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Abstract 

We propose in this paper, a new work to model the durations between successive transactions of the Stock 

Exchange of Tunis (BVMT). For this purpose, the autoregressive approach of the ACD model will be extended 

to the class of augmented ACD models to model the data that arrive at irregularly spaced intervals in time called 

high-frequency data or Ultra-high frequency data. The choice of the interval remains crucial since the daily 

exchanges are too small. 

Keywords: Financial time transaction; autoregressive conditional duration models; augmented ACD models; 

aggregation. 

1. Introduction  

In Tunisia, since October 1996, an electronic quotation system (super CAC) has been put in place to replace the 

open outcry system. It is managed by a central computer allowing the confrontation of buy and sell orders, and 

thus the determination of the equilibrium price. This system has been modernized once again by a new version 

of quotation developed by "NYSE/EURONEXT V900" and the quotation schedule in October 2008 went from 

2h 40m to 5h 10m. This new quotation system has favored the recording of high frequency data which is 

sometimes called "ultra-high frequency data." 

------------------------------------------------------------------------ 
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Producing accurate predictions is a priority for financial time series models. The Recent theoretical and 

empirical research in econometrics and statistics has shown a growing interest in modeling high frequency data. 

ultimate limiting case is reached when all individual events are recorded. Engle (2000) calls this limit frequency 

"ultra-high frequency." The examination of ultra-high frequency data is an extremely active area of research, 

particularly in financial economics and econometrics. It is an obvious consequence of the availability of intraday 

data bases with detailed information on the entire trading process involving, in the limited case, all individual 

trades and orders in a financial market. 

The authors [2] link the extensive literature on GARCH models [3] to the econometric literature on duration 

data [4,5]. They propose point process modelling of the overdispersion and persistence of inter-transaction 

arrival times typically observed in high-frequency financial data (stock market transactions [2,6] and exchange 

rate transactions [7]).  

On the residuals of the ACD model, researchers in [2] found evidence supporting non-linear effects of recent 

durations on the conditional mean that appear to be smaller than those predicted by the linear specification for 

very long and very short durations. 

Durations have a plausible role in price discovery in markets characterized by the presence of traders with 

different levels of information about the underlying value of the assets being traded. In the financial literature, 

for the study and development of time series models of inter-transaction arrival times, the models of [8,9] have 

provided theoretical justifications for studying such series. 

A key property of transaction data is irregular spacing over time. The question of how this salient feature should 

be treated in an econometric model is one of the most controversial issues in high-frequency data econometrics. 

It is clear that researchers can get around this problem by aggregating the data into fixed (discrete) intervals. 

However, such a procedure is naturally accompanied by a loss of information and raises the question of an 

optimal level of aggregation. Moreover, it is not clear what kind of bias is induced by the choice of a discrete 

sampling scheme. In this context, two major aspects are particularly important. First, the time interval between 

subsequent events itself has information content and is a valuable economic variable that serves as a measure of 

business activity and can affect price and volume behavior. By aggregating the data to equidistant intervals, this 

information is discarded. The second aspect is more technical, but no less crucial. Ignoring irregular data 

spacing in an econometric model can lead to significant misspecification. As illustrated in [10], there are two 

effects that need to be taken into account in this context: the effects of sampling discretization and random 

sampling. These effects are associated with the implications when irregularly spaced data are sampled at 

discrete and equidistant time intervals. The latter is related to the additional effect that the randomness of the 

sampling intervals has when a continuous-time model is estimated. 

The availability of high-frequency recorded financial data has inspired a field of research that in recent decades 

has emerged the main areas of econometrics and statistics. The growing popularity of high-frequency 

econometrics is triggered by the progression of technology in the trading system, trade recording and of course 

the significant growth in daily trading, optimality in order execution and liquidity dynamics. Technological 
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advances and the increasing dominance of electronic trading allow for high frequency market activity to be 

recorded with great accuracy, allowing for a good understanding of the data. The case of an informational limit 

is reached when all market events in message form are recorded. 

