International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research ISSN 2307-4531 (Print & Online) Published by: LENERS **ISSN 2307-4531** (Print & Online) http://gssrr.org/index.php?journal=JournalOfBasicAndApplied # Sensitivity and Heterozygous Balance of Globalfiler IQCTM PCR Amplification and Verifiler PlusTM Kits Hathaichanoke Boonyarit^{a*}, Nonglak Sinkhan^b, Jakkapong Manaso^c ^{a,b}Institute of Forensic Medicine, Police General Hospital, Royal Thai Police ^cGenePlus Co.,Ltd., Thailand > ^aEmail: hboonyarit@yahoo.com ^bEmail: nurijung1234@gmail.com ^cEmail: jakkapong@gene-plus.com #### **Abstract** The Combined DNA Index System (CODIS) core loci was expanded from the existing 13 to 20 STRs, meaning a new kit will needed for many laboratories. A validation study was performed in accordance with SGWDAM guidelines Scientific Working Group on DNA. This main objective of this study was to measure the sensitivity and the heterozygous allele balance of Globalfiler IQCTM kit and Verifiler PlusTM kit in order to ensure that the kits would produce reliable profile. DNA samples ranging from 4 ng to 0.016 ng were amplified in 25 ul reaction volume to define the sensitivity and heterozygous balance of two systems. The data suggested that the Verifiler PlusTM kit is more sensitive than the Globalfiler IQCTM kit. However, the data of heterozygous balance also show that the Globalfiler IQCTM kit appeared to be more balanced peak heights than the Verifiler PlusTM kit. This performance demonstrated that both amplification kit can produce robust and reliable results in forensic DNA identification. | Keywords: internal quality control system | em; 6-dye multiplex assay; sensitivity; heterozygous balance. | |---|---| | | | ^{*} Corresponding author. #### 1. Introduction Short Tandem Repeat (STR) Typing has proven to be an extremely discriminating method for human identification. A significant discrimination power of DNA typing increased by combining DNA profiling results at several independent STR loci. Many multiplex STR has been developed to deliver enhancing sensitivity for forensic sample which reflected from the expansion of the CODIS core loci to 20 STR [1-2]. The Globalfiler IQCTM PCR amplification kit is a multiplex STR 6-dye assay which co-amplify the 21 polymorphic STR markers D13S317, D7S820, D5S818, CSF1PO, D1S1656, D12S391, D2S441, D10S1248, D18S51, FGA, D21S11, D8S1179, vWA, D16S539, THO1, D3S1358, AMEL, D2S1338, D19S433, DYS391, TPOX, D22S1045, SE33, a Y-specific insertion/deletion locus (Yindel) and an internal quality control (IQC) system. This system consists of two synthetic sequences (74 bp and 435 bp) which can help determine degraded samples or PCR inhibitors. This study aims to compare the new STR kit with the Verifiler PlusTM kit in term of sensitivity and heterozygous balance. The Verifiler PlusTM is six-dye STR multiplex assay and also contains two internal quality controls. This approach was also served to verify the quality of the kit to be helped in routine analysis for a new DNA profiling kit. The information from our study can be used to choose a suitable system for human identification with forensic samples. #### 2. Material and Methods #### 2.1 DNA samples 1224 Genomic DNA (InnoGenomics Technologies) was performed and analyzed with the following inputs: 4, 2, 1, 0.5, 0.25, 0.125, 0.063, 0.031 and 0.016 ng DNA. Quantifiler HP DNA quantificationTM Kit (Thermo Fisher Scientific, Waltham, MA) [3] was used to quantify DNA concentration in triplication. ### 2.2 STR amplification Amplification was performed using the Globalfiler IQCTM Kit (Thermo Fisher Scientific, Waltham, MA) [4] and the Verifiler PlusTM Kit (Thermo Fisher Scientific, Waltham, MA) [5] in 25 µl reaction volumes, 29 amplification cycles following the manufacturer's recommendation. DNA samples were amplified in triplicate for each kit using a ProFlexTM Thermal cycler (Thermo Fisher Scientific, Waltham, MA). # 2.3 Capillary electrophoresis and Data Analysis Amplified PCR products were detected on 3500xl Genetic Analyzer according to the manufacturer protocols using Data Collection Software v4.0. All profiles were analyzed using GeneMapper ID-X 1.6 software [6]. #### 3. Results and Discussion #### 3.1 Sensitivity study Sensitivity test was conducted to determine the lowest amount of input DNA that can be successfully amplified. Full 1224 Genomic DNA has 41 alleles (37 autosomal STR alleles, plus X and Y at Amelogenin, the Y indel, and an 11 allele at DYS391) when amplified using Globalfiler IQCTM kit and 44 alleles (41 autosomal STR alleles, plus X and Y at Amelogenin and the Y indel) when amplified using Verifiler PlusTM kit. Data were collected from triplicated amplification series ranging from 4 ng to 0.016 ng input DNA (Fig 1). Samples were amplified using Globalfiler IQCTM kit (Thermo Fisher Scientific, Waltham, MA) and the Verifiler PlusTM kit (Thermo Fisher Scientific, Waltham, MA) and the Verifiler PlusTM kit (Thermo Fisher Scientific, Waltham, MA), all amplified products were analyzed on the same 3500xL instrument. Full STR profiles were obtained reproducibility at 0.25 ng from both kits. Partial profiles were produced at