soliton solution in the form of trivial solution and the 

solution has no physical significance. Therefore, the solution omitted here. 

Family 12: When 𝑞 = 𝑟 = ℎ and 𝑝 = 0, we get the solution as: 

 𝑣16(𝑥, 𝑡) = ± (
2𝑒ℎ𝜑

1−𝑒ℎ𝜑).        

 (4.19)  

Family 13: When 𝑞 = 𝑝 + 𝑟, we have: 

 𝑣17(𝑥, 𝑡) = ± (
𝑝+𝑟

𝑝−𝑟
−

2𝑟

𝑝−𝑟
(

1−𝑝𝑒(𝑝−𝑟) 𝜑

1−𝑟𝑒(𝑝−𝑟) 𝜑)).      

 (4.20) 

Family 14: When 𝑞 = −(𝑝 + 𝑟), the obtained solution: 

 𝑣18(𝑥, 𝑡) = ± (
−𝑝−𝑟

𝑝−𝑟
+

2𝑟

𝑝−𝑟
(

𝑝−𝑒(𝑝−𝑟) 𝜑

𝑟−𝑒(𝑝−𝑟)𝜑 )).      

 (4.21) 

Family 15: When 𝑝 = 0, we get the solution: 

 𝑣19(𝑥, 𝑡) = ± (
 2𝑟𝑒𝑞𝜑

1−𝑟𝑒𝑞𝜑).        

 (4.22) 

Family 16: When 𝑟 = 𝑞 = 𝑝 ≠ 0, we obtain: 

 𝑣20(𝑥, 𝑡) = ∓𝑖 tan (
√3

2
𝑝𝜑).       

 (4.23) 

Family 17: When 𝑟 = 𝑞 = 0, the soliton solution turns into trivial form which is not shown here. 

Family 18: When 𝑝 = 𝑞 = 0, the obtained solution has no physical significance and not written here. 

Family 19: When 𝑟 = 𝑝 and 𝑞 = 0, the establish solutions: 

 𝑣21(𝑥, 𝑡) = ∓𝑖 tan(𝑝𝜑).        

 (4.24) 

Family 20: When 𝑟 = 0, we found the trivial solution. Therefore, the solution omitted here. 

In the above soliton solutions, 𝜑 = 𝑚
𝑥𝛼

𝛼
+ 𝑘

𝑡𝛼

𝛼
and 𝑘 is the wave velocity and  𝑝, 𝑞, 𝑟, 𝑚 are arbitrary constant. 
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4.2. Graphical depiction and physical significance of the attained solutions 

In this section, the Wolfram Mathematica is used to depict the attained solutions for the distinct values of the 

involved parameters and discuss the physical significance. For simplicity, some figures of the obtained solutions 

are exposed here and some are skipped which scheduled below: 

We discuss on the graphical depiction and physical explanation for the various natures of obtained soliton 

solutions such as, (4.4), (4.10), (4.13), (4.19) and (4.24) of the considered model in this work for the diverse 

values of all incorporated parameters in suitable interval. But, for minimalism the figures of the remaining other 

obtained solutions are omitted here. The effect of the values of fractional parameter discussed below: 

The outlines of the solution (4.4) for different values of fractional parameter 𝛼are: 

 

Figure 1: 3D and contour plot of (4.4) which is the periodic soliton for 𝑝 = 1.5, 𝑞 = 0.5, 𝑟 = 1.5, 𝑚 = 0.7, 𝛼 =

0.99. 

 

Figure 2: 3D and contour plot of (4.4) which is the periodic soliton for 𝑝 = 𝑟 = 1.5, 𝑞 = 0.5, 𝑚 = 0.7, 

𝛼 = 0.95 

 

Figure 3: 3D and contour plot of (4.4) which is periodic soliton for 𝑝 = 1.5, 𝑞 = 0.5, 𝑟 = 1.5, 𝑚 = 0.7, 𝛼 =

0.85. 