The objective of this paper is to provide an overview of most approaches in high frequency econometrics. The 

main objective is to discuss the implementation of high frequency data properties and to present applications on 

the autoregressive conditional duration models ACD and Augmented ACD model. The important task in high 

frequency data modeling is to appropriately capture the dynamics of the data. In this context, modeling the 

conditional mean as an autoregressive process plays an important role in the literature. Our methodology is 

based on the application of these new econometric models with a non-negative error term component. [1] paper 

can be seen as the starting point of a rapidly growing body of research in high frequency financial econometrics. 

In this paper, we present a work of methodological interest by which we begin with a reprocessing of the data 

that is essential to this type of study, since each day we have a set of transactions that are carried out at different 

times of the day and therefore, they must be associated with each trading day. In addition, in order to improve 

the readability and fluidity of the analyses and given the very large amount of data, we have opted for a 

representation by tables and graphs of the different results. This new database constitutes a new area of further 

research since it allows us to understand exactly and in real time, the behavior of the participants as well as the 

structure of the Tunisian market governed by the orders in order to enrich the knowledge still too rare on this 

structure that is why, they seem to us that the main interest of this research is of empirical order. 

Our paper is organized as follows, a first section devoted to the statistical description of the data and their 

treatment, the second section focuses on the production process of which we present a range of different ACD 

models and augmented ACD models that are presented in terms of a random coefficient polynomial. The 

estimation of these different models is in the third section while, the estimation of the aggregated data in 5 and 

30 minutes is in the fourth section. The conclusion is in the fifth section. 

2. Descriptive statistics of raw data 

The functional characteristics of the time series of transaction data or "ultra-high frequency (UHF) data" known 

as "tick-by-tick data" include the non-synchronization of the distributions of observations over the unit of time, 

discrete transaction prices, the appearance of a large number of transactions in the same second, and the 

existence of intra-day seasonality, i.e., these transactions reveal a daily periodic cycle. These are time series 

composed by the characteristics of the trading events to which the exact time of their appearance was assigned. 

These observations are recorded asynchronously in units of time and have certain quality characteristics that do 

not occur at low frequencies. 

2.1. Data processing 

The sampling of the series will be for each (𝑥) transaction and by hypothesis, each transaction brings the same 

amount of information to the market. The first treatment concerns the first two columns that must be converted 

to the POSIXlt format, that is, we will have a single column of the form yyyy-mm-dd hh:mm:ss (year-month-
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day-hour-minute-second). The continuous trading session starts with a pre-opening from 9am to 10am in which 

the orders are entered without any transaction at a fixing price at the opening for all the stocks we have 

eliminated since it is a price that is adjusted before the session takes place. Thus, our trading session starts at 

10am and ends at 2pm. 

The time taken to complete two successive transactions is called trade duration and is the natural measure of 

trade intensity. The importance of time intervals between transactions in the trading process is well discussed in 

market microstructure theory, [8,11,12,13]. Since any trade reflects the demand for liquidity, the duration 

between trades is then associated with the demand for liquidity. We found the existence of several transactions 

made at the same time and as in [1,2,14] we eliminated the zero durations and the negative durations that arise 

from the difference between the opening date of day 𝑑 and the closing date of day 𝑑 − 1 as shown in table (1) 

for the day of 02/01/2014 of the two stocks (durations are in seconds). 

Table 1: Reprocessing of the two stocks Data 

 

POSIXlt format Adwya POSIXlt format Uib 

Time Durations  Time Durations 

2014-01-02 10:03:01 181 2014-01-02 12:31:29 9089 

2014-01-02 10:03:21 20 2014-01-02 12:31:59 30 

2014-01-02 10:47:25 2644 2014-01-02 13:57:46 5207 

2014-01-02 10:47:52 27   

2014-01-02 10:57:28 576 

2014-01-02 11:17:09 1181 

2014-01-02 13:20:09 7380 

2014-01-02 13:33:28 799 

 

2.2. Descriptive statistics of financial durations 

Table (2) shows the descriptive statistics of the financial durations of the two securities. As can be seen, we 

have a reduction in the observations of the two securities, an average of transactions of 7 minutes for the Adwya 

security and about 11 minutes for Uib, this is a waiting time that is too long, the authors in [12] qualify it as the 

arrival of bad news. By analyzing the characteristics of the distribution of the duration, we conclude the over-

dispersion of the market, a coefficient of variation higher than the unit which implies a great dynamic of the 

series in question. 
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Table 2: Descriptive statistics of the financial durations 

 

 Adwya Uib 

Nb. Obs 3589 2313 

C.V 2.47 2.26 

Min 1 1 

Mean 427 650.9 

Max 12329 14077 

Q(10) 916.34 409.17 

Q(100) 5926.4 1880.4 

Nb. Obs: number of observations. C.V: coefficient of 

variation. Durations are in seconds. Q(k) is the statistic 

of Ljung. Box of the autocorrelation of order k. 