their analytical threshold with a DNA input of 0.063 ng and 0.031 for each kit respectively. In addition, complete profiles were obtained reproducibility at 0.125 ng input DNA using Globalfiler IQCTM kit and 0.063 ng using Verifiler PlusTM kit (Fig.1). This is concordance with previous studies in the developmental validation of Verifiler PlusTM PCR amplification kit [7-8]. Previous data showed that full STR profiles were obtained from all the samples ranging from 1 ng to 0.063 ng of total DNA input in triplication on 3500xL instrument. The validation of the Globalfiler IQCTM kit has not been published elsewhere, which is the original GlobalFilerTM kit to include the IQC system. The added enhancement of an IQC system is a sensitive indicator that allows for the peak-height ratio of the IQC Large to the IQC Small marker to be used to distinguish between normal reactions. However, previous studies reported that the Globalfiler IQCTM kit and Investigator 24plex QS[®] kit produced full STR profiles with 0.125 ng in comparison to the Powerplex Fusion[®] for DNA input 0.5 ng [9-10]. **Figure 1:** Percentage of reportable alleles detected in sensitivity test of input DNA ranging from 4 ng to 0.016 ng using Global IQCTM kit (GFIQC) and Verifiler Plus TM kit (VFP). The percentage of reportable alleles were showed in Figure 1, Verfiler PlusTM kit showed higher reportable alleles when compared to Globalfiler IQCTM kit with DNA input of 0.016 ng. These data suggested that Verifiler PlusTM PCR Amplification kit was more sensitive than Globalfiler IQCTM Amplification kit at the low level of DNA input. The results from both studies by Jasmine and his colleagues (2019) [11] founded that the Verifiler PlusTM has high sensitivity comparing to the PowerPlex Fusion[®] kit and Investigator[®] 24plex QS kit. Limit of Detection (LOD) and Limit of Quantification (LOQ) were calculated from negative control samples (Table 1). With a maximum LOQ of 80 RFU, the lowest analytical threshold of 200 RFU was set for the sensitivity comparison for both kits. #### 3.2 Peak Height and Peak Height Ratio The peak balance ratio is determined by dividing the peak height of an allele with lower RFU by the peak height of an allele with a higher RFU value. Heterozygous balance allele should be more than 60% according to the recommendations of ENFSI [12] in order to get the true homozygous allele at the low input DNA. Peak height ratio comparison was done with input DNA ranging from 0.016 ng to 4 ng at the lowest analytical threshold 200 RFU. Figure 2 and Figure 3 showed the peak height and peak height ratio at different input DNA when amplified by using Globalfiler IQCTM kit and Verifiler PlusTM kit respectively. These data demonstrated that heterozygous peaks of Globalfiler IQCTM were very well balanced at 0.5 ng input DNA when Verifiler PlusTM were balanced at 1 ng input DNA. Furthermore, 0.125 ng input DNA, peak height ratio decreased from 99% to 46% with Globalfiler IQCTM kit and 99% to 31% with the Verifiler PlusTM kit. In general, the heterozygous balance was decreased when low input DNA. The balance peak is important when analyzed forensic sample mixed stain [13-17]. The locus imbalances may be confused between a single donor profile and a mixed profile. **Table 1:** Limit of quantification value for the Globalfiler IQCTM kit and Veriifiler PlusTM kit. The Limit of quantification was calculated as mean + 10*standard deviation. | Dye channel | LOD | | LOQ | | |-------------|-------|-------|-------|-------| | | GFIQC | VFP | GFIQC | VFP | | Blue | 8.53 | 7.42 | 19.67 | 17.2 | | Green | 14.35 | 9.63 | 31.51 | 21.74 | | Yellow | 8.52 | 7.15 | 19.23 | 16.61 | | Red | 11.34 | 10.96 | 24.91 | 24.32 | | Purple | 12.12 | 11.57 | 26.57 | 25.91 | | Orange | 9.6 | 28.16 | 22.63 | 80.35 | **Figure 2:** Heterozygous Peak Height and Peak Height Ratio for replicated in the DNA dilution series using Globalfiler IQCTM kit. **Figure 3:** Heterozygous Peak Height and Peak Height Ratio for replicated in the DNA dilution series using Verifiler PlusTM kit. #### 4. Conclusion This study is the first evaluate the sensitivity of Globalfiler IQCTM kit compared to Verifiler PlusTM kit in term of minimum input DNA to generate the full and balanced STR profile. The combination of 23 STR loci and 2 gender discrimination markers (Amelogenin and Y indel), the Verifiler PlusTM kit is the most highly discriminated system currently. In addition, 2 IQC markers are included in the primer mix that can help the inference of sample degradation or inhibition. However, another STR marker of choice in forensic analysis that highly discriminated and has the IQC system is the Globalfiler IQCTM amplification kit. Moreover, this kit has the three additional highly recommended CODIS core loci (SE33, DY391, Amelogenin). Moreover, Vranes and his colleagues (2019) [18] and Wang and his colleagues (2020) [19] reported the development and evaluation of the Investigator 26plex QS kit, which co-amplify 23 autosomal STR loci (TH01, D3S1358, Penta D, D6S1043, D21S11, TPOX, D1S1656, D12S391, Penta E, D10S1248, D22S1045, D19S433, D8S1179, D2S1338, D2S441, D18S51, vWA, FGA, D16S539, CSF1PO, D13S317, D5S818, and