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Abstract 

Mixture-process variables (MPV) is an experiment that responds not only to the proportions of the components 

but also to the conditions of the process. The impact of MPV is a large number of experimental runs. A large 

number of experimental runs has a consequence on cost, time, and resource constraints. However, choosing an 

optimal design with limited runs will ensure efficiency in such cases. In practice, the composition of the mixture 

experiment will run for each level of the process variables. Therefore, it causes a limitation in randomization. A 

split-plot approach can be an option to solve the problem, where the whole-plot is the process variables, and the 

sub-plot is the mixture component. In this research, the authors developed a genetic algorithm (GA) to find the 

optimal design. The genetic algorithm maintains a population of candidate solutions to a problem. It then selects 

the candidate point that has the most suitable criteria for solving the problem. The selection criterion used is the 

D-optimality criterion which is focused on parameter optimization. The case study is an experiment consisting 

of three ingredients and a process variable with three levels. The result concluded that GA provided an excellent 

design compared to the coordinate exchange algorithm with the value of D-efficiency for  𝜂 = 1 is 1.195, 𝜂 = 5 

is  1.082, and 𝜂 = 10 is 1.078. 

Keywords: D-Optimality; Genetic Algorithm; Mixture Experiment; Process Variable; Split-plot. 

1. Introduction  

A mixture experiment is an experiment that the factors are the components of a mixture. The response is 

assumed to depend only on the relative proportions of each component and not the total amount of the mixture 

[1]. The unique feature in the mixture experiment is the mixture constraint.  

------------------------------------------------------------------------ 
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The proportion of each component must be between zero and one and sum to unity. If 𝑥1, 𝑥2, … , 𝑥𝑞 are the 

proportions of q components in a mixture experiment, then 

∑ 𝑥𝑖 = 𝑥1
𝑞
𝑖=1 + 𝑥2 + 𝑥3 +⋯+ 𝑥𝑞 = 1    (1.1) 

The main effect of the equality constraints in equation (1.1) is that the component proportions in the mixture 

experiment cannot be made orthogonal and cannot vary independently. Besides the primary constraint, it is 

common in mixture experiments to have limitations on some or all of the component proportions are imposed in 

the form of  lower and upper bounds as follows: 

0 ≤ 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 ≤ 1;       𝑖 = 1,2, … , 𝑞    (1.2) 

Where 𝐿𝑖 and 𝑈𝑖 are the lower and upper bounds for an ith component. The experimental region will become an 

irregularly-shaped polyhedron contained within a simplex because of these additional constraints.  

In some cases, the response depends not only on the relative proportions of each component but also on process 

variables. These process variables are not part of the mixture, but if the conditions or levels are changed, these 

changes will affect the response of interest. This combination of mixture experiment and process variables is 

called Mixture Process Variable (MPV). The level of process variables may be hard to change from one level to 

another. Therefore, it causes a restriction in randomization. This case is called a split-plot experiment [2]. The 

split-plot experiment consists of whole plots and sub-plots. The whole plot is a factor with hard to change, while 

the subplot is a factor with easy to change from run to run. In this case,  the whole plot is the process variables, 

and the subplot is the mixture component. These conditions lead to two randomizations in the split-plot 

experiment. The first randomization is how to allocate the level of the process variable on the whole plot. 

Meanwhile, the second randomization puts the mixture compositions as the subplots on a specific whole plot. 

The impact of mixture-process variables is a large number of experimental runs because the relative proportions 

of each component must be run in each level of process variables. Therefore, an optimal design is needed to 

solve this problem. Optimal design is part of the experimental design that estimates parameters without bias and 

minimum variance. Practically, the optimal design can reduce the cost and time in the experiment. The optimal 

design is searching for a good design based on a specific criterion. The standard criterion used is the D-

optimality criterion based on parameter prediction. Then, the D-optimal design minimizes the variance value of 

the estimated model parameters. 

Finding an excellent optimal design concerning some optimality criteria can be difficult. An alternative 

algorithm, such as a genetic algorithm (GA), was proposed. Borkowski [3] used a genetic algorithm to 

determine the optimal design point in the second-order response surface model. The GA strategies used are 

blending, creep, sign change, zero genes, and extreme genes. Then, Limmun and his colleagues [4] used a 

genetic algorithm for optimal design in a mixture experiment with D-optimal criteria. The GA strategies used 

are blending, crossover, and mutation. Pradubsri and his colleagues [5] used a genetic algorithm for optimal 

design on mixture-process variables with D-optimality criterion. Pradubsri and his colleagues [5] used Limmun 
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and his colleagues [4] strategy for mixture components and Borkowski's [3] strategy for process variables. 

