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Abstract  

In this article performs the numerical solution of a three lanes traffic flow model based on a linear velocity-

density relationship is studied. A multilane traffic flow with three lanes which is moderated by a system of 

nonlinear partial differential equation appended with initial and boundary conditions reads as an initial boundary 

value problem (IBVP). In order to compute the numerical solution, we present the discretization of the 

considered model which leads to the explicit upwind difference scheme. The numerical simulation of 10km 

highway of three lanes is performed for 6 minutes using the explicit upwind difference scheme based on 

artificially generated initial and boundary data. An experimental result for the stability condition of the 

numerical scheme is also presented by performing numerical experiments. The computed result satisfies some 

well known qualitative features of the solution. 

Keywords: Three lanes traffic flow model; Non-linear PDE; Numerical simulation. 

1. Introduction 

Now traffic jams are a major problem in most of the countries. So at the core of traffic congestion, development 

of the traffic management is the needed of time. Therefore, an efficient traffic control and management is 

essential in order to get rid of such huge traffic congestion.  
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Modeling and computer simulation play an increasing role in the flow management. Many scientists have been 

working to develop various mathematical models [1-2] in order to describe traffic flow. The most elementary 

continuum traffic flow model was the first order model developed by Lighthill, Whitham (1955) and Richards 

(1956) [10] proposed a macroscopic traffic flow model, which is very popularly known as the LWR model 

based on the assumption of mass density conservation, that is, the number of vehicles between any two points if 

there are no entrances or exits is conserved. The LWR model is a first-order model in the sense it is formulated 

as a scalar hyperbolic conservation law, and solved by finite difference methods [11-13]. According to this 

model, the traffic flow model was presented a first order non-linear partial differential equation and was based 

on a hyperbolic system of conversation laws. Typically, continuum models for multilane are traffic based on a 

system of conservation laws with source terms. Authors shows two lane traffic flow model by a finite difference 

scheme named Lax-Friedrichs scheme [5]. Axel [6] presented a hierarchy of multilane traffic flow models and 

described the derivation of macroscopic multilane traffic flow model. For elucidation of the derivation of 

multilane traffic model describe the balance equation of traffic flow and as well as closure relations on the 

balance equations from [6-8]. In [9] and [14], authors presented a macroscopic of mixed multilane freeway 

traffic that can be easily calibrated to empirical traffic data and the model is derived from a gas-kinetic level of 

description, including effects of vehicular space requirements and velocity correlations between successive 

vehicles. The main objective of this study is first order non-linear partial differential equation of multilane 

traffic flow model is appended with initial and boundary value leads to an initial boundary value problem 

(IBVP). It is too complex to be solved by analytical methods so we solve numerical solution of multilane traffic 

flow for three lanes using explicit upwind difference scheme (EUDS). We build up a computer programming 

code for the EUDS and implement schemes for artificially generated initial and boundary data and verify the 

well-known qualitative behaviors of different traffic flow variables. Some experimental results are also 

presented here regarding the stability and well-posed-ness condition of the numerical schemes. The rest of the 

article is set in the following: the mathematical model of three lane traffic model in section 2. In section 3, we 

study numerical solution and section 4 computed result satisfies some well known qualitative features by 

performing numerical experiments and finally we discuss the conclusions. 

2. Multilane Traffic Flow Model for Three Lane 

We focus on the macroscopic multilane traffic flow model which can be written in generalized form as flows 

from [6-8]:  
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Here, the subscripts 1, 2,...., N 1j   and N  refer to the lane numbers. The quantities 
j and 

j j jq v are the vehicle density and the vehicle flux in the j-th lane respectively where as 
jv is the vehicle 

velocity at the j -th lane for 1,2,...., Nj  ; at last  ,k k

j j j kT T   is the vehicle transition rate from lane 

j  to lane k , with 1.j k  In particular, we choose multilane traffic flow model (1) for three lanes that is 

for  1, 2, 3 N 3 :j    
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                                                     (2.2) 

We consider velocity  v v  as a function of density and therefore, we have the flux    .q q v     

In this paper multilane traffic flow model (2.2) is approximated by the 

Greenschield’s linear density-velocity relation:   max

max

1 ,v v





 
  

 
where maxv  is the maximum 

velocity and max is the maximum density which is based on bumper to bumper traffic. Therefore, the flux q  

takes the form    q q v   
2

max max

max max

. 1 .v v
 

 
 
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3. Numerical Scheme for Three Lane Traffic Flow Model 

Explicit upwind difference scheme is one of the finite difference methods to find the numerical approximation 

of hyperbolic partial differential equation. So our considered non-linear first order partial differential equation of 

multilane traffic flow model for three lane as an initial boundary value problem (IBVP) as follows: 
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We discretize the time derivatives 1( , )t x
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From the Taylor’s series expansion we can write 
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Backward difference in space: 

Again, from the Taylor’s series expansion we can write 

                         

2 2

2
( , ) ( , ) ...........

2!

( , ) ( , )
( )

( , ) ( , )

q h q
q x h t q x t h

x x

q q x t q x h t
o h

x h

q q x t q x h t

x h

 
    

 

  
  



  
 



 

Therefore, 

1 1 1

2 2 2

3 3 3

( , ) ( , )

( , ) ( , )
(3.3)

( , ) ( , )

q q x t q x h t

x h

q q x t q x h t

x h

q q x t q x h t

x h

   
 


   

 
 
   

  

 

We assume the uniform grid spacing with step size k and h  for space and time respectively 
1n nt t k   and 

1 .i ix x h    We write  1
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i
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i
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i
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Finally, substitute (3.2), (3.3) in (3.1), the discrete version of the non-linear PDE in the IBVP (3.1) formulates 

the first order explicit upwind difference scheme take the form 
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So, Equations (3.4), (3.5) and (3.6) are the explicit upwind difference schemes for the IBVP (3.1). 