D7S820), one Y chromosome STR (DYS391), two internal quality control markers (Quality Sensor QS1 and QS2) along with Amelogenin. Unfortunately, our experiment does not study the performance of Investigator® 26plex QS kit. Furthermore, all three kits with IQC system can also be used for direct amplification of blood or buccal cells on FTA cards [4-5, 20-21]. In this study, we compare the sensitivity and heterozygous balance peak of two commercial STR kits (Globalfiler IQCTM kit and Verifiler PlusTM kit) with very low template DNA. The main results demonstrated that the minimum DNA input to generate a full and balanced STR profile is 0.063 ng for Verifiler PlusTM amplification kit. This study also showed that the Verifiler PlusTM kit is more sensitive than the Globalfiler IQCTM kit. The Globalfiler IQCTM kit was found to generate the balanced STR profiles at the minimum input DNA of 0.5 ng whereas the Verifiler Plus TM kit was 1 ng. Overall, this study demonstrated that the Verifiler Plus TM kit and the Globalfiler IQCTM kit are robust and extremely useful STR assay for forensic human identification. #### Acknowledgements This work was supported by Institute of Forensic Medicine, Police General Hospital, Royal Thai Police, Thailand. # 5. Conflict of interest None. #### References - [1] P. Martín, L.F.D. Simón, G. Luque, M.J. Farfán, A. Alonso, "Improving DNA data exchange: Validation studies on a single 6 dye STR kit with 24 loci." Forensic Science International: Genetics, vol. 13, pp. 68–78, 2014. - [2] D.R. Hares. "Expanding the CODIS core loci in the United States." Forensic Science International: - Genetics, vol. 6, pp. e52–e54, 2012. - [3] Quantifiler HP QuantificationTM kit User Guide Part #A4482911 (2018). https://assets.thermofisher.com/TFS-Assets/LSG/manuals/4485354.pdf - [4] Globalfiler IQCTM User Guide Part #A43565 (2019) https://assets.thermofisher.com/TFS-Assets/LSG/manuals/4477604.pdf - [5] Verifiler PlusTM User Guide Part #A35495 (2018) https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0017493_VeriFilerPlusPCRAmpKit_UG.pdf - [6] GeneMapper ID-X Software v1.6 https://assets.thermofisher.com/TFS-Assets/LSG/manuals/100073905 GMIDX v1 6 UB.pdf - [7] R. Green, J.L. Elliott, W. Norona, F. Go, V.T. Nguyen, J. Ge, et.al., "Developmental Validation of VeriFilerTM Plus PCR Amplification Kit: A 6-dye multiplex assay designed for casework samples." Forensic Science International: Genetic, vol. 53, pp. 102494, 2021. - [8] N.A. Janaahi, R.A. Ghafri, S.A. Qamar, "Forensic evaluation of VeriFilerTM Plus 6-dye chemistry kit composed of 23 loci with casework samples." Forensic Science International: Genetics Supplement Sereies, vol. 7, pp. 892-896, 2019. - [9] M. Kraemer, A. Prochnow, M. Bussmann, M. Scherer, R. Peist, C. Steffen, "Developmental validation of QIAGEN Investigator[®] 24plex QS Kit and Investigator[®] 24plex GO! Kit: Two 6-dye multiplex assays for the extended CODIS core loci." Forensic Science International: Genetics, vol. 29, pp. 9–20, 2017. - [10] M.G. Ensenberger, K.A. Lenz, L.K. Matthies, G.M. Hadinoto, J.E. Schienman, A.J. Przech et.al., "Developmental validation of the PowerPlex® Fusion 6C System." Forensic Science International: Genetics, vol. 21, pp. 134–144, 2016. - [11] W. T. Jasmine, A. M. Julie, L. C. Penny, S. R. Marie., "Sensitivity and baseline noise of three new generation forensic autosomal STR kits: PowerPlex® Fusion, VeriFilerTM Plus and Investigator® 24plex QS." Forensic Science International: Reports, vol. 1, pp. 100049, 2019. - [12] ENFSI, "Minimum Validation Guidelines in DNA Profiling." Accessed on: October 16, 2019, Accessed at: http://enfsi.eu/wp-content/uploads/2016/09/minimum_validation_guidelines_in_dna_profiling_- _v2010_0.pdf. - [13] J.M. Butler, M.C. Kline, M.D. Coble, "NIST interlaboratory studies involving DNA mixtures (MIX05 and MIX13): T variation observed and lessons learned." Forensic Science International: Genetics, vol. 37, pp. 81–94, 2018. - [14] L.E. Alfonse, G. Tejada, H. Swaminathan, D.S. Lun, C.M. Grgicak, "Inferring the number of contributors to complex DNA mixtures using three methods: Exploring the limits of low-template DNA interpretation." Journal of Forensic Sciences, vol. 62(2), pp. 308–316, 2016. - [15] P. Gill, H. Haned, O. Bleka, O. Hansson, G. Dørum, T. Egeland, "Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches—Twenty years of research and development." Forensic Science International: Genetics, vol. 18, pp. 100–117, 2015. - [16] N. Hu, B. Cong, T. Gao, R. Hu, Y. Chen, H. Tang, et.at., "Evaluation of parameters in mixed male DNA profiles for the Identifiler multiplex system." International Journal of Molecular Medicine, vol. 34, pp. 43-52, 2014. - [17] B. Budowle, A.J. Onorato, T.F. Callaghan, A.D. Manna, A.M. Gross, et.al., "Mixture interpretation: Defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework." Journal of Forensic Sciences, vol. 54(4), pp. 810–821, 2009. - [18] V. Miroslav, K. Margaretha, C. Stefan, E. Keith, P. Anke and S. Mario., "Development of the Investigator® 26plex QS Kit: A New multiplex PCR Kit for Global STR analysis." Forensic Science Internal Genetics: Supplementary Series, vol. 7 (1), pp. 778-779, 2019. - [19] S. Wang, F. Song, M. Xie, K. Zhang, B. Xie, Z. Huang, H. Luo, "Evaluation of a six-dye multiplex composed of 27 markers for forensic analysis and databasing." Molecular Genet & Genomic Medicine, vol. 8(9), pp. e1419, 2020. - [20] Investigator 26plex QS Kit (2021) Handbook HB-2681-002_HB_AT_26plex_QS_0621_WW.pdf - [21] Direct amplification of DNA using the Investigator® 26plex QS Kit (202) HB-2762-002_SP_26plexQS_DirAmp_0621_WW.pdf **Supplementary Table 1:** Peak heights for each allele detected in the 1224 dilution series using Globalfiler IQCTM amplification kit (n = 3 replicates). A complete profile consists of 41 alleles (shown in green boxes). The surviving sister alleles are shown in yellow boxes. Alleles drop-out are shown in red boxes. | DN