Therefore, in this research, we extend the work of Pradubsri and his colleagues to develop GA in R software for 

generating designs in mixture-process variables using a split-plot approach. The case study is an experiment 

consisting of three ingredients and a process variable with three levels. The research has two main aims: 

 To build a genetic algorithm in R software and obtain a D-optimal design for a mixture-process variable 

(MPV) with a split-plot approach. 

 To compare the results of the genetic Algorithm in R software with the coordinate-exchange algorithm in the 

JMP Software using D-efficiency. 

2. Literature Review 

2.1 Model Mixture Process Variables 

The model for modeling the response Y of a mixture experiment is the Scheffé-type polynomial model [2]. The 

first-order Scheffé model is given by 

𝑌 = ∑ 𝛽𝑖𝑥𝑖
𝑞
𝑖=1 + 𝜀     (2.1) 

Whereas the second-order Scheffé model is given by 

𝑌 = ∑ 𝛽𝑖𝑥𝑖
𝑞
𝑖=1 +  ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞
𝑗=𝑖+1

𝑞−1
𝑖=1 + 𝜀        (2.2) 

And the special-cubic model can be writeten as   

𝑌 = ∑ 𝛽𝑖𝑥𝑖
𝑞
𝑖=1 +  ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞
𝑗=𝑖+1

𝑞−1
𝑖=1 + ∑ ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑞
𝑘=𝑗+1

𝑞−1
𝑗=𝑖+1

𝑞−2
𝑖=1 + 𝜀    (2.3) 

If only two levels of each in the process variables, their main effects, and interaction effects are expressible 

using the standard polynomial form. With n process variables whose levels are defined using coded variables 

𝑧1, 𝑧2, … , 𝑧𝑛 [6] as follows : 

Main effects  :  

𝑌 = 𝛼0 + 𝛼1𝑧1 +⋯+ 𝛼𝑛𝑧𝑛 = 𝛼0 +∑ 𝛼𝑙𝑧𝑙
𝑛
𝑙=1        (2.4) 

Main effects plus 2-factor interaction effects: 

𝑌 = 𝛼0 + ∑ 𝛼𝑙𝑧𝑙
𝑛
𝑙=1 + ∑∑ 𝛼𝑙𝑚𝑧𝑙𝑧𝑚 

𝑛
𝑙<𝑚     (2.5) 

2.2 Split Plot and D-optimal Design 

The split-plot experiment has limitations in randomization. Therefore, model estimation for a split-plot 

experiment is more complex than a completely randomized experiment. It is due to the presence of two sources 
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of error from hard-to-change factor (whole plots) and easy-to-change factor (subplots). The matrix notation of 

model estimation for a split-plot experiment with sample size n and b whole plot by [7]  is 

𝒀 = 𝑿𝜷 + 𝒁𝜸 + 𝜺      (2.6) 

where X represents (n × p)  model matrix containing the settings of both the whole plot factors (w) and the 

subplot variables (s). The matrix Z represents the n × b matrix of zeroes, and the ones assigning then runs to the 

b whole plot, 𝜸 is the random effects of the b whole plot, and 𝜺 is the n-dimensional vector containing the 

random errors. The model contains two random components that 𝜸 is random effect for the main plot, and 𝜺 is 

the random error for the subplots with the following assumptions: 

𝛾~𝑁(𝟎𝑏 , 𝜎
2𝑰𝑏)      (2.7) 

𝜀~𝑁(𝟎𝑛, 𝜎
2𝑰𝑛)       (2.6) 

and 

𝑐𝑜𝑣(𝛾, 𝜀) = 𝟎𝑏𝑥𝑛      (2.8) 

Under these assumptions, the covariance matrix of the response, cov(Y), can be written as   

𝑽 = 𝜎𝜀
2𝑰𝒏 + 𝜎𝛾

2𝒁𝒁𝒕 = 𝜎𝜀
2(𝑰𝒏 + 𝜂𝒁𝒁𝒕)    (2.9) 

where 𝜂 = 𝜎𝛾
2 𝜎𝜀

2⁄  is a statistic to measure whether observations within the same whole plot are correlated. 