 

The Ljung-Box statistics (Q(k)) test the null hypothesis that there is no auto-correlation for the different lags. 

Clearly, this hypothesis is rejected for both stocks against a too high auto-correlation of durations which 

indicates a strong auto-correlation of durations. The graphs of the auto-correlation functions of the durations of 

the two titles (figure 1) take a long time to decrease approximately at a hyperbolic speed which generally 

characterizes the phenomena of long memory or persistence of the process. We also notice, high values for low 

orders of auto-correlations which indicates well, strong clustering phenomena of transactions.  

 

Figure 1: Autocorrelation function of transaction durations 

The dynamics of the durations process and the clustering effect of the transaction activity are summarized in 

figure (2) of the first 1000 observations. We observe clusters in the time of financial durations such that long 

(short) durations are followed by long (short) durations, which suggests a positive dependence between the 

duration series that is well confirmed by the graphs in figure (2). 
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Figure 2: Evolution of the first 1000 durations. Adwya (right) and Uib (left) 

2.3. Descriptive statistics of seasonally adjusted durations  

The existence of strong autocorrelation in durations may result from a noon seasonality of transactional activity. 

With this in mind, the intraday seasonality cycles are estimated by a cubic spline with nodes at each hour of the 

day between 10:00 a.m. and 2:00 p.m. The authors of [2] proposed to estimate this intraday component by a 

cubic spline while Engle [1] estimates it by a linear spline with almost the same result for both techniques, then 

this intraday effect is removed from the data. To obtain the seasonally adjusted durations, we divide the duration 

by the corresponding seasonal factor, assuming that it is the same for all days of the week 

�̃�𝑡𝑖
=

𝑥𝑡𝑖
 

𝜙𝑗(𝜏𝑡𝑖
)
                          (1) 

where 𝑥𝑡𝑖
 is the duration between event 𝑡𝑖 and 𝑡𝑖−1, �̃�𝑡𝑖

is the adjusted duration (seasonally adjusted duration), 

and 𝜙𝑗(𝜏𝑡𝑖
) is the diurnally adjusted time of arrival of event (transaction) 𝑡𝑖  at time 𝑖 in day 𝑗. In the case of a 

cubic spline, we have 

𝜑(𝑡{𝑖}) = 𝜉{𝑘,3}(𝑡{𝑖}−𝑡{𝑘})
3 + 𝜉{𝑘,2}(𝑡{𝑖}−𝑡{𝑘})

2 + 𝜉{𝑘,1}(𝑡{𝑖}−𝑡{𝑘}) + 𝜉{𝑘,0},                   (2) 

For 𝑡𝑘 ≤ 𝑡𝑖 ≤ 𝑡𝑘+1  where 𝑘 = 0, . . . , 𝑘 ₀, (𝜉{𝑘,𝑗}  is a real parameter), 𝑡𝑘  is the value of the 𝑘𝑡ℎ  node at the 

transaction time 𝑡{𝑖}.  

Table 3: Seasonally adjusted durations 

 

 Adwya Uib 

Min 0.002 0.001 

Median 0.14 0.19 

Mean 1 1 

Max 27.84 18.34 

C.V 2.4 2.04 

Q(20) 1702.7 650.51 

Q(k) is the Lyung statistic- Box to 

20 lags. 
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In general, it is a polynomial curve (in pieces) of degree 𝑑 whose first 𝑑 − 1 derivatives are continuous and the 

points of discontinuity of the d'th derivative are called the nodes. We have chosen the nodes of one hour, i.e., 

10h, 11h, 12h, 13h and 14h with a non-monotonous dynamic of the seasonal factor between the two nodes. 

Table (3) shows the descriptive statistics for seasonally adjusted durations. 

Both charts exhibit a slight inverse U-shape and unequivocally reveal that durations are subject to daily 

seasonality (figure 3).  