A | Re | D3S1 | 358 | vWA | | D16S | 539 | CSF1
PO | TPO
X | Yinde
1 | AME | L | D8S1 | 179 | D21S | 11 | D18S
51 | DYS
391 | D2S44
1 | D19S | 433 | TH01 | | |---------|----|-----------|-----------|-----------|-----------|-----------|----------|------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------| | (ng) | p | 15 | 19 | 11 | 16 | 11 | 12 | 12 | 8 | 2 | X | Y | 13 | 16 | 29 | 31.2 | 14 | 11 | 14 | 14 | 15.2 | 6 | 8 | | | 1 | 101
15 | 883
1 | 120
93 | 1113
2 | 102
64 | 946
8 | 1495
8 | 1660
6 | 1752
9 | 155
94 | 135
21 | 183
44 | 173
77 | 114
20 | 981
1 | 1613
5 | 7892 | 31870 | 143
02 | 1349
5 | 115
22 | 115
08 | | 4 | 2 | 960
9 | 100
61 | 126
16 | 1200
6 | 109
05 | 947
3 | 1452
3 | 1679
6 | 1782
0 | 160
05 | 140
10 | 188
93 | 183
12 | 116
62 | 112
54 | 1649
5 | 7612 | 30814 | 156
28 | 1389
4 | 126
81 | 125
45 | | | 3 | 968
2 | 877
4 | 117
51 | 1053
4 | 953
5 | 970
9 | 1344
9 | 1569
9 | 1759
6 | 155
42 | 128
56 | 167
71 | 170
16 | 109
57 | 105
83 | 1547
9 | 8211 | 29507 | 146
12 | 1386
5 | 117
62 | 117
16 | | | 1 | 856
6 | 824
2 | 894
2 | 7282 | 768
3 | 765
5 | 1281
4 | 1249
5 | 1180
0 | 151
10 | 119
52 | 122
42 | 116
17 | 788
1 | 725
9 | 1436
6 | 7730 | 22049 | 864
9 | 9400 | 797
2 | 787
3 | | 2 | 2 | 805
8 | 928
8 | 828
7 | 8182 | 100
20 | 813
7 | 1387
2 | 1461
2 | 1203
3 | 143
58 | 118
42 | 106
75 | 114
26 | 850
0 | 791
7 | 1657
0 | 6851 | 22387 | 918
9 | 8758 | 835
4 | 752
5 | | | 3 | 733
0 | 744
4 | 783
3 | 6777 | 703
0 | 595
9 | 1158
8 | 1058
5 | 1137
1 | 130
72 | 109
46 | 105
50 | 102
59 | 698
8 | 722
6 | 1418
0 | 6268 | 20391 | 805
5 | 7531 | 696
1 | 755
6 | | | 1 | 357
9 | 328
8 | 352
8 | 3367 | 320
9 | 330
9 | 5726 | 5338 | 4833 | 538
9 | 533
8 | 527
9 | 616
7 | 310
7 | 283
2 | 8532 | 3477 | 9671 | 418
6 | 4455 | 320
8 | 351
8 | | 1 | 2 | 294
7 | 297
4 | 292
4 | 2552 | 279
3 | 293
0 | 4689 | 4174 | 3405 | 537
6 | 440
4 | 411 | 347
9 | 244 | 247
7 | 6517 | 2913 | 8880 | 383
5 | 3708 | 368
0 | 402
9 | | | 3 | 426
5 | 403
8 | 358
5 | 3289 | 366
3 | 308
8 | 6898 | 6155 | 5487 | 603
6 | 563
0 | 571
8 | 503
8 | 373
8 | 313
7 | 8140 | 3091 | 11044 | 375
7 | 4398 | 394
0 | 504
3 | | | 1 | 224
7 | 248
4 | 203
8 | 2467 | 189
8 | 214
5 | 3613 | 2721 | 2124 | 307
1 | 312
6 | 216
6 | 326
1 | 187
0 | 181
4 | 4031 | 1811 | 6032 | 260
8 | 2103 | 173
4 | 219
3 | | 0.5 | 2 | 205 | 242
9 | 245
4 | 2881 | 244
1 | 183
0 | 4188 | 3904 | 2827 | 388
4 | 348
2 | 304
6 | 322
8 | 272
5 | 197
2 | 4810 | 1469 | 5395 | 254
6 | 2450 | 185
8 | 240
4 | | | 3 | 243
9 | 241
0 | 184
5 | 1985 | 208
1 | 181
5 | 3960 | 3149 | 2514 | 456
0 | 413
9 | 259
7 | 261
6 | 240
4 | 168
0 | 4674 | 2096 | 5862 | 207
8 | 3125 | 281
2 | 276
4 | | | 1 | 813 | 124
1 | 153
8 | 1124 | 141
6 | 135
6 | 2022 | 1912 | 1426 | 198
5 | 196
7 | 130
8 | 199
3 | 108
9 | 158
6 | 2206 | 1235 | 2842 | 120
9 | 1604 | 154
6 | 742 | | 0.25 | 2 | 201
8 | 180
0 | 156
1 | 1323 | 177
3 | 146
4 | 3335 | 2551 | 1835 | 237
1 | 259
4 | 223 | 206
4 | 145
8 | 120
0 | 3378 | 2068 | 4052 | 146
2 | 1789 | 189
0 | 177
1 | | | 3 | 171
9 | 151
0 | 992 | 1348 | 103
2 | 993 | 2243 | 2205 | 2119 | 317
2 | 227
8 | 187
2 | 156
5 | 140
9 | 150
1 | 2888 | 1787 | 3528 | 171
7 | 1315 | 152
7 | 147
9 | | | 1 | 688 | 480 | 419 | 517 | 564 | 515 | 934 | 636 | 657 | 892 | 917 | 625 | 544 | 469 | 630 | 1453 | 702 | 1539 | 424 | 568 | 517 | 417 | |-----------|---|-----|-----|-----|-----|-----|-----|------|-----|-----|----------|----------|-----|-------|-----|-----|------|-----|------|-----|-----|-----|-----| | 0.12 | 2 | 636 | 529 | 354 | 419 | 469 | 463 | 988 | 650 | 587 | 105
3 | 110
9 | 673 | 746 | 751 | 492 | 875 | 591 | 1714 | 798 | 650 | 766 | 626 | | | 3 | 492 | 624 | 482 | 636 | 282 | 518 | 1172 | 805 | 350 | 132
6 | 609 | 724 | 413 | 583 | 304 | 1215 | 415 | 949 | 603 | 590 | 753 | 357 | | | 1 | 309 | 273 | 304 | 455 | 271 | | 467 | 385 | 456 | 736 | 422 | 397 | 414 | 289 | | 873 | 317 | 654 | 234 | 224 | 290 | 235 | | 0.06 | 2 | 442 | 318 | 289 | 230 | 208 | 242 | 446 | 540 | 343 | 468 | 399 | 319 | 425 | 312 | 331 | 460 | | 630 | 431 | 450 | 241 | 263 | | | 3 | 358 | 347 | 286 | 341 | 320 | 273 | 414 | 289 | 371 | 412 | 514 | 287 | | 201 | 283 | 1385 | 260 | 1184 | 501 | 552 | 280 | 441 | | 0.02 | 1 | | 258 | | | | | 350 | | | 355 | 344 | | 545 | | | 255 | | 419 | 318 | 251 | | | | 0.03 | 2 | | | | | | | | | | 318 | | 209 | 221 | | | | 240 | 368 | | 313 | 246 | | | 1 | 3 | 401 | | | 245 | 221 | | 251 | 222 | | | | | | | | 339 | | | 262 | | | 276 | | 0.01 | 1 | | | | | | | | | | | | 254 | | | | 365 | | 228 | | | | | | 0.01