When the same mixture blend is not run at each combination of process variables, to estimate the parameters, 

the generalized least squares use. The parameter estimating equation is 

�̂� = (𝑿𝒕𝑽−𝟏𝑿)−𝟏𝑿𝒕𝑽−𝟏𝒚      (2.10) 

With covariance matrix 

𝑉𝑎𝑟(�̂�) = (𝑿𝒕𝑽−𝟏𝑿)−𝟏 = 𝝈𝜺
𝟐{𝑿𝒕(𝑰𝒏 + 𝜂𝒁𝒁𝒕)−𝟏𝑿}−𝟏   (2.11) 

Furthermore, the information matrix is written as 

𝑴 = 𝑿𝒕𝑽−𝟏𝑿 = 𝝈𝜺
−𝟐(𝑿𝒕(𝑰𝒏 + 𝜂𝒁𝒁𝒕)−𝟏𝑿)    (2.12) 

The split-plot structure can be applied to various criteria such as D, A, and I optimality [2]. The D-Optimality 

criterion is a generally used criterion to find the optimal design. The D-optimality is a criterion that prioritizes 

the quality of the parameter estimate that can be shown by the value of Var (β). The D-Optimal expects to get 

the minimum value of Var (β) by maximizing the determinant of the information matrix or minimizing the 

inverse determinant of the information matrix [8]. The D-optimality has been applied for constructing split-plot 

design by Goos and Vandebroek [9,10]. To compare the quality of two design information matrices, we 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2021) Volume 60, No  4, pp 360- 375 

364 
 

commonly use D-efficiency [11]. Suppose M1 denotes the first design information matrix and M2 denotes the 

second design information matrix. D-efficiency is defined as 

𝐷𝑒𝑓𝑓 = (
|𝑴𝟏|

|𝑴𝟐|
)

1

𝑝
                               (2.13) 

If the 𝐷𝑒𝑓𝑓  is more than 1, then the design M1 is more efficient than design M2, where p is a number of 

parameters. 

2.3 Genetic Algorithm 

The Genetic Algorithm (GA) is an optimization and search method that mimics the metaphor of natural 

biological evolution. John Holland developed the genetic algorithm in the 1960s and detailed it in Holland [12].  

In general, GA maintains a population of candidate solutions encoded either in binary or real numbers using a 

sampling procedure to select the solutions to optimize the objective function.  

After this selection process, the most suitable candidate solutions are combined or modified by the 

“reproduction” operator, such as crossover and mutation, to generate new solutions for the next generation. 

Thus, the process continues, with the next generation developing a more proper solution until an acceptable 

solution has developed.  In practice, Davis [13] found that the performance of the real number has out-

performed with binary encoding in numerical optimization problems.  The theory about the performance of GA 

with real numbers is developed in Golberg [14]. In addition, the use of real-valued encodings is described in 

detail by Michalewicz [15]. So in this research, real number encoding is used. 

The genetic algorithm was applied to a wide range of scientific and industrial applications. Recently, the genetic 

algorithm also has been used to find optimal or nearly optimal in experimental designs. The GA can be an 

exciting tool in optimization. The advantages of the GA algorithm are easy to implement, reduces the possibility 

of reporting local optima, does not require the experimenter to provide a finite candidate set, finds good 

solutions in a reasonable amount of time, gives differentiability, and also convexity of the objective function [4]. 

For example, Borkowski [3] used a GA to generate near-optimal D, A, G, and IV exact N-point response surface 

designs in the hypercube and found the exact optimal designs by applying a local search algorithm to these near-

optimal designs. Heredia-Langer [16] presented a technique to generate D-efficient designs using genetic 

algorithms (GA) and found that the GA approach eliminates the need to explicitly consider a candidate set of 

experimental points. In addition, it can be used in highly constrained regions while maintaining a level of 

performance comparable to more traditional design construction techniques. Limmun and his colleagues [4] 

proposed a GA to generate D-optimal designs in which the experimental region is an irregularly shaped 

polyhedral region. The final designs produced by GA are superior to the extreme vertice designs for all cases 

and can be an alternative approach when EV designs are insufficient. Pradubsri and his colleagues [5] used a 

GA to generate D-Optimal designs in mixture process variables and found that GA designs have superior 

prediction variance properties than DETMAX and k-exchange algorithm designs when the design space is the 

simplex or is a highly-constrained subspace of the simplex. 
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Although GA can be successfully applied to an optimal experimental design problem, the efficiency depends on 

several factors such as the choice of design region, the choice of the evaluation function, and the size of initial 

population designs (M). The initial population design (M) size should be large enough to allow the GA to 

perform an intensive search. Thus, the GA may not find the optimal global neighborhood and get trapped at a 

locally optimal design if the population is too small. Besides that, the selection of M will also depend on 

practical computing time considerations, and the population consists of an odd number (M) of designs for the 

GA used in this paper. 