The above figures (Fig.1-Fig.3) for the solution (4.4) it is seen from the analysis that, the shape of the soliton 

(4.4) is multiple periodic (Fig.1-Fig.3) for the value of fractional parameter 𝛼 = 0.99, 𝛼 = 0.95 and 𝛼 = 0.80. 

But, when the value of 𝛼 varies with respect to time, the shape of these 3D figures are changed (see in Fig.1-

Fig.3). 

And the profiles of the solution (4.10) for diverse values of fractional parameter 𝛼 are:  
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`  

Figure 4: Plot of 3D and contour shape of (4.10) which is squeezed bell shape soliton for 𝑝 = 1.5, 𝑞 = 0.5, 𝑟 =

1.5, 𝑚 = 0.7, 𝛼 = 0.99. 

 

Figure 5: Design of 3D and contour plot of (4.10) which is a general soliton for𝑝 = 1.5, 𝑞 = 0.5, 𝑟 = 1.5, 𝑚 =

0.7, 𝛼 = 0.95. 

 

Figure 6: Plot of 3D design and contour shape of (4.10) which is a general soliton for 𝑝 = 1.5, 𝑞 = 0.5, 𝑟 = 1.5,

𝑚 = 0.7, 𝛼 = 0.85. 

Again, the figures (Fig.4-Fig.6) for the solution (4.10) it is seen from the investigation that, the shape of the 

soliton (4.10) is kink shape soliton (Fig.4-Fig.6) for the value of fractional parameter 𝛼 = 0.99 , 𝛼 =

0.95and𝛼 = 0.85. But, when the value of 𝛼 varies with respect to time, the outline of these 3D figures are 

changed (see in Fig.4-Fig.6). 

The outlines of the wave solution (4.13) for different values of fractional parameter 𝜶 are: 

 

Figure 7: Design of 3D and contour plot of (4.13) which is periodic soliton for 𝑝 = −0.5, 𝑞 = 3.5, 𝑟 = 0.5, 𝑚 =

0.4, 𝛼 = 0.99. 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2021) Volume 60, No  4, pp 1-16 

 
10 

 

 

Figure 8:  Plot of 3D and contour shape of (4.13) which is periodic soliton for𝑝 = −0.5, 𝑞 = 3.5, 𝑟 = 0.5, 𝑚 =

0.4, 𝛼 = 0.95. 

 

Figure 9: Plot of 3D and contour shape of (4.13) which is periodic soliton for 𝑝 = −0.5, 𝑞 = 3.5, 𝑟 = 0.5, 𝑚 =

0.4, 𝛼 = 0.90. 

Furthermore, in the above graphical analysis, we draw the 3D plot as, Fig.7, Fig.8, Fig.9 and their contour 

shapes for the value of the fractional parameter 𝛼 = 0.99, 𝛼 = 0.95 and 𝛼 = 0.90 respectively of soliton (4.13). 

In this analysis, we examine that, the nature of figures are changed (see in Fig.7-Fig.9) when the values of 

fractional parameter changed.  

The outlines of the wave solution (4.19) for diverse values of fractional parameter 𝛼 are: 

 

Figure 10: Plot of 3D design and contour shape of (4.19) which is brether type soliton for 𝑝 = 0.0, 𝑞 = 𝑟 = ℎ =

−1, 𝑚 = 2, 𝛼 = .95. 

 

Figure 11: Design of 3D shape and contour plot of (4.19) which kink shape soliton for 𝑝 = 0.0, 𝑞 = 𝑟 = ℎ =

−1, 𝑚 = 2, 𝛼 = .90 
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Figure 12: Plot of 3D design and contour shape of (4.19) which is a breather type soliton for 𝑝 = 0.0, 𝑞 = 𝑟 =

ℎ = −1, 𝑚 = 2, 𝛼 = .80. 