  

 

Figure 3: Diurnal pattern estimated by cubic spline function, Adwya (left) and Uib (right) 

The durations between trades are clearly short after the opening of the session and with less movement before 

the close of the session than in the middle of the session. The magnitude of trading activity between 11:30am 

and 12:30pm is visibly low and this is due to the effect of investor fatigue which tends to rest especially at 

lunchtime [1,2,15,16]. Note, that this effect is less apparent for the Uib title, since the hump of the Adwya title 

graph is less sharp. Similarly, the market activity at the opening of the session is too intense because investors 

adjust the information of the previous night, while this activity at the closing can be explained by some investors 

who try to close an open position. 

3. The duration processes 

The implementation of an autoregressive structure at the point process level will be performed by an 

autoregressive process in terms of duration. While such a process is specified via independently and identically 

distributed intervals and very many types of point processes allow dynamics within intervals of successive 

events {𝑥{𝑖}}, 𝑖 = 1, . . . , 𝑛. Thus, the class of what is called Wold process is obtained when the process {𝑥{𝑖}}, 

𝑖 = 1, . . . , 𝑛 forms a Markov chain whose distribution of 𝑥{𝑖+1} having 𝑥{𝑖}, 𝑥{𝑖−1}, depends only on 𝑥{𝑖}. In fact, 

the AR (1) process for inter-event durations can be a good example of the Wold process. 
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By transforming the Markovian structure, several point dynamic processes are obtained. Thus, a high order 

dynamic of the duration process allows to obtain the so-called class of autoregressive duration processes. This 

process is characterized by an intensity function containing an autoregressive component that depends on past 

durations. This class of duration processes is proposed by [1,2,7] and thus, the autoregressive duration model is 

the best type of model that can be used for point specifications of financial processes and is the most widely 

used in the recent financial econometric literature. 

However, durational models have major drawbacks. These models are not easily extended to a multivariate 

framework since the individual process does not occur in a time-synchronous manner which results in the non-

existence of joint variables that can be used to couple the process and thus making it difficult to estimate the 

instantaneous correlation between individual processes. In addition, the treatment of censored effects is too 

difficult. Such effects produce problems in the autoregressive structure because the information on the exact 

length of the model is required for the continuation of the time series. 

In this paper, we present the basic form of the conditional duration model (ACD) proposed by the authors of 

[2,7] since it is the most common type of autoregressive duration model and the most widely used in the recent 

econometric literature, and we discuss in more detail its theoretical properties and its estimation issues. 

3.1. ARMA modeling for logarithmic variables 

The best autoregressive model for variables with positive values (𝑥{𝑖} > 0) is to specify a logarithmic model for 

these variables (log x{i}), since these variables are not subject to non-negativity restrictions. The ARMA model 

for 𝑙𝑜𝑔𝑥{𝑖} is given by 

𝑙𝑜𝑔(𝑥{𝑖}) = 𝜔 + ∑ 𝛼𝑗𝑙𝑜𝑔
𝑝
𝑗=1 𝑥{𝑖−𝑗} + ∑ 𝛽𝑗

𝑞
𝑗=1 휀{̃𝑖−𝑗} + 휀{̃𝑖},     𝑖 = 1, . . . . , 𝑛.                 (3) 

where 휀{𝑖} is white noise. If 𝑥{𝑖} is a financial duration, the model belongs to the classes of AFT (Accelerated 

Failure Time)
1
 models. Under the assumption of normality of 휀{𝑖}, the parameters θ = (w, α, β)' are estimated by 

the quasi-maximum likelihood method (QML). Thus, the conditional mean of 𝑙𝑜𝑔𝑥{𝑖} can be specified from (3) 

with a conditional variance h{i} following the GARCH model according to this relationship 

{
휀{𝑖} = √ℎ{𝑖}𝑢{𝑖},      𝑢{𝑖} ∼ ℵ(0, 1)

ℎ{𝑖} = ∑ 𝛼ℎ,𝑗  휀{𝑖−𝑗}
2𝑝𝑘

𝑗=1 + ∑ 𝛽ℎ,𝑗ℎ{𝑖−𝑗}
𝑞𝑘
𝑗=1

                             (4) 

Most research is not interested in modeling (logx{i}) but rather the variable x{i} developed by the ARMA model: 