3. Materials and Methods  

3.1. Materials 

The case study consisted of three mixture components and a process variable with three levels. The proportion 

of the first, second, third ingredient was 𝑥1, 𝑥2,  and 𝑥3, respectively. In detail, Table 1 shows the constraints of 

each ingredient. The levels of the process variable were -1, 0, 1. Thus, code -1 represents the lowest level, 0 

represents the middle level, and 1 represents the highest level.  

Table 1: The constraints of components. 

Components Constraints 

1
st 𝑥1 ≥ 0.1 

2
nd 𝑥2 ≥ 0.1 

3
rd 𝑥3 ≥ 0.6 

Figure 1 shows the experimental region of the mixture experiment. The experimental region is under red lines. 

Furthermore, the design points of the mixture experiments would be run on each level of process variables. 

 

Figure 1: The experimental region of the mixture experiment. 

3.2. Methods 

The analytical procedure to be carried out to obtain the optimal design in this research is as follows: 

Step 1. Determine the model of mixture-process variables (MPV). This research uses Scheff𝑒́ ’s quadratic 
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model for mixture models and linear models for process variables. 

The Scheffé’s Quadratic Model : 

𝑌 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3 + 𝜀            (3.1) 

Linear Models for Process Variables.: 

𝑌 = 𝛼0 + 𝛼1𝑧1           (3.2) 

The MPV model is the product of a Scheffé’s quadratic mixture model crossed with a linear model in the 

process variables  : 

𝑌 = 𝛾1
0𝑥1 + 𝛾2

0𝑥2 + 𝛾3
0𝑥3 + 𝛾12

0 𝑥1𝑥2 + 𝛾13
0 𝑥1𝑥3 + 𝛾23

0 𝑥2𝑥3 + 𝛾1
1𝑥1𝑧 + 𝛾2

1𝑥2𝑧 +  𝛾3
 1𝑥3𝑧 + 𝛾12

1 𝑥1𝑥2𝑧 +

𝛾13
1 𝑥1𝑥3𝑧 + 𝛾23

1 𝑥2𝑥3𝑧       (3.3) 

where, 𝛾𝑖
0 = 𝛽𝑖 × 𝛼0 dan 𝛾𝑖

1 = 𝛽𝑖 × 𝛼1 

Step 2. Determine the variance ratios 𝜂 = 1, 5, and 10. The larger 𝜂, the more the observations within the same 

whole plot are correlated [7]. Furthermore, the different variance ratios lead to different designs, but 

these designs' quality is almost equal [2]. 

Table 2: The Variance of Whole plot and Subplot. 

Variance  𝜂 = 1 𝜂 = 5 𝜂 = 10 

Whole plot 1 5 10 

Subplot 1 1 1 

Step 3. Determine the number of experimental runs. This case study assumed that there are seven whole plots 

and three subplots, so the number of experimental runs determined is 21 design points. 

Step 4. Determine D-optimal design by the genetic Algorithm (GA). The Genetic Algorithm was built in R 

software. 

In Genetic Algorithm, specific terminology is usually used. A chromosome is a potential solution (design) in 

mixture-process variables that can be encoded as an 𝑛 × (𝑞 + 𝑏) matrix, where n is the number of design points, 

q is the number of mixture components, and b is the number of process variables. Each position of a design 

point on a chromosome is called a gene, 𝑔𝑖 = [𝑥𝑖 , 𝑧𝑖]. Thus, 𝑔𝑖 represents the real-value encoding in the i-th 

experimental run ( i =1,2,..., n ) in the mixture-process variable design matrix and 𝑧𝑖  represents the process 

variables. The following step of Genetic Algoritma in this research is as follows : 

1. Define N initial design point population according to the constraints of the mixture process variable. 

2. Generate an initial population of M chromosomes. The more the number of M chromosomes, the longer the 
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computational time in the genetic algorithm. 

3. Measure the fitness value of the M chromosome using the D-optimal criteria.  

4. Selection of the M chromosome using elitism. Designs that have the highest D-optimal value are called elite 

designs. In this research, the select design is retained and left unchanged. However, it was not allowed to 

follow the reproduction process until a new design chromosome with better criteria replaced it. The other 

design (M-1) chromosomes are randomly divided into (M-1)/2 pairs of parent chromosomes. 