From the above figures (Fig.10-Fig.12) for the solution (4.19) we analysis that, the shape of the soliton (4.19) is 

kink shape soliton (see Fig.10-Fig.12) for the value of fractional parameter 𝛼 = 0.95 , 𝛼 = 0.90 and  𝛼 =

0.80 and the contour shape of this soliton for the similar value is depicted at 𝑡 = 0 (seeFig.10-Fig.12). But, 

when the value of 𝛼varies with respect to time, the shape of these 3D figures are changed (see Fig.10-Fig.12). 

The outlines of the wave solution (4.24) for different values of fractional parameter 𝛼 are: 

 

Figure 13: Design of 3D shape and contour plot of (4.24) which is a periodic soliton for 𝑝 = 𝑟 = 1.1, 𝑚 =

1, 𝛼 = .99. 

 

Figure 14: 3D and contour shape of (4.24) which is a periodic soliton for 𝑞 = 0, 𝑝 = 𝑟 = 1.1, 𝑚 = 1, 𝛼 = .95. 

 

Figure 15: Design of 3D and contour shape of (4.24) which is a general soliton for 𝑞 = 0, 𝑝 = 𝑟 = 1.1, 𝑚 =

1, 𝛼 = .9. 

From the above graphical analysis, we draw the 3D plot as, Fig.13, Fig.14, Fig.15 and their contour shapes for 

the value of the fractional parameter𝛼 = 0.99, 𝛼 = 0.95 and 𝛼 = 0.90 respectively of soliton (4.24). Here, we 

examine that, the nature of figures are changed (see in Fig.13-Fig.15) when the values of fractional parameter 

changed.  

The attained solutions of considered model are might be supportive to exemplify the internal mechanisms of the 
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corporeal phenomena associated with the considered model. All of our obtained solutions involve various 

traveling wave solutions which might be disclose various novel properties of complex incidents in different 

fields such as nuclear physics, plasma physics solid-state physics, optical physics, atomic physics and more. The 

solutions are derived involving to trigonometric, hyperbolic, rational and exponential functions. We also 

observe that, the solutions carry different nature of familiar shapes of soliton. 

4.2. Comparison of the attained solutions 

In this section, we have compared the exact travelling wave solutions of the space-time fractional Phi-four 

model obtained through the auxiliary equation method with those solutions obtained by the generalized (𝐺′ 𝐺⁄ )-

expansion method. It is noteworthy to observe that the obtained solutions are suitable, efficient and further 

general. The established solutions might be useful to analyze the physical significance for the mentioned 

equations. 

Roy and his colleagues [37] examined the space-time fractional Phi-four model and obtained only nine solutions 

(see Appendix A) by applying the generalized (𝐺′ 𝐺⁄ )-expansion method. We detect that some of our obtained 

solutions are identical to the Roy and his colleagues solutions and some are different. In Table 1, we compare 

the solutions examined by the two methods: 

Table 1: comparison of the solutions examined by the two methods. 

Solutions obtained by the generalized (𝑮′ 𝑮⁄ ) -

expansion method 

Solutions obtained by the auxiliary equation method 

1.𝑢1 = ±√
𝜌

𝑄2+4𝑆𝜓
𝑡𝑎𝑛ℎ (

√𝜌

2𝜓
𝜉) 

1.  If 𝜌 = −𝑄2 − 4𝑆𝜓 , 𝑞2 − 4 𝑝𝑟 =
𝜌

𝜓2 , 𝜉 = 𝜑 , then 

𝑣3 = ±√
𝜌

𝑄2+4𝑆𝜓
𝑡𝑎𝑛ℎ (

√𝜌

2𝜓
𝜉) 

2. 𝑢2 = ±√
𝜌

𝑄2+4𝑆𝜓
𝑐𝑜𝑡ℎ (

√𝜌

2𝜓
𝜉) 

2.  If 𝜌 = −𝑄2 − 4𝑆𝜓 , 𝑞2 − 4 𝑝𝑟 =
𝜌

𝜓2 , 𝜉 = 𝜑 , 

then 𝑣4 = ±√
𝜌

𝑄2+4𝑆𝜓
𝑐𝑜𝑡ℎ (

√𝜌

2𝜓
𝜉) 

