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Abstract 

This study is extended to the work that was published by (Hamad & Kachouie, 2019). In this paper, a mixture 

method was used to estimate the Gompertz distribution parameters using hazard and cumulative hazard 

functions. This mixture method depends on the two different models (semi-parametric model, and 

nonparametric model). Cox proportional hazard model and Kaplan Meier used to estimate the Gompertz 

distribution parameters. The parameters of the logistic function (RHS) in the Cox proportional hazard can be 

estimated by the partial likelihood method. The hazard function (LHS) in the Cox model can be estimated by 

Kaplan Meier. The estimated parametric of the logistic function combined with the nonparametric estimate of 

the survival function by Kaplan Meier in order to get an estimate of the baseline hazard for Gompertz 

distribution. Improvement was archived in the estimated parameters of the baseline hazard using the mixture 

method compared to the use of the Cox method. The improvement of the mixture method was measured based 

on the estimated parameters for the baseline hazard as well as by the model goodness of fit. Different data types 

(simulation and real data) were used to measure the improvement of the mixture method. Monte Carlo 

simulations were carried out for evaluating the proposed method’s performance. The results showed that the 

mixture method provided a better estimate value of the baseline and the model parameters compared to the 

estimated values using the Cox model.  

Keywords: Kaplan Meier; Cox proportional hazard model; maximum likelihood; baseline hazard and partial 

likelihood; Gompertz distribution; Akaike information criterion; Bayesian information criterion.  
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1. Introduction 

Survival analysis is one of the statistical branches which deals with survival data. The goal of using survival 

analysis is to fit a model that illustrates the relationship between the event's time and some independent factors 

that might affect the survival time. Several approaches have been used for modeling survival data such as 

parametric model (linear regression), semi-parametric model (Cox proportional hazard), and nonparametric 

model (Kaplan Meier)[1]. Researchers now focusing on the modeling and fitting survival data. Survival data 

was modeled to estimate the failure distribution function, survival function, and hazard function [2].   

The Cox proportional hazard model is the most popular semi-parametric regression model. A semi-parametric 

model makes some assumptions about a nonparametric baseline function to facilitate the estimation of the 

parameters of a function of independent variables [1]. The Cox proportional hazard model includes two 

components, baseline hazard and logistic regression function [3]. These two components can be estimated 

separately using the partial likelihood method. The coefficients of the logistic components were estimated first 

and then these estimated parameters can be used for estimating the baseline hazard [1]. There is no need to 

specify the baseline hazard to estimate the coefficients of the logistic component, and this is an important 

feature of the Cox proportional hazard model [4]. The partial likelihood were used to estimate the coefficients of 

the logistic components first [5]. 

The Kaplan Meier is one of the most popular forms of nonparametric models that can use to describe the 

survival data. In the survival analysis using Kaplan Meier, the product limit formula was used to estimate the 

probability of survival at a specific given time [1, 6]. The Kaplan Meier provides an estimate for the survival 

function and the hazard function. Estimated the survival function from the sample of censored data and using it 

to determine the survival curve [7]. The main goal of this study is using another estimator of the baseline hazard 

of the Gompertz distribution as well as provide an estimate for the parameters of the baseline hazard.  

Since the calculation of the previous method depends on the partial likelihood method, which makes the 

estimate difficult. These limitations make biostatisticians sometimes need to develop methods for analyzing the 

survival data. Cox and Kaplan Meier provided a very thorough explanation of the hazard functions. The 

motivation of this study is to investigate the potential and useful baseline hazard of the Gompertz distribution. 

Using several mathematical properties of the hazard model, we estimated the baseline hazard for non-arbitrary 

of the Cox proportional model. This proposed method provides an estimate of the baseline hazard of the Cox 

model, which is not difficult to calculate.  

2. Models 

2.1 Semi-parametric model: Cox proportional hazard 

Family of models were introduced by David Cox in 1972. These models are written in terms of hazard function. 