5. The next stage is the reproduction process. If a probability test is passed (PTIP), the reproduction operator 

will be applied to the parent chromosomes to create their offspring chromosomes. Statistically, let u be a 

random number from a uniform distribution [0,1]. Then, the reproduction process is Bernoulli distribution 

with probability of success is α. If 0 ≤ u ≤ 𝛼, the reproduction operator will be applied to the gene or set of 

genes. If u > a, then the operator is not used. The steps of reproduction for the mixture component [4] are as 

follows. 

 Blending is the reproduction process between two parents’ chromosomes. Let Aa and Bb  are two parents 

paired in the selection process, then if a PTIP for Aa and Bb, then Aa and Bb are to be blended and create 

offspring chromosomes A
*
dan B

*
  which is formed from a linear combination as follows: 

𝑥𝑎
∗ =  𝛽𝑥𝑎 + (1 − 𝛽)𝑥𝑏 dan 𝑥𝑏

∗ = (1 − 𝛽)𝑥𝑎 + 𝛽𝑥𝑏, 

Where 𝛽~𝑈(0,1) is the random blending factor 

 The next step is crossover. The method used is a single cut point, randomly selecting one position in the 

parent chromosomes and then exchanging genes. There are two types of crossover: within-parent and 

between-parent.  

 Between-parent Crossover: if a PTIP, then a crossover is applied to  Aa of A with random gene Bb of B. 

 Within-parent Crossover: if a PTIP, then a crossover is applied within Aa. 

 The last step of the recombination process in a mixture component is mutation. Mutations are used to change 

genes randomly. The method used is uniform mutation. If a PTIP is for Aa, then one of the q components of a 

gene, for example, r, is chosen randomly. Then, the value of 𝑥𝑟  According to the constraint function, Gene is 

replaced with a uniform random value chosen between the upper and lower limits. The other components in 

the 𝑥𝑎 gene must be repaired so that the constraints of the mixture experiment are still fulfilled; that is, the 

sum of all components is one. 

The process variables according to [3] are as follows: 

 Sign change: if a PTIP, then process variable vector 𝑧𝑎 is set to −𝑧𝑎 

 Zero genes: if a PTIP, then process variable vector 𝑧𝑎 is set to 0. 

6. Measure the fitness value for the offspring chromosomes and compare it with the parent chromosomes' fitness 

value. If the value of the offspring chromosomes is higher than parent chromosomes, then the offspring 
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chromosomes replace the parent chromosomes in the next generation. 

7. Iterate over steps 4 to 6 for a large number of generations, which shows convergence to a near-optimal design. 

Step 5. Comparing the genetic algorithm results with the results of the coordinate-exchange Algorithm (JMP 

software) using D-efficiency. 

4. Results and Discussion 

Based on the constraint in the mixture experiment, the experimental region for this case can be seen in Figure 1. 

The experimental region is part of the entire simplex design, which forms a triangle space. The red point in 

Figure 1 is the main point in the simplex lattice design. Then, the design points of the mixture experiment will 

run in each level of the process variable. So, the total design points are 36, originating from 6 main points in 

each level of the process variable and two replications. Table 2 shows the variance ratio (𝜂)  influences the 

optimal design for mixture-process variables in a split-plot approach using the D-optimal criteria. This case 

study consisted of seven main plots and three subplots. In total, there were 21 design points to run. To generate 

the optimal design in this research using a genetic algorithm with the probability of success (α) used for each 

reproduction process is shown in Table 3. 

Table 3: The operator reproduction of genetic algorithm. 

The Reproduction Operators Case A Case B 

Blending 0.01 0.1 

Crossover 0.2 0.2 

Mutation 0.01 0.1 

Sign Change 0.2 0.2 

Zero Change 0.2 0.2 

M 51 51 

Iteration 1000 1000 

There are no rules for selecting the probability of success (α). The choice of alpha (α) will not prevent 

convergence. However, alpha (α) choice affects the convergence speed to the optimal design [3].  Based on the 

variance ratio (η) in Table 2 and the reproduction operators in Table 3, Table 4 shows the final D-optimal design 

using a genetic algorithm for case A. 
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Table 4: The D-optimal Design Using Genetic Algorithm For Case A. 