3. 𝑢3 = ∓𝑖√
𝜌

𝑄2+4𝑆𝜓
𝑡𝑎𝑛 (

√−𝜌

2𝜓
𝜉) 

3. If 𝜌 = −𝑄2 − 4𝑆𝜓, 𝑞2 − 4 𝑝𝑟 =
𝜌

𝜓2 , 𝜉 = 𝜑 ,then  𝑣1 =

∓𝑖√
𝜌

𝑄2+4𝑆𝜓
𝑡𝑎𝑛 (

√−𝜌

2𝜓
𝜉) 

4.𝑢4 = ±𝑖√
𝜌

𝑄2+4𝑆𝜓
𝑐𝑜𝑡 (

√−𝜌

2𝜓
𝜉) 

4. If 𝜌 = −𝑄2 − 4𝑆𝜓, 𝑞2 − 4 𝑝𝑟 =
𝜌

𝜓2 , 𝜉 = 𝜑 ,then  𝑣2 =

∓𝑖√
𝜌

𝑄2+4𝑆𝜓
𝑐𝑜𝑡 (

√−𝜌

2𝜓
𝜉) 

5. 𝑢6 = ±
1

√𝑄2+4Δ
{−𝑄 + 2√Δ𝑡𝑎𝑛ℎ (

√Δ

𝜓
𝜉)} 5. If 𝑄 = 0, √∆= −

1

2
, 𝜓2 = 𝑞2 − 4 𝑝2, 𝜉 = 𝜑 , 

then 𝑣11 = ±
1

√𝑄2+4Δ
{−𝑄 + 2√Δ 𝑡𝑎𝑛ℎ (

√Δ

𝜓
𝜉)} 

6. 𝑢7 = ±
1

√𝑄2+4Δ
{−𝑄 + 2√Δ𝑐𝑜𝑡ℎ (

√Δ

𝜓
𝜉)} 6. If 𝑄 = 0, √∆= −

1

2
, 𝜓2 = 𝑞2 − 4 𝑝2, 𝜉 = 𝜑 , 

then 𝑣12 = ±
1

√𝑄2+4Δ
{−𝑄 + 2√Δ 𝑐𝑜𝑡ℎ (

√Δ

𝜓
𝜉)} 

7.𝑢8 = ±
1

√𝑄2+4Δ
{−𝑄 − 2𝑖√Δ𝑡𝑎𝑛 (

√−Δ

𝜓
𝜉)} 7. If 𝑄 = 0, √∆= −

1

2
, 𝜓2 = 𝑞2 + 4 𝑝2, 𝜉 = 𝜑, then 𝑣5 =

±
1

√𝑄2+4Δ
{−𝑄 − 2𝑖√Δ 𝑡𝑎𝑛 (

√−Δ

𝜓
𝜉)} 

8. 𝑢9 = ±
1

√𝑄2+4Δ
{−𝑄 + 2𝑖√Δ𝑐𝑜𝑡 (

√−Δ

𝜓
𝜉)} 8. If 𝑄 = 0, √∆= −

1

2
, 𝜓2 = 𝑞2 + 4 𝑝2, 𝜉 = 𝜑, then 𝑣6 =

±
1

√𝑄2+4Δ
{−𝑄 − 2𝑖√Δ 𝑐𝑜𝑡 (

√−Δ

𝜓
𝜉)} 
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By applying auxiliary equation method, we have determined twenty one solutions. In the above table, we have 

noticed that the solutions 𝑢1 − 𝑢4 and 𝑢6 − 𝑢9 obtained by the generalized (𝐺′ 𝐺⁄ )-expansion method and the 

solutions𝑣1 − 𝑣6, 𝑣11and𝑣12obtained by auxiliary equationmethod are identical. Also, the obtained solutions 

𝑣7 − 𝑣10, 𝑣13, 𝑣14, 𝑣20, 𝑣21 by the auxiliary equation method are identical with the solutions 𝑢1 − 𝑢4 and 𝑢6 − 𝑢9 

obtained by the generalized (𝐺′ 𝐺⁄ )-expansion method (for simplicity, these results are not shown in the table). 