The stability condition of EUDS for single lane traffic flow model follows [3] is guaranteed by the simultaneous 

conditions max 1
v t

x





and max max ( ), 2i

i
k x k  o . In case of three lane traffic flow model, we see 

that the stability condition of EUDS also remain unchanged for our considered model. 

4. Numerical Simulation and Results Discussion 

In this section, we presents the numerical results for some specific cases of traffic flow focusing on traffic flow 

parameters using the explicit upwind difference scheme. We present the density profile as we as computed 

velocity and flux profiles of our considered model by the EUDS. For a particular case, we choose maximum 

velocity 
1max 2max 3max= 60km/hour.v v v   For satisfying the CFL condition we pick the unit of velocity 

as km/sec. We consider 
1max 2max 3max= 180/km,     and perform the numerical experiment for 6 

minutes in 3600 time steps with 0.1t   second for a three lanes highway of 10 km in 401 spatial grid points 

with step size x 100  meters. We consider the initial density of multilane traffic flow model for three lanes 

are 1 2 3(0, ) , (0, ) and (0, )x x x   . The transition rate from second lane to first lane 20%, first lane to 

second lane 10%, second lane to third lane 20% and third lane to second lane 10%. In figure 1 shows the initial 

position of car as well as the position of car after 6 minutes with respect to the certain points of 10 km highway. 

The constant boundary data are 
1 = 20/100meters(0.1km)a for first lane, 

2 =15/100meters(0.1km)a for second lane and 
3 =18/100meters(0.1km)a for third lane. 
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Figure 1: Comparative position of the cars between initial and six (06) minutes. 
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In figure 2 we run the behavior of car density with respect to highway in km for 6 minutes. The curve marked by  

“solid line” shows the car density at 2 minutes, the curve visible by “-o-”represents the car density profile at 4 

minutes and the curve manifested as “-*-” corresponds to  the density of car at 6 minutes respectively. We 

observed that as time goes on the traffic wave is moving forward with reducing wave height that means that the 

change of the density is failing in the long route.  
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Figure 2: Density Profile for 6 minutes. 

 

In this case, we reduce the parameter of maximum velocity for three lanes 

1max 2max 3max 30km/hourv v v   but treating the same maximum density 

1max 2max 3max 180 /km       with the same initial density as in the case figure 2 for 6 minutes. As 

maximum velocity is reduced by a factor 2 (two) from the previous case, the density is increased that is the 

speed is decreased. The computed density profile as shown in figure 3 and desired traffic waves are moving 

much slower than that in the previous case. 
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Figure 3: Density Profile for smaller maxv  and larger max  

The numerical solution of multilane traffic flow model for different spatial and temporal grid size is depicted in 

figure 4. It shows that the numerical solution of the model also converges with respect to the smaller spatial grid 

size, x  and temporal grid size, t  which is also a very good agreement of the numerical solution of 

multilane traffic flow model for three lanes. 
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Figure 4: Density Profile for different spatial and temporal step sizes. 

In figure 5 shows the corresponding velocity profile of three lanes traffic flow according to the certain points of 

the highway. The velocity of traffic is computed by the Greenshield’s velocity-density 

relation;   max

max

1 .v v





 
  

 
 Here we observe that, as time goes on, the traffic wave is moving forward. 
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Figure 5: Velocity Profile for 6 minutes. 

At this stage, we are the known about the density and velocity of multilane traffic flow for a certain highway. So 

now we are capable to determine the flux of multilane traffic for three lanes with the support of the relation, 

.q v  Figure 6 represents the computed flux with respect to the distance. Here we observe that, as time goes 

on, the traffic wave is moving forward. 
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Figure 6: Flux Profile for 6 minutes. 

 

In figure 7 we plot the computed velocity profile with respect to the computed density profile by the 

formula max

max

( ) 1v v





 
  

 
 of multilane traffic flow for three lanes. The figure 7 shows that the velocity 
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and density relationship is linear which agrees accurately with our assumptions. In this case the elapsed time is 

20.916 seconds. 
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Figure 7: Traffic velocity as a function of density (linear case). 

We would like to compute the total traffic flow from the traffic flow of three lanes as our consideration. In that 

case we add the computed density of three lanes which is presented in figure 8 according to the distance. The 

total density of three lanes agrees with density profile for single lane traffic flow model as in [3] and this is one 

of the good agreement of multilane traffic flow model for three lanes. 
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Figure 8: Total Density of three lanes. 

Finally we have experimentally seen that the physical constraint ant the stability condition of the EUDS for 

single lane traffic flow is same as that of our considered model. In above qualitative traffic behavior we apply 

artificial initial and boundary data and guarantee that our considered model well defined for this data. Next also 

we apply real data in this model in a highway. 
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5. Conclusion 

In this article, we study first order explicit upwind difference scheme for the numerical solution of multilane 

traffic flow for three lanes which reads as an initial boundary value problem. We establish a computer 

programming code in order to perform numerical simulation with respect to various traffic flow parameters. 

Performing numerical simulation, we have verified some qualitative traffic flow behavior  for various traffic 

parameters of multilane traffic flow model for three lanes. This qualitative behavior agreement verified the 

implementation of the multilane traffic model for three lanes with sufficient accuracy. In our considered model 

is designed with no entrance and no exit. The model can be extended for multilane traffic flow model with 

entrance and exit of vehicles which we leave as our future work. 
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