Whole 

Plot 

 𝜂 = 1 𝜂 = 5  𝜂 = 10  

X1 X2 X3 Z X1 X2 X3   Z X1 X2 X3 Z 

1 0.1 0.1 0.8 1 0.1 0.1 0.8 -1 0.1 0.3 0.6 -1 

1 0.1 0.3 0.6 1 0.2 0.1 0.7 -1 0.3 0.1 0.6 -1 

1 0.3 0.1 0.6 1 0.1 0.2 0.7 -1 0.1 0.2 0.7 -1 

2 0.2 0.2 0.6 1 0.1 0.3 0.6 -1 0.1 0.1 0.8 -1 

2 0.1 0.2 0.7 1 0.3 0.1 0.6 -1 0.2 0.1 0.7 -1 

2 0.2 0.1 0.7 1 0.2 0.2 0.6 -1 0.1 0.3 0.6 -1 

3 0.2 0.2 0.6 -1 0.1 0.3 0.6 1 0.1 0.2 0.7 1 

3 0.1 0.3 0.6 -1 0.2 0.2 0.6 1 0.1 0.3 0.6 1 

3 0.3 0.1 0.6 -1 0.3 0.1 0.6 1 0.3 0.1 0.6 1 

4 0.1 0.1 0.8 0 0.1 0.1 0.8 0 0.2 0.1 0.7 1 

4 0.3 0.1 0.6 0 0.2 0.2 0.6 0 0.1 0.3 0.6 1 

4 0.2 0.1 0.7 0 0.1 0.2 0.7 0 0.1 0.1 0.8 1 

5 0.2 0.2 0.6 -1 0.1 0.2 0.7 1 0.1 0.2 0.7 -1 

5 0.1 0.3 0.6 -1 0.1 0.1 0.8 1 0.2 0.1 0.7 -1 

5 0.1 0.2 0.7 -1 0.289 0.111 0.6 1 0.2 0.2 0.6 -1 

6 0.1 0.1 0.8 -1 0.2 0.1 0.7 1 0.3 0.1 0.6 0 

6 0.1 0.2 0.7 -1 0.1 0.3 0.6 1 0.2 0.2 0.6 0 

6 0.2 0.1 0.7 -1 0.1 0.2 0.7 1 0.1 0.2 0.7 0 

7 0.2 0.2 0.6 1 0.1 0.3 0.6 -1 0.2 0.2 0.6 1 

7 0.1 0.3 0.6 1 0.3 0.1 0.6 -1 0.1 0.3 0.6 1 

7 0.3 0.1 0.6 1 0.2 0.1 0.7 -1 0.1 0.1 0.8 1 

D-Opt 1.70E-26 5.15E-28 1.09E-28 

The design points in Table 4 will be more representative to show in simplex space, as shown in Figure 2. 

 

Figure 2: The Experimental Region of The MPV Using GA for Case A. 
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In Figure 2, in each variance ratio for process variables with z = 1 (low level), the optimal design points are 

spread over all the main points in the simplex lattice design and consist of 3 main plots so that there are nine 

design points. The same thing happened for the design z= -1 (high level), while at z = 0 (middle level), it only 

occurs one time in the main plot so that there is three design point. In addition, Table 4 shows that that the D-

optimal value will decrease if the variance ratio (η) of the main plots and sub-plots increases. Then, Table 5 

shows the D-optimality design of case B with 1000 iteration.  

Table 5: D-optimal Design Using Genetic Algorithm For Case B. 