The only one solution 𝑢5obtained from the generalized (𝐺′ 𝐺⁄ )-expansion method is not identical with our 

established solutions. In addition of the above table, we have obtained some other valuable 

solutions𝑣15, 𝑣16, 𝑣17, 𝑣18 and𝑣19 which are not found in the Roy and his colleagues solutions. 

Therefore, comparing between the obtained solutions and the solutions obtained by Roy and his colleagues 

solutions, we might conclude that our attained solutions are practically and further general and give many 

solutions than Roy and his colleagues obtained solutions.  

5. Conclusion 

In this article, the enhanced auxiliary equation method (AEM) has successfully utilized and examined broad-

ranging, distinctive, fresh and more general traveling wave solutions to the important space-time fractional Phi-

four (PF) model. The attained further general and new stable wave solutions which are not reported in the 

previous literature and these solutions are ascertained as the combination of exponential functions, hyperbolic 

functions and trigonometric function associated with several free parameters and provides better solutions than 

other method likely, the generalized (𝐺′ 𝐺⁄ )-expansion method. The significance of the solutions established 

with free parameters can be important to explain the tangible phenomena. The devised algorithm is effective and 

can be used to unravel other nonlinear models in mathematical physics and engineering. The employed method 

could be implemented to other kinds of fractional differential systems to investigation the range of stability and 

applicability and this is the apprehension of more research. 

Acknowledgements 

This work is supported by the UGC Research Grant No.: A-1373/5/52/UGC/Science-08-18/19 and the authors 

gratefully acknowledge this support. 

References 

[1]. M. Dalir and M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4(21), 1021-1032, 2010. 

[2]. H. Rezazadeh, J. Manafian, F. S. Khodadad and F. Nazari, Traveling wave solutions for density-

dependent conformable fractional diffusion-reaction equation by the first integral method and the 

improved tan (𝜑(𝜉) 2⁄ )-expansion, Opt. Quan. Elec., 51, 121, 2018. 

[3]. M. A. Akbar, N. H. M. Ali and T. Tanjim, Outset of multiple soliton solutions to the nonlinear 

Schrodinger equation and the coupled Burgers equation, J. Phys. Commu., 3(9), 095013, 2019. 

[4]. H. Rezazadeh, A. Korkmaz, M. Eslami and S. M. M. Alizamini, A large family of optical solutions to 

Kundu-Eckhaus model by a new auxiliary equation method, Opt. Quan. Elec., 51(84), 2019. 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2021) Volume 60, No  4, pp 1-16 

 
14 

 

[5]. M. Al-Amin, M. N. Islam and M. A. Akbar, Adequate wide-ranging closed-form wave solutions to a 

nonlinear biological model, Par. Diff. Equ. App. Math., 2021(4), 100042, 2021. 

[6]. A. Akbulut, M. Kaplan and A. Bekir, Auxiliary equation method for fractional differential equations with 

modified Riemann-Liouville derivative, Int. J. Nonlin. Sci. Numer. Simula., 17(7-8), 413-420, 2016. 

[7]. D. Kumar and G. C. Paul, Solitary and periodic wave solutions to the family of nonlinear conformable 

fractional Boussinesq-like equations, Math. Meth. Appl. Sci., 44(4), 3138-3158, 2021. 

[8]. E. H. M. Zahran and M. M. A. Khater, Modified extended tanh-function method and its applications to 

the Bogoyavlenskii equation, Appl. Math. Model, 40(3), 1769-1775, 2017. 

[9]. W. X. Ma and J. H. Lee,A transformed rational function method and exact solutions to the (3+1) 

dimensional Jimbo-Miwa equation, Chaos. Solit. Fract., 42(3), 1356-1363, 2009. 