6 | 2 | | | | | | | | | | | 281 | | | | | | | 246 | | | | | | Ü | 3 | | | | | | | | | | | | | Table | | | | | | | | | | **Supplementary Table 1: (cont.)** Peak heights for each allele detected in the 1224 dilution series using Globalfiler IQCTM amplification kit (n = 3 replicates). A complete profile consists of 41 alleles (shown in green boxes). The surviving sister alleles are shown in yellow boxes. Alleles drop-out are shown in red boxes. | DN
A | Rep | FGA | | D22S1
045 | D5S | 818 | D13S | 317 | D7S82 | 0 | SE33 | | D10S1 | 248 | D1S16 | 56 | D12S3 | 91 | D2S133 | 8 | |----------|-----|-----------|-----------|--------------|----------|------|-----------|-----------|-------|------|-----------|------|-------|------|-------|----------|-------|------|--------|-----------| | (ng) | | 23 | 24 | 16 | 10 | 12 | 10 | 13 | 10 | 11 | 14 | 25.2 | 13 | 14 | 15 | 17 | 18 | 19 | 17 | 23 | | | 1 | 168
55 | 156
96 | 20586 | 91
41 | 8813 | 107
93 | 101
00 | 9223 | 8325 | 975
2 | 8341 | 6727 | 6542 | 9129 | 897
8 | 5970 | 5308 | 12395 | 123
35 | | 4 | 2 | 178
11 | 156
58 | 21140 | 91
62 | 8949 | 112
86 | 114
25 | 9236 | 8630 | 102
94 | 9324 | 7073 | 7049 | 9405 | 928
8 | 5551 | 5843 | 14502 | 122
60 | | | 3 | 151
77 | 140
79 | 18993 | 83
96 | 8664 | 100
81 | 909
4 | 8595 | 7536 | 914 | 7820 | 7412 | 5949 | 8619 | 841
8 | 5367 | 4938 | 12706 | 122
17 | | 2 | 1 | 100
33 | 955
9 | 14763 | 80
52 | 7693 | 854
3 | 852
3 | 7371 | 7581 | 753
5 | 6818 | 7290 | 6886 | 9689 | 854
8 | 5631 | 4858 | 10085 | 872
5 | | <i>L</i> | 2 | 115
47 | 955
9 | 14667 | 76
13 | 7395 | 868
7 | 888
7 | 7849 | 7865 | 824
9 | 7590 | 8326 | 6934 | 8869 | 908
6 | 6352 | 5432 | 10229 | 981
9 | | | 3 | 864
8 | 882
0 | 13727 | 73
49 | 6782 | 807 | 853
7 | 7556 | 7699 | 766
4 | 6761 | 6246 | 5867 | 7748 | 751
3 | 6221 | 4710 | 8729 | 867
1 | |-----------|---|----------|----------|-------|----------|------|----------|----------|------|------|----------|------|------|------|------|----------|------|------|------|----------| | | 1 | 411
5 | 442
5 | 5774 | 33
38 | 2910 | 440 | 426
8 | 4241 | 3369 | 352
2 | 3310 | 3196 | 3200 | 3474 | 419
1 | 2066 | 2516 | 4117 | 413
0 | | 1 | 2 | 428
9 | 376
3 | 5087 | 31
65 | 3192 | 378
7 | 428
7 | 4042 | 3205 | 316
6 | 3089 | 2642 | 2624 | 3038 | 350
6 | 2258 | 1861 | 3848 | 367
1 | | | 3 | 486
8 | 489
0 | 7107 | 37
25 | 3578 | 466
1 | 456
9 | 3992 | 4170 | 379
8 | 4224 | 3843 | 3526 | 4030 | 404
3 | 2584 | 2805 | 4821 | 356
8 | | | 1 | 289
3 | 277
6 | 3431 | 22
23 | 2180 | 188
5 | 269
5 | 2353 | 2040 | 217 6 | 2256 | 2268 | 2272 | 2323 | 239
3 | 1746 | 1842 | 1894 | 235
3 | | 0.5 | 2 | 290
2 | 303
5 | 4128 | 25
27 | 2338 | 342
6 | 279
0 | 2983 | 2678 | 213 | 2363 | 2815 | 2660 | 2387 | 248
6 | 2258 | 1737 | 3434 | 312
1 | | | 3 | 307
3 | 287
9 | 4426 | 22
95 | 2421 | 193
0 | 297
1 | 2322 | 2123 | 258
3 | 2443 | 2849 | 2394 | 2470 | 182
2 | 1556 | 1549 | 2837 | 269
2 | | | 1 | 121
5 | 133
7 | 1940 | 15
91 | 1411 | 181
8 | 157
3 | 1496 | 1190 | 145
0 | 1014 | 1136 | 1267 | 1145 | 126
7 | 976 | 922 | 1416 | 140
3 | | 0.2
5 | 2 | 186
3 | 169
2 | 2994 | 16
87 | 1557 | 190
7 | 256
6 | 1454 | 1709 | 166
2 | 1326 | 2335 | 1721 | 1841 | 230
4 | 1194 | 1108 | 1378 | 195
2 | | | 3 | 209
9 | 130
5 | 2388 | 10
68 | 1149 | 196
7 | 176
6 | 1697 | 1499 | 654 | 1612 | 977 | 1670 | 1753 | 164
2 | 1165 | 968 | 1455 | 133
0 | | | 1 | 516 | 505 | 719 | 44
9 | 755 | 956 | 569 | 478 | 613 | 456 | 543 | 372 | 343 | 704 | 477 | 354 | 324 | 597 | 683 | | 0.1
25 | 2 | 762 | 716 | 1102 | 69
0 | 491 | 710 | 838 | 515 | 614 | 287 | 327 | 427 | 618 | 365 | 467 | 408 | 202 | 703 | 446 | | | 3 | 428 | 563 | 854 | 33 8 | 730 | 783 | 517 | 742 | 671 | 583 | 422 | 489 | 300 | 657 | 476 | 291 | 456 | 589 | 814 | | | 1 | 613 | 340 | 611 | 44 2 | 471 | 318 | 387 | 463 | 345 | 361 | | | 329 | | 397 | 318 | | 235 | 232 | | 0.0
63 | 2 | 327 | 229 | 436 | 35
4 | 211 | 400 | 364 | 303 | 330 | 429 | 292 | 277 | 221 | | 233 | 257 | 254 | 518 | 393 | | | 3 | 402 | 498 | 517 | 24
5 | 268 | 386 | 377 | 254 | 327 | 309 | 315 | 545 | 375 | 490 | | | | 295 | 598 | | | 1 | 356 | 287 | 310 | | 218 | | | 228 | 202 | | | 240 | | 269 | | 236 | | | 249 | | 0.0 | 2 | | | 268 | 20 | | | | | | | | | | | | | | 382 | | | | 3 | 288 | 238 | 324 | 20 2 | | 233 | 424 | 337 | | | 259 | | | | | | | | | | 0.0 | 1 | | | 214 | 227 | | | |-----|---|--|--|-----|-----|--|--| | 16 | 2 | | | | | | | | | 3 | | | | | | | **Supplementary Table 2:** Peak heights for each allele detected in the 1224 dilution series using Verifiler Plus TMamplification kit (n = 3 replicates). A complete profile consists of 44 alleles (shown in green boxes). The surviving sister alleles are shown in yellow boxes. Alleles drop-out are shown in red boxes. | DN | Re | D3S1 | 358 | vWA | | D16S | 5539 | CSF1P
O | D6S1 | 043 | Yindel | AMEL | , | D8S11 | 79 | D21S | 11 | D18S5 | D5S81 | 8 | D2S4
41 | D19S43 | 33 | |--------|----|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-----------|-----------|------------|--------|-----------| | A (ng) | p | 15 | 19 | 11 | 16 | 11 | 12 | 12 | 11 | 21.3 | 2 | X | Y | 13 | 16 | 29 | 31.2 | 14 | 10 | 12 | 14 | 14 | 15.