𝑥{𝑖} = 𝜔 + ∑ 𝛼𝑗𝑥{𝑖−𝑗}
𝑝
𝑗=1 + ∑ 𝛽𝑗휀{̃𝑖−𝑗}

𝑞
𝑗=1 + 휀{̃𝑖}               (5) 

with 𝑤 > 0, 𝛼{𝑗} ≥ 0, 𝛽{𝑗 } ≥ 0. The estimator of the parameter vector θ = (w, α, β)' is obtained by assuming 

                                                           
1
 More details.in [17]. 
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that the 휀{𝑖} follow the exponential distribution determined by the QML 

𝑙𝑜𝑔𝐿(𝑋;  휃) = − ∑ 휀{𝑖}
𝑛
𝑖=1 = − ∑ (𝑥{𝑖} − 𝜔 + ∑ 𝛼𝑗𝑥{𝑖−𝑗}

𝑝
𝑗=1 + ∑ 𝛽𝑗휀{̃𝑖−𝑗}

𝑞
𝑗=1 )𝑛

𝑖=1                 (6) 

in this case, a correct specification of the conditional mean ensures an efficient estimator of θ. 

3.2. The ACD model 

The authors [1,5,7] propose a MEM specification whose basic idea is the parameterization of the conditional 

mean 

𝜓{𝑖}(𝜃) = 𝐸[𝑥{𝑖} 𝐹{𝑖−1}⁄ , 휃]                                         (7) 

where θ is a column vector of p×1 parameters, F{i-1} is the past information related to the observation at 𝑡{𝑖−1} 

while the durations 휀{𝑖} = (
𝑥{𝑖}

𝜓{𝑖}
)2

 follow a positive definite 𝑖𝑖𝑑 process with E[ε{i}]=1. The ACD model can be 

identified with the GARCH model and in the literature, there are different ACD models that differ according to 

the choices of the conditional mean 𝜓{𝑖} or by the choice of the distribution of the perturbation term. The model 

is based on the linear parameterization of the conditional mean 

𝜓{𝑖} = 𝜔 + ∑ 𝛼𝑗𝑥{𝑖−𝑗}
𝑝
𝑗=1 + ∑ 𝛽𝑗𝜓{𝑖−𝑗}

𝑞
𝑗=1                (8) 

The conditional mean of the ACD model is given by definition by 𝐸[𝑥{𝑖}|𝐹{𝑖−𝑗}] = 𝜓{𝑖}, while the mean and 

variance are given by 

𝐸(𝑥{𝑖}) = 𝐸(𝜓{𝑖})𝐸(휀{𝑖}) = (
𝜔

1−∑ 𝛼𝑗𝑥{𝑖−𝑗}
𝑝
𝑗=1

+∑ 𝛽𝑗𝜓{𝑖−𝑗}
𝑞
𝑗=1

)                  (9) 

𝑉 [𝑥{𝑖}|𝐹{𝑖−1}] = 𝜓{𝑖}
2 ⋅ 𝑉(휀{𝑖})                      (10) 

For the case where p = q = 1, the variance is given by
3
 

𝑉(𝑥{𝑖}) = 𝐸(𝑥{𝑖})
2

𝑉(휀{𝑖}) [(
1−𝛽2−2 𝛼 𝛽

1−(𝛼+𝛽)2−𝛼2𝑉( {𝑖})
)]              (11) 

Yet, as can be noted, the stationarity conditions for the ACD model are similar to those for the GARCH model 

and are satisfied by (α+β)²-α²V(ε{i})<1. The corresponding results for the higher order ACD models are similar 

but more difficult to compute. It is easy to see that V(x{i})>E(x{i}
2 ). Thus, the ACD model involves excessive 

                                                           
2
 ε{i} and ψ{i}

 are two independent variables. 
3
 We admit for this case, α=α₁ and β=β₁. 
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dispersion, i.e., the (unconditional) standard deviation exceeds the (unconditional) mean
4
. Similarly, the 

martingale difference η{i}
=x{i}-ψ{i}

 may be introduced, the ACD (p, q) model can be written for the variable 𝑥{𝑖} 

as an ARMA(max(p, q),q) model 

𝑥{𝑖} = 𝜔 + ∑ (𝛼{𝑗} + 𝛽{𝑗})𝑥{𝑖−𝑗}
𝑚𝑎𝑥(𝑝,𝑞)
𝑗=1 + ∑ 𝛽휂{𝑖−𝑗}

{𝑞}
𝑗=1 + 휂{𝑖}.                 (12) 