[10]. A. Neamaty, B. Agheli and R. Darzi, Variational iteration method and He’s polynomials for time 

fractional partial differential equations, Prog. Frac. Diff. App., l(1), 47-55, 2015. 

[11].  Y. Liu, J. Roberts and Y. Yan, A note on finite difference methods for nonlinear fractional differential 

equations with non-uniform meshes, Int. J. Comput., 95(6-7), 1151-1169, 2017. 

[12].  H. M. Baskonus, H. Bulut and T. A. Sulaiman, New Complex Hyperbolic Structures to the Lonngren-

Wave Equation by Using Sine-Gordon Expansion Method, Appl. Math. Non-lin. Sci., 4(1), 129-138, 

2019. 

[13].  M. N. Islam and M. A. Akbar, Closed form exact solutions to the higher dimensional fractional 

Schrodinger equation via the modified simple equation method, J. Appl. Math. Phys., 6, 90-102, 2018. 

[14].  M. N. Islam, M. Asaduzzaman and M.S. Ali, Exact wave solutions to the simplified modified Camassa-

Holm equation in mathematical physics. AIMS Math., 5(1), 26-41, 2019. 

[15].  O. A. Ilhan, M. N. Islam and M.A. Akbar, Construction of functional closed form wave solutions to the 

ZKBBM equation and the Schrodinger equation, Iranian J. Sci. Tech. Trans. Mech. Eng., 45, 827-840, 

2021. 

[16].  K. Hosseini and R. Ansari, New exact solutions of nonlinear conformable time-fractional Boussinesq-

type equation using the modified Kudryashov method, J. Wav. Ran. Compl. Med., 22(4), 628-636, 

2017. 

[17].  W. X. Ma and L. Zhang, Lump solutions with higher-order rational dispersion relations, Pram. J. Phys., 

94(43), 2020.   

[18].  M. M. El-Borai, W. G. El-Sayed and R. M. Al-Masroub, Exact solutions for time fractional coupled 

Whitham-Broer-Kaup equations via exp-function method, Int. Res. J. Eng. Tech., 2(6), 307-315, 2015. 

[19].  H. M. Baskonus, H. Bulut and A.Atangana, Onthe complex and hyperbolic structures of the 

longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Mater. Struct., 25(3), 

035022, 2016.  

[20].  S. J. Chen, X. Lü and X. F. Tang, Novel evolutionary behaviors of the mixed solutions to a generalized 

Burgers equation with variable coefficients, Commun. Nonlin. Sci. Num. Simul., 95, 105628, 2021. 

[21].  M. N. Islam and M. A. Akbar, New exact wave solutions to the space-time fractional coupled Burger 

equations and the space-time fractional foam drainage equation, Cogent Phys., 5, 1422957, 18, 2018. 

[22].  M. N. Islam and M. A. Akbar, Closed form solutions to the coupled space-time fractional evolution 

equations in mathematical physics through analytical method, J. Mech. Cont. Math. Sci., 13(2), 1-23, 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2021) Volume 60, No  4, pp 1-16 

 
15 

 

2018. 

[23].  M. A. Akbar and N. H. M. Ali, The alternative (G′ G⁄ )-expansion method and its applications to 

nonlinear partial differential equations, Int. J. Phys. Sci., 6(35), 7910-7920, 2014. 

[24].  M. N. Islam and M. A. Akbar, Closed form wave solutions to the time fractional Boussinesq-type and 

the time fractional Zakharov-Kuznetsov equations, J. Nati. Sci. Found. Sri Lanka, 47(2), 149-160, 

2019. 

[25].  W. X. Ma, Y. Zhang and Y. Tang, Symbolic computation of lump solutions to a combined equation 

involving three types of nonlinear terms,  East Asian J. Appl. Math., 10(4), 732-745, 2020. 

[26].  J. F. Alzaidy, The fractional sub-equation method and exact analytical solutions for some nonlinear 

fractional PDEs, British J. Math. Comput. Sci., 3, 153-163, 2013. 