The Cox proportional hazard is a member of this family. The Cox model provides an expression for the hazard 

function at time 𝑡 for an individual with a given set of explanatory variables [1]. The model is generally used in 

medical research to study the relationship between the survival time of patients and at least one indicator factor 
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[8]. It has also found a broad range of applications outside the medical research. For example, the Cox 

proportional hazard model is used in the financial sector for estimating the probability that a bank may survive 

until a specific time in the future [9]. The Cox hazard model: 

 ℎ(𝑡, 𝑥, 𝜃) = ℎ0(𝑡)𝑒∑ 𝜃𝑖𝑋𝑖
𝑘
𝑖=1 , (2.1.1) 

where ℎ0(𝑡), is an arbitrary baseline hazard which is a function of time 𝑡 and 𝑋 is a vector of explanatory 

variables. If the independent variable is a dichotomous variable, the hazard function is equal to the baseline 

hazard function  ℎ0(𝑡) for  𝑋 = 0 and equal to ℎ0(𝑡)𝑒∑ 𝜃𝑖
𝑘
𝑖=1 for 𝑋 = 1. 

2.1.1 Estimating the parameters of the Cox proportional hazard 

The Cox proportional hazard model contain two components, a baseline hazard ℎ0(𝑡) and a logistic regression 

function to model explanatory variables 𝑥1, 𝑥2, … . . , 𝑥𝑘  [3]. These two components can be estimated 

independently. The coefficients of the logistic function 𝜃 are estimated first and then these estimated parameters 

can be used to estimate the baseline hazard [1]. This is an important feature of Cox proportional hazard model 

since it does not need to specify the baseline hazard for estimating the coefficients of the independent variables. 

The partial likelihood is used to estimate the coefficients(𝜃). For more details refer to [4], [7].  

2.1.2 Estimation of the Cox model coefficients 

Partial likelihood is used to estimate logistic coefficients 𝜃1, 𝜃2, … . . 𝜃𝐾 [10]:  

 𝐿(𝜃) = ∏
𝑒∑ 𝜃𝑖𝑋𝑖

𝑘
𝑖=1

∑ 𝑒∑ 𝜃𝑖𝑋𝑖
𝑘
𝑖=1𝑙∈𝑤(𝑡𝑗)

𝑟

𝑗=1

 (2.1.2) 

where 𝑡1, 𝑡2, … . . 𝑡𝑛 are survival times and 𝑛 is the sample size. The likelihood can be rewritten as:  

 𝐿(𝜃) = ∏ [
𝑒∑ 𝜃𝑖𝑋𝑖

𝑘
𝑖=1

∑ 𝑒∑ 𝜃𝑖𝑋𝑙
𝑘
𝑖=1𝑙∈𝑤(𝑡𝑗)

]

𝑐𝑖𝑟

𝑗=1

 (2.1.3) 

where 𝑤(𝑡𝑗) is the risk at the time 𝑡𝑖  and 𝑐𝑖 is a binary variable which is zero if the observation 𝑖 survives until 

time 𝑡𝑖. The coefficients are estimated by maximizing the partial likelihood function. From the computational 

perspective, estimating the values of coefficients that maximize the partial likelihood is equivalent to finding the 

values of the coefficients that maximize the log-likelihood function [8].  

 log(𝐿(𝜃)) = ∑ 𝑐𝑖 [∑ 𝜃𝑖𝑋𝑖

𝑘

𝑖=1

− log ∑ 𝑒∑ 𝜃𝑖𝑋𝑙
𝑘
𝑖=1

𝑙∈𝑤(𝑡𝑖)

]

𝑛

𝑖=1

 (2.1.4) 

The first derivative of log-likelihood function will be set to zero:  
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 ∂log(𝐿(𝜃𝑖))

𝜕𝜃𝑖

= 0,   𝑖 = 1,2, … , 𝑘 
(2.1.5) 

and using Newton Raphson, the estimates 𝜃̂1, 𝜃̂2, … , 𝜃̂𝑘 are obtained. Furthermore, the variance of the estimated 

coefficients gets by taking the second derivative. 

 
𝑣𝑎𝑟(𝜃̂) = (

𝑑2log (𝜃)

𝑑𝜃2
)

−1

 
(2.1.6) 

We can use the approximation of the variance to estimate a confidence interval of 𝜃 [1].   