2 | | | 1 | 309
92 | 302
50 | 222
69 | 183
21 | 245
06 | 224
99 | 25698 | 190
93 | 1527
2 | 31189 | 3137
4 | 2996
5 | 2747
8 | 256
78 | 234
20 | 204
42 | 32072 | 1561
1 | 148
61 | 31633 | 24173 | 228
20 | | 4 | 2 | 296
78 | 269
45 | 213
47 | 169
48 | 226
52 | 195
88 | 23519 | 154
67 | 1337
6 | 30585 | 3052
0 | 2914
1 | 2404 | 252
80 | 216
70 | 203
26 | 30594 | 1441
7 | 147
13 | 30388 | 22293 | 231
55 | | | 3 | 288
24 | 277
66 | 203
04 | 178
87 | 232
08 | 197
80 | 24227 | 150
15 | 1162
1 | 29923 | 2999
8 | 2868
9 | 2726
1 | 231
83 | 208
97 | 204
20 | 29755 | 1414
7 | 136
66 | 29962 | 21024 | 216
61 | | | 1 | 185
92 | 162
62 | 140
85 | 127
01 | 160
72 | 143
98 | 20414 | 118
16 | 1255
9 | 19727 | 1883
7 | 1609
7 | 1488
5 | 142
68 | 140
53 | 140
08 | 26944 | 1300
9 | 118
58 | 28975 | 13852 | 143
79 | | 2 | 2 | 232
36 | 201
30 | 152
49 | 160
56 | 187
97 | 173
47 | 25020 | 156
96 | 1260
1 | 27512 | 2440
9 | 2356
0 | 1726
7 | 183
03 | 180
53 | 186
95 | 29621 | 1741
0 | 149
69 | 31315 | 16979 | 163
25 | | | 3 | 194
92 | 183
24 | 150
68 | 134
87 | 186
78 | 145
79 | 21866 | 135
28 | 1244
8 | 21354 | 2164
0 | 1850
1 | 1698
3 | 157
33 | 155
69 | 149
39 | 27356 | 1488
4 | 144
13 | 32002 | 16478 | 151
61 | | | 1 | 115
95 | 111
65 | 934
3 | 994
1 | 964
5 | 944
0 | 20576 | 959
1 | 8873 | 13035 | 1370
7 | 9726 | 9631 | 787
8 | 100
35 | 948
5 | 20386 | 1085
4 | 121
76 | 22681 | 10574 | 101
67 | | 1 | 2 | 972
1 | 834
4 | 896
2 | 849
0 | 762
1 | 843
8 | 15342 | 626
5 | 8742 | 12829 | 1071
4 | 9259 | 7764 | 890
4 | 750
7 | 787
8 | 18419 | 1142
7 | 978
2 | 22075 | 9012 | 110
27 | | | 3 | 128
02 | 128
15 | 129
18 | 125
82 | 138
23 | 113
51 | 22415 | 120
23 | 8834 | 16609 | 1546
5 | 1231
8 | 9894 | 119
01 | 111
81 | 120
63 | 26131 | 1386
6 | 141
31 | 27351 | 10827 | 122
70 | | | 1 | 678
1 | 662
8 | 577
1 | 649
9 | 625
5 | 609
7 | 12465 | 522
8 | 4584 | 6636 | 6296 | 5094 | 5595 | 565
4 | 605
2 | 638
4 | 13296 | 7752 | 736
6 | 13864 | 5647 | 601
1 | | 0.5 | 2 | 729
7 | 430
5 | 525
1 | 496
0 | 508
7 | 550
9 | 10711 | 563
9 | 4909 | 5959 | 6107 | 4975 | 5091 | 401
3 | 638
6 | 548
4 | 10030 | 7991 | 658
2 | 11763 | 5998 | 472
2 | | | 3 | 598 | 509 | 532 | 517 | 605 | 473 | 10442 | 494 | 3559 | 5661 | 5709 | 5279 | 4420 | 398 | 496 | 445 | 10422 | 4853 | 577 | 9328 | 5609 | 419 | | | | 4 | 4 | 3 | 6 | 9 | 8 | | 7 | | | | | | 6 | 0 | 0 | | | 7 | | | 8 | |-----------|---|----------|----------|----------|----------|----------|----------|------|----------|------|------|------|------|------|----------|----------|----------|------|------|----------|------|------|----------| | | 1 | 392
4 | 312
5 | 364
7 | 248
4 | 346
0 | 308
5 | 5656 | 270
8 | 3177 | 3485 | 3513 | 3018 | 2749 | 315
3 | 348
9 | 333
1 | 6522 | 2894 | 463
7 | 6516 | 2220 | 248
6 | | 0.25 | 2 | 241
9 | 213
5 | 302
8 | 274
7 | 274
4 | 292
1 | 4700 | 298
8 | 2135 | 2651 | 2830 | 2308 | 1794 | 231
4 | 284
4 | 232
0 | 6178 | 3290 | 272
3 | 5801 | 2369 | 232
4 | | | 3 | 225
6 | 349
0 | 304
8 | 298
3 | 241
8 | 273
8 | 5821 | 205
4 | 2262 | 3210 | 3851 | 3623 | 2762 | 241
1 | 344
7 | 295
2 | 5022 | 3271 | 377
3 | 4456 | 3543 | 429
2 | | | 1 | 111
0 | 142
2 | 132
6 | 105
2 | 121
6 | 175
1 | 2358 | 912 | 1074 | 1268 | 1425 | 815 | 1203 | 107
8 | 120
2 | 125
6 | 2482 | 1469 | 128
5 | 2423 | 1514 | 173
7 | | 0.12
5 | 2 | 144
3 | 117
1 | 911 | 793 | 128
5 | 778 | 1975 | 756 | 398 | 1707 | 2402 | 740 | 962 | 983 | 107