[27].  G. Akram, F. Batool and A. Riaz, Two reliable techniques for the analytical study of conformable time-

fractional Phi-4 equation, Opt. Quant. Electron., 50, 22, 2018. 

[28].  F. Mahmud, M. Samsuzzoha and M. A. Akbar, The generalized Kudryashov method to obtain exact 

traveling wave solutions of the PHI-four equation and the Fisher equation, Results Phys., 7, 4296-4302, 

2017. 

[29].  H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh and Q. Zhou, New exact solutions of nonlinear 

conformable time-fractional Phi-4 equation, Chinese J.  Phys., 56(6), 2805-2816, 2018. 

[30].  X. Deng, M. Zhao and X. Li, Travelling wave solutions for a nonlinear variant of the PHI-four 

equation, Math. Comput. Model., 49(3-4), 617-622, 2009. 

[31].  Z. Körpinar, Some analytical solutions by mapping methods for nonlinear conformable time-fractional 

Phi-4 equation, Therm. Sci., 341, 2019. 

[32].  M. A. E. Abdelrahman and H. A. Alkhidhr, Closed-form solutions to the conformable space-time 

fractional simplified MCH equation and time fractional Phi-4 equation, Results Phys., 18, 103294, 

2020. 

[33].  M. Kaplan and A. Bekir, The modified simple equation method for solving some fractional-order 

nonlinear equations, Pramana-J. phys., 87(1), 15, 2016.  

[34].  H. Tariq and G. Akram, New approach for exact solutions of time fractional Cahn-Allen equation and 

time fractional Phi-4 equation, Physica. A., 473(1), 352–362, 2017. 

[35].  R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. 

Comput. Appl. Math., 264, 65-70, 2014. 

[36].  T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279, 57-66, 2015. 

[37].  R. Roy, M. A. Akbar, A. R. Seadawy and D. Baleanu, Search for adequate closed form wave solutions 

to space-time fractional nonlinear equations, Par. Diff. Equ. App. Math., 2021(4), 100025, 2021. 

Appendix-A 

The solutions of Roy and his colleagues [37], investigated the generalized (𝐺′ 𝐺⁄ )-expansion method for the 

space-time fractional Phi-four model are scheduled as follows: 

𝑢1 = ±√
𝜌

𝑄2+4𝑆𝜓
𝑡𝑎𝑛ℎ (

√𝜌

2𝜓
𝜉)                (A.1) 
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𝑢2 = ±√
𝜌

𝑄2+4𝑆𝜓
𝑐𝑜𝑡ℎ (

√𝜌

2𝜓
𝜉)                 (A.2) 

𝑢3 = ∓𝑖√
𝜌

𝑄2+4𝑆𝜓
𝑡𝑎𝑛 (

√−𝜌

2𝜓
𝜉)                  (A.3) 

𝑢4 = ±𝑖√
𝜌

𝑄2+4𝑆𝜓
𝑐𝑜𝑡 (

√−𝜌

2𝜓
𝜉)                   (A.4) 

𝑢5 = ±
2𝜓

√𝑄2+4𝑆𝜓
(

𝐶22

𝐶11+𝐶22𝜉
)                    (A.5) 

𝑢6 = ±
1

√𝑄2+4Δ
{−𝑄 + 2√Δ𝑡𝑎𝑛ℎ (

√Δ

𝜓
𝜉)}                   (A.6) 

𝑢7 = ±
1

√𝑄2+4Δ
{−𝑄 + 2√Δ𝑐𝑜𝑡ℎ (

√Δ

𝜓
𝜉)}      (A.7) 

𝑢8 = ±
1

√𝑄2+4Δ
{−𝑄 − 2𝑖√Δ𝑡𝑎𝑛 (

√−Δ

𝜓
𝜉)}      (A.8) 

𝑢9 = ±
1

√𝑄2+4Δ
{−𝑄 + 2𝑖√Δ𝑐𝑜𝑡 (

√−Δ

𝜓
𝜉)}      (A.9) 