2.1.3 The baseline hazard 

In 1973, Kalbfleisch and Prentice derived an estimate of baseline hazard function [1]. The estimate of baseline 

hazard was based on the partial likelihood estimates of the logistic model coefficients 𝜃̂1, 𝜃̂2, … , 𝜃̂𝑘. The estimate 

of baseline hazard function is given as:   

 𝑆̂0(𝑡𝑖) = 1 − (1 −
𝑒∑ 𝜃𝑖𝑋𝑗

𝑘
𝑖=1

∑ 𝑒∑ 𝜃𝑖𝑋𝑗
𝑘
𝑖=1

𝑙∈𝑤(𝑡𝑗)

)

𝑒
∑ 𝜃𝑖𝑋𝑗

𝑘
𝑖=1

 
(2.1.7) 

where 𝑤(𝑡𝑗) is the set of all individuals 𝑛𝑗  at risk at time  𝑡𝑖 and  𝑥𝑗 is the vector of independent covariates for 

the individual who experiences the event at time 𝑡𝑖 [11, 12].   

2.2 Non-parametric model: Kaplan Meier 

The Kaplan Meier (KM) is a popular non-parametric survival analysis method that estimates the probability of 

survival at given time [1], [6]. To determine the Kaplan Meier curve, we estimate the survival function 

𝑆(𝑡) from a sample of censored survival data. The estimate of the survival function is given as:  

 

𝑆̂(𝑡) = ∏
𝑛𝑖 − 𝑑𝑖

𝑛𝑖

𝑘

𝑖=1

= ∏(1 −
𝑑𝑖

𝑛𝑖

)

𝑘

𝑖=1

 

(2.2.1) 

For 𝑡𝑘 < 𝑡 < 𝑡(𝑘+1), 𝑘 = 1,2, …., 𝑆(𝑡) = 1 for 𝑡 < 𝑡1 , 𝑛𝑖  denotes the number of individuals at risk at time 𝑡𝑖 , 

𝑑𝑖  is the number of individuals that experienced the event at time  𝑡(𝑖) [13], [14]. The stander error of  𝑆̂(𝑡) can 

be estimated by: 

 𝑆. 𝑒𝑠(𝑡) ≈ 𝑆̂(𝑡) √∑ (1 −
𝑑𝑖

𝑛𝑖

)

𝑘

𝑖

 (2.2.2) 

and the confidence interval of 𝑆(𝑡) is: 
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 ( 𝑆̂(𝑡) − 𝑧𝛼

2
𝑆. 𝑒𝑠̂(𝑡)  , 𝑆̂(𝑡) + 𝑧𝛼

2
𝑆. 𝑒𝑠̂(𝑡)) (2.2.3) 

2.3 Full parametric model with Gompertz baseline hazard 

The baseline survival in Cox proportional hazard is an arbitrary function. Therefore, the corresponding survival 

function can be written as: 

 𝑆(𝑡, 𝑥, 𝜃) = 𝑒− ∫ ℎ(𝑢,𝑥,𝜃)𝑑𝑢
𝑡

0  (2.3.1) 

where 𝑡  is survival time, 𝑥  is set of factors, 𝜃  is set of the model parameters, and ℎ(𝑡, 𝑥, 𝜃)  is the hazard 

function. We assume hazard function has two components as follows:  

 ℎ(𝑡, 𝑥, 𝜃) = ℎ0(𝑡, 𝜃1)ℎ1(𝑥, 𝜃2) (2.3.2) 

where ℎ0(𝑡, 𝜃1) is parametric base hazard and ℎ1(𝑥, 𝜃2) is factor-specific hazard [15]. Hence, the full parametric 

survival model can be rewritten as: 

 𝑆(𝑡, 𝑥, 𝜃) = 𝑒− ∫ ℎ(𝑢,𝑥)𝑑𝑢
𝑡

0 = 𝑒− ∫ ℎ0(𝑡,𝜃1)ℎ1(𝑥,𝜃2)𝑑𝑢
𝑡

0 = 𝑒−ℎ1(𝑥,𝜃2) ∫ ℎ0(𝑡,𝜃1)𝑑𝑢
𝑡

0  (2.3.3) 

and it can be simplified to:  

 𝑆(𝑡, 𝑥, 𝜃) = 𝑒−𝐻0(𝑡,𝜃1)ℎ1(𝑥,𝜃2) = (𝑆0(𝑡, 𝜃1))ℎ1(𝑥,𝜃2) (2.3.4) 

where 𝐻0(𝑡, 𝜃1) =  ∫ ℎ0(𝑢, 𝜃1)𝑑𝑢
𝑡

0
 is the total base hazard and 𝑆0(𝑡, 𝜃1) is base survival. Taking the natural log, 

we get:  

 ln(𝑆(𝑡, 𝑥, 𝜃)) = −𝐻0(𝑡, 𝜃1)ℎ1(𝑥, 𝜃2) =  ℎ1(𝑥, 𝜃2)ln (𝑆0(𝑡, 𝜃1)) (2.3.5) 