Petak 

Utama 

  𝜂 = 1   𝜂 = 5   𝜂 = 10 

X1 X2 X3 Z X1 X2 X3   Z X1 X2 X3 Z 

1 0.1 0.1 0.8 -1 0.1 0.27 0.63 -1 0.1 0.1 0.8 -1 

1 0.2 0.1 0.7 -1 0.1 0.1 0.8 -1 0.2 0.1 0.7 -1 

1 0.3 0.1 0.6 -1 0.3 0.1 0.6 -1 0.3 0.1 0.6 -1 

2 0.2 0.2 0.6 -1 0.194 0.104 0.702 -1 0.165 0.212 0.624 -1 

2 0.1 0.3 0.6 -1 0.146 0.207 0.646 -1 0.1 0.3 0.6 -1 

2 0.1 0.2 0.7 -1 0.3 0.1 0.6 -1 0.1 0.2 0.7 -1 

3 0.1 0.1 0.8 -1 0.2 0.2 0.6 -1 0.2 0.2 0.6 -1 

3 0.1 0.3 0.6 -1 0.1 0.3 0.6 -1 0.3 0.1 0.6 -1 

3 0.3 0.1 0.6 -1 0.1 0.2 0.7 -1 0.1 0.2 0.7 -1 

4 0.2 0.1 0.7 0 0.289 0.1 0.611 0 0.1 0.2 0.7 0 

4 0.1 0.3 0.6 0 0.2 0.1 0.7 0 0.2 0.1 0.7 0 

4 0.1 0.2 0.7 0 0.115 0.285 0.6 0 0.1 0.2 0.7 0 

5 0.2 0.2 0.6 1 0.2 0.2 0.6 1 0.3 0.1 0.6 1 

5 0.2 0.1 0.7 1 0.1 0.3 0.6 1 0.1 0.3 0.6 1 

5 0.3 0.1 0.6 1 0.3 0.1 0.6 1 0.1 0.2 0.7 1 

6 0.1 0.1 0.8 1 0.1 0.1 0.8 1 0.1 0.247 0.653 1 

6 0.1 0.3 0.6 1 0.2 0.1 0.7 1 0.2 0.1 0.7 1 

6 0.1 0.2 0.7 1 0.1 0.2 0.7 1 0.2 0.2 0.6 1 

7 0.1 0.1 0.8 1 0.2 0.2 0.6 1 0.1 0.1 0.8 1 

7 0.2 0.1 0.7 1 0.155 0.245 0.6 1 0.123 0.254 0.623 1 

7 0.3 0.1 0.6 1 0.1 0.2 0.7 1 0.1 0.2 0.7 1 

D-Opt 1.53E-26 1.75E-28 2.97 E-29 

Based on Table 5, each variance ratio for process variables with z = 1 (low level) consists of 3 main plots so that 

there are nine design points. The same thing happened for the design z= -1 (high level), while at z = 0 (middle 

level), it only occurs one time in the main plot so that there is three design point. In conclusion,  the D-

optimality criterion decreased if the variance ratio (η) of the main plots and sub-plots increased. The optimal 

design points in Table 5 will be more representative if shown in a simplex space in Figure 3. 
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Figure 3: The Experimental Region of The MPV Using GA For Case B. 

For 𝜂 = 1, the points spread over the main points in the simplex lattice design. However, for 𝜂 = 5 and 𝜂 = 10, 

several points are shifted from the main points in the simplex lattice design. In conclusion,  that the design has 

not been reached the optimal point yet. Hence, more iterations were needed. Those indicate a relationship 

between the probability of success (α), especially in operator blending and operator mutation, with the number 

of iterations to reach the optimal design point. It is remarkable from Table 4 and Table 5 that the D-optimality 

criterion decreased if the value of the variance ratio (η) of the whole plot and sub-plot increased. That condition 

is related to the split-plot design; the D-optimal value will generally depend on the V matrix's variance ratio (η) 

assumption. Based on the D-optimal value, the design in Table 4 has a higher D-optimal value in each variance 

ratio (η) than the D-optimal value in Table 5. Therefore, the optimal design in Table 4 (case A) is better than the 

optimal design in Table 5 (case B). In cases A and B, the proportions at each level in the process variables and 

the variance ratio (η) have the same proportions;  the design points tend to choose points from the extreme level 

(±1). The reason is that the process variable model is the first-order model, and the number of process variable's 

levels is three. As an optimal design theory, the design points are in the corner of the experimental region for the 

first-order model.  If the process variable model's assumption is linear, then theoretically, the number of levels 

in the process variable used is two (2). For simulation, the GA algorithm was run for the D-optimal MPV with 

two levels in the process variable.  Table 6 shows the optimal design resulted from the GA algorithm 1000 

iterations. 
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Table 6: D-optimal Design with 2 Level Process Variable Using GA for Case A. 