9 | 157
1 | 2100 | 1030 | 109
9 | 2368 | 938 | 103
2 | | | 3 | 160
1 | 172
4 | 105
1 | 136
0 | 124
2 | 136
4 | 2480 | 917 | 1375 | 1008 | 2050 | 1851 | 1470 | 134
1 | 208
4 | 195
9 | 3608 | 1288 | 141
2 | 2779 | 1125 | 140
2 | | | 1 | 244 | 515 | 674 | 681 | 836 | 525 | 972 | 518 | 530 | 710 | 740 | 732 | 580 | 451 | 340 | 425 | 884 | 603 | 223 | 1227 | 979 | 619 | | 0.06 | 2 | 683 | 108
5 | 620 | 715 | 962 | 759 | 1628 | 677 | 656 | 558 | 953 | 485 | 520 | 737 | 744 | 715 | 976 | 1233 | 659 | 1154 | 540 | 759 | | | 3 | 452 | 715 | 591 | 812 | 883 | 558 | 1608 | 484 | 413 | 1116 | 746 | 1061 | 456 | 406 | 119
7 | 775 | 1141 | 874 | 585 | 1252 | 441 | 485 | | 0.03 | 1 | 283 | 257 | | 275 | 363 | | 612 | 536 | 377 | 203 | 403 | | 277 | 348 | | 653 | 670 | 475 | 344 | 899 | 344 | 383 | | 1 | 2 | 325 | | 374 | | 250 | | 676 | | | 345 | | 386 | 351 | | 383 | 493 | 923 | 386 | 362 | 462 | 293 | 315 | | | 3 | | 266 | | | 581 | 207 | 735 | | | 229 | 382 | 449 | | 261 | | 219 | 433 | | 535 | 284 | 423 | 265 | | 0.01 | 1 | 412 | | 238 | | | | 502 | | | 267 | 232 | | 378 | | 315 | 218 | 459 | 312 | 339 | 344 | 377 | | | 6 | 2 | 280 | | | | 256 | 317 | 485 | | 424 | | 366 | | | | | 348 | 588 | 276 | | | 384 | | | | 3 | | | | | | | 526 | | | | | | | | | | 655 | | 289 | 605 | 381 | 200 | **Supplementary Table 2: (cont.)** Peak heights for each allele detected in the 1224 dilution series using Verifiler Plus TMamplification kit (n = 3 replicates). A complete profile consists of 44 alleles (shown in green boxes). The surviving sister alleles are shown in yellow boxes. Alleles drop-out are shown in red boxes. | DN
A | Rep | FGA | | D10S1 | 248 | D22S10
45 | D1S1 | 656 | D13S | 317 | D7S82 | 0 | Penta | E | Penta I |) | TH01 | | D12S3 | 91 | D2S13 | 38 | TPOX | |---------|-----|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------| | (ng) | r | 23 | 24 | 13 | 14 | 16 | 15 | 17 | 10 | 13 | 10 | 11 | 17 | 20 | 9 | 12 | 6 | 8 | 18 | 19 | 17 | 23 | 8 | | | 1 | 221
88 | 221
82 | 1589
9 | 138
61 | 31633 | 309
20 | 3000
4 | 243
64 | 215
48 | 1607
2 | 157
77 | 132
53 | 1170
7 | 2757
8 | 309
90 | 2389
7 | 278
25 | 1656
4 | 167
05 | 1847
4 | 1601
3 | 31203 | | 4 | 2 | 216
17 | 200
92 | 1472
3 | 128
28 | 30943 | 300
28 | 2901
5 | 220
01 | 186
44 | 1582
1 | 138
13 | 122
13 | 1061
1 | 2618
4 | 287
92 | 2386 | 271
36 | 1454
4 | 148
20 | 1898
6 | 1646
9 | 29304 | | | 3 | 221
68 | 206
02 | 1445
3 | 124
44 | 30531 | 295
28 | 2868
9 | 212
94 | 201
62 | 1566
3 | 145
38 | 107
86 | 1069
8 | 2599
5 | 282
58 | 2385 | 261
38 | 1543
1 | 131
52 | 1630
5 | 1784
6 | 28212 | | | 1 | 190
61 | 161
34 | 1329
7 | 124
54 | 25805 | 189
44 | 2092
8 | 177
15 | 153
06 | 1311
8 | 123
85 | 118
74 | 1087
4 | 1630
8 | 165
94 | 1654
1 | 165
24 | 1317
4 | 124
42 | 1217
1 | 1264
8 | 23978 | | 2 | 2 | 225
72 | 188
32 | 1752 | 159
96 | 31207 | 223
54 | 2148
9 | 238
53 | 198
25 | 1882
7 | 185
89 | 159
36 | 1383
0 | 1876
9 | 225
73 | 1984
6 | 198
34 | 1872
8 | 171
69 | 1898
7 | 1702
7 | 30780 | | | 3 | 193
62 | 175
54 | 1549
8 | 142
46 | 30997 | 207
87 | 2059
2 | 186
66 | 181
18 | 1556
8 | 140
00 | 123
54 | 1042
9 | 1993
9 | 162
73 | 1760
0 | 180
24 | 1256
4 | 118
19 | 1494
2 | 1521
3 | 27557 | | | 1 | 132
44 | 118
05 | 1202
7 | 108
95 | 18217 | 122
91 | 1191
9 | 120
10 | 110
24 | 1062
5 | 108
40 | 102
89 | 9743 | 9077 | 952
1 | 1005 | 910