We have discussed baseline survival function in the previous sections. The baseline survival function can have 

any relevant parametric form based on the application at hand. The next step after defining the baseline survival 

is to estimate the parameters of the model. We defined the baseline hazard as a Gompertz baseline. To estimate 

the baseline and its parameters, we assume ℎ1(𝑥, 𝜃2) has a linear form and we estimate its parameter set 𝜃2using 

least square method. Then we estimate the survival time 𝑆(𝑡, 𝑥) using Kaplan Meier method. By this way, the 

left-hand side of Equation (2.3.5) as well as factor-specific hazard ℎ1(𝑥, 𝜃2) in the right-hand side of Equation 

(2.3.5) are estimated. The last step is estimating the baseline survival 𝑆0(𝑡, 𝜃1) using the estimates of 𝜃2 and 

ln(𝑆(𝑡, 𝑥, 𝜃)). Using the pervious equations to estimate the baseline hazard of the Cox proportional hazard in 

Equation (2.1.1).  

2.4 Gompertz Distribution  

 The Gompertz distribution is commonly used in many applied research, particularly in lifetime data analysis 
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[16]. Gompertz distribution is a generalization of the exponential distribution and is related to Weibull 

distribution in which the log of the hazard is a linear function in of t [17]. A Gompertz distribution has been 

widely used in actuarial and biological applications and demography [18]. The Gompertz distribution imposes 

the following functional forms on the density, survival, hazard, and cumulative hazard function: 

Probability density function 𝑓(𝑡, 𝑎, 𝑏) = 𝑎𝑒𝑏𝑡𝑒−
𝑎

𝑏
(𝑒𝑏𝑡−1)

 (2.4.1) 

Survival function 𝑆(𝑡, 𝑎, 𝑏) = 𝑒−
𝑎

𝑏
(𝑒𝑏𝑡−1)

 (2.4.2) 

Hazard function ℎ(𝑡) = (𝑡, 𝑎, 𝑏) = 𝑎𝑒𝑏𝑡 (2.4.3) 

Cumulative hazard function 𝐻(𝑡) =
𝑎

𝑏
(𝑒𝑏𝑡 − 1) (2.4.4) 

 

Figure 1: Gompertz hazard functions with different rate parameters: f(t), F(t), h(t), and H(t). 

The Gompertz distribution can be characterized by using the hazard function  

Figure 1(C). The hazard function of the Gompertz distribution is increasing from 𝑎 at time zero to ∞ at time ∞. 

Moreover, the natural log of the hazard is a linear function in time t. 

3. Results and Discussion 

This section evaluates the performance of the proposed method and compared it with the Cox Breslow method. 

The comparisons were done using two studies type (simulation and real application study). The results of the 
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estimated values of the parameters are compared based on four criteria including Akaike information criterion 

(AIC), Bayesian information criterion (BIC), coefficient of determination 𝑅2 , and residual standard error 𝜎. 

Furthermore, the graphical comparison of these estimated baseline hazard, the estimated parameters of the 

Gompertz distribution and its bias are considered. The numerical evaluations were implemented using R 

language. The section 3.1 shows the implemented simulation study.  

3.1 Simulation study 

 Simulation study carried out to evaluate the parametric baseline hazard estimated using the proposed method. 

The Gompertz baseline hazard was estimated for the survival data using the Cox model and proposed method. 

Three random samples were generated separately from a uniform distribution with different sizes 25, 50, and 

100 observations. These observations were used to generate a random survival time using the Gompertz 

distribution baseline (rate =0.5 and shape=2). The independent variable of the logistic component was generated 

from a uniform distribution with parameters 2 and 100. RStudio was used to replicate the Monte Carlo 

simulation for N=5,000 with 10% additive white noise. Both methods have been applied to the simulated data 

and estimated the baseline hazard. Four criteria were considered to compare the performance of both methods 

including Akaike information criterion (AIC), Bayesian information criterion (BIC), coefficient of 

determination 𝑅2, and residual standard error 𝜎. The results are demonstrated in  

Figure 1Figure 4 and Table 1. 