3.3. The log-ACD model 

This model was introduced by [19,20], it ensures the non-negativity of the durations without any restriction on 

the parameters and it is obtained by the multiplicative relation 𝑥{𝑖} = 𝜓{𝑖}휀{𝑖} 

{
𝑙𝑜𝑔𝜓{𝑖} = 𝜔 + 𝛼 𝑙𝑜𝑔휀{𝑖−1} + 𝛽 𝑙𝑜𝑔𝜓{𝑖−1},

𝑙𝑜𝑔𝜓{𝑖} = 𝜔 + 𝛼 𝑙𝑜𝑔𝑥{𝑖−1} + (𝛽 − 𝛼) 𝑙𝑜𝑔𝜓{𝑖−1},
                   (13) 

with ε{i} is iid and of expectation equal to one. We will refer to this model as the logarithmic ACD model of type 

1 (LACD₁). In contrast to the linear ACD model, the LACD model involves a concavity relationship between 

휀{𝑖−1} and 𝑥{𝑖},, which is called the news impact curve. The difference in the impact of innovations with 휀{𝑖} < 1 

(bad news) on 𝑥{𝑖} is larger than in the case of innovations with 휀{𝑖} > 1 (good news). In the case of distributed 

innovation with a mean different from one, the process can be represented by 

𝑥{𝑖} = 𝜓{𝑖}
̃{𝑖}

= 𝛷{𝑖}휀{̃𝑖}                   (14) 

l𝑜𝑔𝛷{𝑖} = 𝜔 + 𝛼𝑙𝑜𝑔휀{𝑖−1} + 𝛽𝑙𝑜𝑔𝛷{𝑖−1}                 (15) 

with �̃� = 𝜔 + (𝛽 − 1)𝑙𝑜𝑔휁  and 휀{𝑖} =
{𝑖}

 avec 𝐸[휀{𝑖}] = 휁 ≠ 1. The Log-ACD model can similarly have an 

ARMA specification as developed in [21], who showed that from equation (15), the model will be an ARMA 

(R, R) process for the log x{i}. 

log 𝑥{𝑖} = �̃� + ∑ 𝛿𝑗
𝑅
𝑗=1 𝑙𝑜𝑔 𝑥{𝑖−𝑗} + ∑ 휃𝑗

𝑅
𝑗=1 𝜉{𝑖−𝑗} + 𝜉{𝑖}               (16) 

With 

𝜉{𝑖} = (𝑙𝑜𝑔휀{𝑖} − 𝐸 [𝑙𝑜𝑔휀{𝑖}]) ↷ 𝑖𝑖𝑑 (0, 𝜎{𝜉}
2 ),   

�̃� = 𝜔 + ∑ 휃𝑗

𝑅

𝑗=1

𝐸 [𝑙𝑜𝑔휀{𝑖}] + 𝐸 [𝑙𝑜𝑔휀{𝑖}]  𝑎𝑛𝑑 𝑅 = 𝑚𝑎𝑥(𝑝, 𝑞). 

Another alternative has been proposed by [19] for the Log-ACD model given by 

                                                           
4
 This property can be seen as the counterpart of the "flattening property" of the Gaussian GARCH model. 

General formulations of the lower and upper bounds of the d.e.f. of the duration process implied by an ACD 

(P,Q) model are given in [18]. 
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𝑙𝑜𝑔𝜓{𝑖} = 𝜔 + 𝛼 휀{𝑖−1} + 𝛽 𝑙𝑜𝑔𝜓{𝑖−1}  and 