Whole 

Plot 

𝜂 = 1  𝜂 = 5   𝜂 = 10 

X1 X2 X3 Z X1 X2 X3 Z X1 X2 X3 Z 

1 0.2 0.2 0.6 1 0.1 0.2 0.7 1 0.1 0.1 0.8 -1 

1 0.1 0.2 0.7 1 0.2 0.2 0.6 1 0.2 0.2 0.6 -1 

1 0.3 0.1 0.6 1 0.3 0.1 0.6 1 0.3 0.1 0.6 -1 

2 0.1 0.3 0.6 1 0.1 0.1 0.8 1 0.3 0.1 0.6 -1 

2 0.2 0.2 0.6 1 0.3 0.1 0.6 1 0.1 0.2 0.7 -1 

2 0.2 0.1 0.7 1 0.2 0.1 0.7 1 0.2 0.1 0.7 -1 

3 0.3 0.1 0.6 1 0.2 0.2 0.6 -1 0.2 0.1 0.7 1 

3 0.1 0.1 0.8 1 0.1 0.2 0.7 -1 0.1 0.2 0.7 1 

3 0.2 0.1 0.7 1 0.3 0.1 0.6 -1 0.1 0.3 0.6 1 

4 0.1 0.2 0.7 -1 0.1 0.3 0.6 1 0.3 0.1 0.6 1 

4 0.1 0.1 0.8 -1 0.2 0.2 0.6 1 0.1 0.3 0.6 1 

4 0.2 0.1 0.7 -1 0.2 0.1 0.7 1 0.1 0.1 0.8 1 

5 0.2 0.2 0.6 -1 0.1 0.3 0.6 1 0.1 0.3 0.6 -1 

5 0.1 0.3 0.6 -1 0.1 0.2 0.7 1 0.2 0.1 0.7 -1 

5 0.2 0.1 0.7 -1 0.1 0.1 0.8 1 0.1 0.1 0.8 -1 

6 0.1 0.3 0.6 1 0.1 0.2 0.7 -1 0.2 0.2 0.6 1 

6 0.1 0.2 0.7 1 0.2 0.1 0.7 -1 0.3 0.1 0.6 1 

6 0.1 0.1 0.8 1 0.1 0.3 0.6 -1 0.1 0.2 0.7 1 

7 0.2 0.2 0.6 -1 0.1 0.1 0.8 -1 0.2 0.2 0.6 -1 

7 0.1 0.2 0.7 -1 0.2 0.2 0.6 -1 0.1 0.2 0.7 -1 

7 0.3 0.1 0.6 -1 0.2 0.1 0.7 -1 0.1 0.3 0.6 -1 

D-Opt 5.530E-26 1.923E-27 4.626E-28 

The design points in Table 6 will be more representative to show in simplex space, as shown in Figure 4. 

 

Figure 4: The Experimental Region of The MPV with 2 Level Process Variable for Case A. 

Based on Table 6 and Figure 4, the design points spread to the main points in the simplex lattice design. For 
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𝜂 = 1 and 𝜂 = 5, the process variable z = -1 is located in 3 whole plots so that it consists of  9 design points, 

and the process variable z = 1 is located in 4 whole plots so that it consists of 12 design points. Then for 𝜂 = 10, 

the process variable z = -1 is located in 4 whole plots so that it consists of 12 design points, and the process 

variable z = 1 is in 3 whole plots so that it consists of 9 design points. The D-optimality criterion for the D-

optimal design MPV with two levels on the process variable was more prominent than three levels in all the 

variance ratios (η). 

Table 7: D-optimal of MPV with 3 Levels of Process Variables and 2 Levels of Process Variables. 

Process Variable 𝜂 = 1  𝜂 = 5  𝜂 = 10  

3 Level 1.70E-26 5.15E-28 1.09E-28 

2 Level 5.53E-26 1.92E-27 4.63E-28 

To evaluate the performance of the genetic algorithm, the D-optimal MPV designs of the Genetic Algorithm 

(Case A) compared to the D-optimal designs of the coordinate exchange (CE) algorithm. Figure 5 shows the 

visualization of the optimal design based on the coordinate exchange algorithm in the Trial JMP Software. 

 

Figure 5: The Experimental Region of The MPV Using CE. 

Based on Figure 5, the design points in the coordinate exchange algorithm do not tend to come from the extreme 

level (±1) compared to the genetic algorithm. However, with the same number of iterations, design points in the 

coordinate exchange algorithm are still slightly shifted from the main points in the simplex lattice design. Table 

8 shows the comparison between the GA and CE algorithms based on the D-optimality criteria. The D-

efficiency of the D-optimal MPV designs of the GA algorithm out-performed the design of the CE algorithm.  
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Table 8: D-Efficiency of Coordinate Exchange and Genetic Algorithm. 

Algorithm 𝜂 = 1 𝜂 = 5 𝜂 = 10 

GA 1.70E-26 5.15E-28 1.09E-28 

CE 2.00E-27 1.99E-28 4.43 E-29 

𝐷𝑒𝑓𝑓  1.195 1.082 1.078 

6. Conclusions 

In conclusion, the genetic algorithm thrived on finding the D-optimal MPV design with a split-plot approach. 

The strategies used in the genetic algorithm were blending, crossover, mutation, sign change, and zero genes. 

Blending and mutation operators used less probability of success (α)  than other operators to obtain more stable 

D-optimal MPV designs. It is also remarkable that the genetic algorithm provided optimal design as good as the 

coordinate-exchange algorithm, which is already implemented in commercial software.  
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