 

Figure 2: Cumulative baseline hazard for the Gompertz distribution using sample size of 25, 50, 100. 

Figure 2 demonstrates the comparison between the estimated baseline hazard using the mixture method and Cox 

method for different sample sizes. The result shows that the estimated baseline hazard using the mixture method 

provides a better estimate of the Gompertz baseline hazard. By increasing the sample size to 100, the estimate of 

the baseline hazard using mixture method closer to the Gompertz baseline hazard. The model (2.3.5) residuals 

are shown in Figure 3. The estimated residuals using mixture and Cox Breslow methods were computed for 

different sample sizes. The scatter plots show that the estimated residuals using mixture method and Breslow 

method are comparable. The scatter plots of the estimated residuals using mixture method have less trend in 
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comparison with the scatter plots of the estimated residuals using Cox Breslow method. Moreover, the scatter 

plots of the model residuals versus the factor indicate have approximately Gaussian distribution. 

Table 1: The Gompertz parameters estimation. 

              Parameters 

  Method 
n â Sâ b̂ Sb̂ AIC BIC R2 σ̂ 

Breslow 

25 0.51 0.12 2.42 0.150 52.37 58.11 0.849 0.392 

50 0.46 0.08 2.46 0.106 54.98 61.93 0.880 0.339 

100 0.44 0.11 2.62 0.140 146.80 154.61 0.780 0.494 

Mixture 

25 0.54 0.10 2.34 0.120 49.94 55.56 0.856 0.390 

50 0.51 0.08 2.35 0.105 39.92 46.79 0.870 0.309 

100 0.52 0.09 2.44 0.120 112.68 120.43 0.798 0.421 

 

Figure 3: Model residuals using Gompertz baseline hazard for different samples size. 

Mixture method was applied to estimate the parameters of the baseline survival in the model (2.3.5). Gompertz 

hazard was assumed for the arbitrary baseline hazard. The estimated parameters of the baseline survival using 

the mixture method were compared with those estimated parameters of the baseline survival using the Breslow 

method. Table 1 shows the estimated values for the Gompertz baseline survival parameters (rate and shape) and 

the model goodness of fit including AIC, BIC, R2, and 𝜎. The model results shows that the estimated parameters 

by the mixture method were closer estimates to the true parameters (rate=0.5 and shape=2) in comparison to 

those estimates using the Breslow method. In most cases, the proposed method gives a comparable performance 
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comparing with the Breslow method.  Moreover, the estimated parameters using the proposed method for 

sample size n=25 closer to the true parameters compared with the estimated parameters using the Breslow 

method. It is clear from the results, there are an improvement using the proposed method for which the 

estimated value of the rate parameter using mixture method 0.54(0.10) compared with the estimated value of the 

same parameter using Breslow method 0.51(0.12). For the estimated shape of the baseline survival are 

2.34(0.12) and 2.42(0.15) using the mixture and Breslow method respectively. By comparing the models 

goodness of fit using both methods, it is obvious that there are some improvements in the proposed model 

values in which the AIC = 49.94, BIC = 55.56, R2 = 0.856, and 𝜎 = 0.390  various AIC = 52.37, BIC =

58.11, R2 = 0.849, and 𝜎 = 0.392.  

      For n=100, we can see that the estimated value of the rate parameter is 0.52 with a stander error of 0.08 

using the mixture method, while the same estimate of the rate parameter using the Breslow method is 0.44 with 

0.11 stander error. Furthermore, the estimated value of the shape parameter using the mixture method is 2.44 

with 0.120 stander error in comparison with 2.62 and 0.140 stander error. For the sample size n=100, we can see 

that the estimated values of the model coefficients using the mixture method are:  AIC = 112.68, BIC =

120.43, R2 = 0.798, and 𝜎 = 0.421 in comparison with the estimated values of the model coefficients using 

Breslow method AIC = 146.80, BIC = 154.61, R2 = 0.780,  and 𝜎 = 0.494. We can observe that the estimated 

coefficients using the mixture method were improved in comparison with the estimated coefficients using the 

Breslow method. More results about the estimated parameters of the baseline survival as well as the model 

goodness of fit can be found in  Table 1.  