𝑙𝑜𝑔𝜓{𝑖} = 𝜔 + 𝛼 
𝑥{𝑖−1}

𝜓{𝑖−1}
+ 𝛽 𝑙𝑜𝑔𝜓{𝑖−1}.               (17) 

which involves a convex news impact curve that we call the Log-ACD Type II (LACD₂). These two models can 

be written as follows 

𝑙𝑜𝑔𝜓{𝑖} = 𝜔 + ∑ 𝛼𝑗
𝑝
𝑗=1 𝑔(휀{𝑖−1}) + ∑ 𝛽𝑗  𝑙𝑜𝑔𝜓{𝑖}

𝑞
𝑗=1 ,                (18) 

where 𝑔(휀{𝑖}) = 𝑙𝑜𝑔(휀{𝑖}) (type I), or 𝑔(휀{𝑖}) = 휀{𝑖} (type II). Bauwens [22] and Karanasos [23] determine the 

moments for the two logarithmic specifications of the ACD model. For the case 𝑝 = 𝑞 = 1, the moment of 

order 𝑟 of 𝑥{𝑖} is given by 

𝐸(𝑥{𝑖}
{𝑟}

) = 𝜇{𝑟} 𝑒𝑥𝑝 (
𝑟 𝜔

1−𝛽
) ∏ 𝐸(𝑒𝑥𝑝{𝑟𝛼𝛽{𝑗−1}𝑔(휀{𝑖})})∞

𝑗=1 ,                 (19) 

where r is a positive integer and the following conditions are satisfied,  

𝜇{𝑟} = 𝐸(𝑥{𝑖}
{𝑟}

) < ∞, |β|<1, and 𝐸(𝑒𝑥𝑝{𝑟𝛼𝛽{𝑗−1}𝑔(휀{𝑖})}) < ∞. 

 As demonstrated by [21], the log-likelihood properties of the linear ACD model cannot be applied to 

the Log-ACD case, for the simple reason that the innovation ε{i-1} affects ψ{i}
 and x{i} in a non-linear manner and 

thus, destroys the validity of the log-likelihood score function in the case of a wrong formulation of the 

distribution. An alternative proposed by [21] to estimate the LACD model is to admit the log-normal 

distribution and assuming a normal distribution for the log x{i}  variable of mean ψ{i}
 and variance σ², the 

likelihood function is given by 

𝑙𝑛𝐿(𝑋, 휃) = − (
1

2
) 𝑙𝑜𝑔2𝜋 − (

1

2
) 𝑙𝑜𝑔𝜎2 − 𝑙𝑜𝑔 𝑥{𝑖} − (

1

2
) (

(𝑙𝑜𝑔 𝑥{𝑖}−𝑙𝑜𝑔𝜓{𝑖})
2

𝜎2 )      (20) 

Another class of LACD model is the augmented LACD models that are presented in terms of a polynomial with 

random coefficients as analyzed by Carrasco [24] and is given by: 

𝜗(𝜓{𝑖}) = 𝐴(휀{𝑖})𝜗(𝜓{𝑖−1}) + 𝐵(휀{𝑖})              (21) 

where ϑ(⋅) is a continuous function on [0, +∞ [, A and B are two polynomials, and 휀{𝑖} =
𝑥{𝑖}

𝜓{𝑖}
 is an 𝑖𝑖𝑑 innovation 

term with 𝐸(휀{𝑖}) = 1. 

This class of model contains several extensions of the basic ACD model with additive and multiplicative 

stochastic components, i.e., the lagged innovation manifests itself at the mean by an additive or multiplicative 

pattern. For simplicity of the work, we will restrict ourselves only to lags of order 1 for P and Q. 
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3.4. The additive and multiplicative ACD model (AMACD) 

An extension of the ACD model incorporating the two additive and multiplicative components of innovations is 

given by 

𝜓{𝑖} = 𝜔 + (𝛼𝜓{𝑖−1} + 𝜈)휀{𝑖−1} + 𝛽𝜓{𝑖−1}                    (22) 

where ν is a parameter. This specification implies a news impact curve with a slope given by (αψ
{i-1}

+ν). Here, 

the lag of the innovation term in the conditional mean manifests itself in an additive and multiplicative manner. 

In this sense, this AMACD model approximates the ACD model for ν=0. 