9 | 9684 | 776
8 | 8697 | 8070 | 19974 | | 1 | 2 | 117
96 | 924
5 | 1102
4 | 128
87 | 20355 | 117
30 | 1107
7 | 125
83 | 114
43 | 1006
1 | 870
1 | 958
0 | 1019
9 | 9532 | 996
8 | 1157
9 | 941
6 | 8418 | 858
1 | 1098
2 | 9583 | 19351 | | | 3 | 161
15 | 151
47 | 1329
6 | 141
67 | 25374 | 159
18 | 1583
4 | 187
21 | 144
93 | 1263
6 | 131
96 | 947
8 | 1247
1 | 1341
9 | 123
09 | 1200 | 152
66 | 1399 | 113
13 | 1404
9 | 1318
4 | 25899 | | | 1 | 777
2 | 699
7 | 6423 | 714
3 | 13147 | 687
5 | 6390 | 634
6 | 775
5 | 6233 | 531
7 | 480
5 | 6259 | 6529 | 543
1 | 5108 | 563
3 | 5133 | 601
2 | 5623 | 4382 | 13883 | | 0.5 | 2 | 662
4 | 733
0 | 5963 | 594
7 | 10017 | 637
1 | 6037 | 719
4 | 655
8 | 5970 | 792
5 | 651
9 | 5447 | 5346 | 491
3 | 5661 | 658
0 | 6146 | 442
0 | 6873 | 7192 | 14762 | | | 3 | 554
7 | 668
9 | 5978 | 629
5 | 9930 | 609
5 | 6132 | 545
7 | 676
3 | 4425 | 524
7 | 552
8 | 4139 | 5427 | 492
9 | 5396 | 527
0 | 4885 | 538
5 | 5479 | 4715 | 11462 | | | 1 | 487
7 | 406
8 | 3034 | 285
7 | 5074 | 406
6 | 4422 | 342
8 | 312
9 | 3648 | 308
3 | 443
5 | 3104 | 2205 | 276
4 | 2942 | 185
8 | 2661 | 307
0 | 2559 | 2977 | 5322 | | 0.25 | 2 | 295
5 | 364
6 | 2768 | 264
3 | 5205 | 342
8 | 3406 | 318
8 | 245
1 | 3007 | 248
0 | 299
1 | 3296 | 2157 | 209
9 | 2485 | 251
0 | 1972 | 176
6 | 2880 | 1985 | 6562 | | | 3 | 394 | 450 | 2905 | 216 | 6875 | 383 | 3674 | 327 | 346 | 2700 | 272 | 338 | 2504 | 3284 | 226 | 2330 | 317 | 2712 | 353 | 3788 | 3073 | 5902 | | | | 3 | 4 | | 1 | | 7 | | 1 | 8 | | 9 | 0 | | | 1 | | 3 | | 8 | | | | |-----------|---|----------|----------|------|----------|------|----------|------|----------|----------|------|----------|----------|------|------|----------|------|----------|------|----------|------|------|------| | | 1 | 153
8 | 150
1 | 1357 | 127
6 | 2802 | 127
2 | 1432 | 180
5 | 160
2 | 1446 | 138
5 | 142
3 | 1284 | 533 | 123
2 | 1042 | 127
9 | 1686 | 167
2 | 1389 | 1734 | 2168 | | 0.12
5 | 2 | 166
2 | 111
6 | 1044 | 864 | 2326 | 100
6 | 1364 | 147
3 | 111
2 | 1177 | 923 | 140
8 | 1644 | 1103 | 107
1 | 1232 | 118
8 | 1258 | 563 | 1548 | 1060 | 2339 | | | 3 | 213
2 | 179
2 | 1248 | 949 | 3339 | 201
6 | 1937 | 216
9 | 202
2 | 1196 | 860 | 142
6 | 1497 | 897 | 121
7 | 1640 | 205
0 | 1542 | 107
3 | 1785 | 1826 | 1821 | | | 1 | 107
2 | 724 | 610 | 551 | 988 | 752 | 912 | 794 | 738 | 493 | 825 | 822 | 531 | 737 | 386 | 409 | 722 | 490 | 631 | 459 | 355 | 1154 | | 0.06 | 2 | 989 | 108
7 | 449 | 898 | 963 | 649 | 980 | 791 | 683 | 440 | 428 | 610 | 824 | 790 | 651 | 734 | 106
9 | 527 | 423 | 876 | 792 | 1194 | | | 3 | 761 | 579 | 332 | 883 | 1601 | 616 | 1050 | 144
5 | 111
6 | 346 | 818 | 498 | 938 | 472 | 588 | 626 | 350 | 700 | 472 | 530 | 637 | 1279 | | | 1 | | 550 | 269 | 485 | 714 | 286 | | 410 | 335 | 366 | | 550 | 382 | 210 | 269 | 414 | 330 | 271 | 372 | 591 | | 789 | | 0.03 | 2 | 741 | 233 | | | 432 | 389 | | | 496 | 342 | 310 | | 449 | 684 | | 417 | 366 | | 200 | 265 | | 726 | | - | 3 | 355 | 506 | 445 | 257 | 906 | 370 | 407 | 809 | 323 | 517 | 234 | 428 | 379 | | 271 | 271 | | | 301 | 311 | 383 | 485 | | 0.01 | 1 | | | 307 | 277 | 387 | | 342 | | 202 | | | | | 306 | 409 | 217 | 249 | | | | | 285 | | 0.01 | 2 | 277 | | 557 | 334 | 287 | 457 | | 219 | 221 | 230 | | 467 | | | | 353 | | | | 210 | | 524 | | | 3 | | 308 | 406 | 273 | 503 | | | | | 214 | | 312 | 247 | | | 260 | | | 320 | | 483 | 479 |