Figure 3 demonstrates the scatterplots of the model residuals estimated using the mixture method and Breslow 

method. For both methos, we find the scatterplots for the residuals versus the survival time and the residuals 

versus the independent variable (X). From Figure 3, we can observe that the residuals are approximately 

normally distributed. Moreover, we can see that there is a slight trend in the residual scatterplots estimated using 

the Breslow method in comparison to scatterplots of the residual estimated using the mixture method. 

The bias of the estimated parameters for the Gompertz baseline survival was computed using both methods. 

Figure 4, shows the histogram of the bias for the Gompertz parameters for different sample sizes. From the 

histogram, the of bias estimated using the mixture method is comparable with the bias that estimated using the 

Breslow method. Furthermore, the histogram of the bias indicts that the bias approximately normal distribution.  
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Figure 4: Estimated bias of Gompertz distribution parameters (𝑎, 𝑏) for different samples size. 

3.2 Real application study 

In this step, the mixture model applied to estimate the baseline survival for the patients who have breast cancer. 

The dataset includes 272 breast cancer patients (as rows), and the data consists  several factors that are related to 

the patients such as patient information, treatment, and survival time (data.World, 2016). The baseline hazard 

and baseline survival are estimated for the patients who have breast cancer using both methods. By considering 

the survival time of the patients who have breast cancer follows the Gompertz distribution, we estimated 

parameters of the Gompertz distribution. We compared the results visually and by evaluating the estimated 

models using the goodness of fit. The results are summarized in Table 2.  

Table 2 : The estimated parameters of the baseline survival using both mixture and Breslow model. 

       Parameter 

Method 
n â b̂ AIC BIC R2 σ̂ 

Breslow 
272 

0.055 0.291 146.144 154.105 0.851 0.476 

Mixture 0.079 0.306 134.360 142.264 0.861 0.456 

Table 2 shows the estimated baseline survival parameters using the mixture and Breslow method.  From the 

results, it is clear that the estimated parameters of the baseline survival using both methods were comparable. 

Furthermore, we can see that the proposed performance was great in comparison with the Breslow method. By 

comparing those two estimated models visually, it observed that the estimated coefficients (goodness of fit 

coefficients) using the proposed method were improved in comparison with those estimated coefficients using 
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the Breslow method.  

 

Figure 5:  Survival time and hazard curves using cancer data. 

 

Figure 6: The histogram of the estimated residuals for the survival time of the patients. 
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Figure 7: The scatter plots for the estimated residuals for the survival time model. 

The curves in Figure 5 show the estimated baseline survival and hazard function using the survival time of the 

patients with cancer. Using the risk probability function, shows that the estimated baseline hazard using the 

mixture method and Breslow method were equivalent estimates. Moreover, we can see that the risk probability 

increases fast after 10 years of survive with breast cancer.  The scatterplot in Figure 7 demonstrates the residuals 

vs. the survival time and residuals vs. the patient age for the proposed and Breslow method. The scatter plots of 

the residuals for both models are similar. Approximately normal residuals were obtained when the residuals 

were plotted vs. the patient's age. Moreover, there was a trend that appeared in the scatter plots of the residuals 

vs. the patient survival time. 

4. Conclusion 

The objective of this work was introducing a mixture method for estimating the baseline survival of the Cox 

model. The proposed method provides an estimate for the baseline survival based on the combination of the 

semiparametric and nonparametric models. The Cox proportional hazard model contains two components 

logistic component (RHS) and hazard component (LHS). Each component was estimated separately by partial 

likelihood (RHS) and by Kaplan Meier (LHS). Combine those estimations to get an estimate for the baseline 

hazard which was assumed as Gompertz baseline hazard. The results show that the estimated parameters of the 

baseline hazard using the mixture method were improved in comparison with the estimated parameters of the 

baseline hazard using the Cox Breslow method. The performance of the proposed method also appears on the 

goodness of fit coefficients. The goodness of fit coefficients shows that the proposed method provides a better 

estimating in comparison with the estimate of the model coefficients using the Breslow method. Despite the 

estimated baseline parameters using the mixture method and the Breslow method being comparable, the 

estimated values of the AIC, BIC, R2, and σ show that the fitted model using the mixture method provides a better 

estimate. For future research will be conducted a nonparametric baseline hazard to compare with the proposed 

method.  
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