3.5. The Box-Cox ACD (BACD) model 

Hautsch [25] suggests an additive ACD model that is based on a power transformation of the parameters ψ{i}
 

and ε{i-1}: 

𝜓{𝑖}
{𝛿₁}

= 𝜔 + 𝛼휀{𝑖−1}
{𝛿₂}

+ 𝛽𝜓{𝑖−1}
{𝛿₁}

                     (23) 

where δ₁, δ₂ > 0. Since this chronicle exhibits long-run movements of the nonlinear (power) type, then it can be 

transformed by Box-Cox writing to recover the linearity of the model. This transformation is as follows for 

δ₁, δ₂ > 0: 

𝜓{𝑖}
{𝛿₁}

−1

𝛿₁
= �̃� + �̃�

( {𝑖−1}
{𝛿₂}

−1)

𝛿₂
+ 𝛽

𝜓{𝑖−1}
{𝛿₁}

−1

𝛿₁
                 (24) 

with �̃� = ((𝜔 + 𝛼 + 𝛽 − 1)/(𝛿₁)) and �̃� =
𝛼𝛿₂

𝛿₁
. This specification allows for concavity, convexity of functions, 

and linearity of new impact functions. For δ₁ = δ₂ = 1, we find the AMACD model, for δ₁ → 0, δ₂ → 0, we have 

the LACD₁ model and for δ₁ → 0, δ₂ = 1 we find the LACD₂ model. 

3.6. The Exponential ACD model (EXACD) 

The authors in [26] introduce the Exponential ACD model with the same characteristics as the EGARCH model 

proposed by [27]. This model allows for linearity of the new impact curve which is formulated around 휀{𝑖−1} =

1: 

𝑙𝑜𝑔𝜓{𝑖} = 𝜔 + 𝛼휀{𝑖−1} + 𝑐|휀{𝑖−1} − 1| + 𝛽𝑙𝑜𝑔𝜓{𝑖−1}    (25) 

With 𝑐 a negative rotation parameter of the new impacts curve (nic) 

If the durations are too small than the conditional mean (휀{𝑖−1} < 1), the new impacts curve has a slope equal to 

𝛼 − 𝑐 and a trend equal to 𝜔 + 𝑐, whereas for durations greater than the conditional mean (휀{𝑖−1} > 1), the 
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slope and trend of the curve are, respectively, 𝛼 + 𝑐 and 𝜔 + 𝑐. 

3.7. The SNIACD (Spline News Impact ACD) model 

This involves modeling the new responses in terms of a piecewise linear function. In the spirit of [28], the new 

impact curve can be modeled as a linear spline function with nodes for each breakpoint 휀{𝑖−1}. In particular, the 

interval of 휀{𝑖−1} is divided into M intervals, where 𝑀−(𝑀+)  denotes the number of intervals in 휀{𝑖−1} <

1 (휀{𝑖−1} > 1) with 𝑀 =  𝑀− + 𝑀+. Noting the breakpoints by {휀{𝑀−}, … . , 휀{−1}, 휀{1}, … . , 휀{𝑀+}}, the SNIACD 

model is given by 

𝜓{𝑖} = 𝜔 + ∑ 𝛼{𝑚}
+{𝑀+}

{𝑚=0} ¶
{{ {𝑖−1}≥ {𝑚}}}

(휀{𝑖−1} − 휀{̅𝑚}) + ∑ 𝛼{𝑚}
−{𝑀−}

{𝑚=0} ¶
{{ {𝑖−1}< {𝑚}}}

(휀{𝑖−1} − 휀{̅𝑚}) + 𝛽 𝜓{𝑖−1}  

            (26) 

where 𝛼{𝑚}
+  and 𝛼{𝑚}

−  are the coefficients associated with the piecewise linear spline function. One can specify 

the logarithmic transformation to the model and thus, one requires more non-negativity restrictions. The authors 

[28], show that for a small increase in 𝑀 as a function of sample size should asymptotically yield an efficient 

estimator of the new impact curve. 

Thus, and after presenting all these models and returning to equation (22), we will be able to classify all these 

duration models using a good parameterization of the functions 𝐴(⋅), 𝜗(⋅) and 𝐵(⋅) (see Table 4). 

Table 4: Differents ACD processes 

 

 𝜗(𝜓{𝑖}) 𝐴(휀{𝑖}) 𝐵(휀{𝑖}) 

Linear and logarithmic models 

ACD 𝜓{𝑖} 𝛼휀{𝑖−1} + 𝛽 ω 

LACD₁ log 𝜓{𝑖} 𝛽 ω+α log 휀{𝑖−1} 

LACD₂ log 𝜓{𝑖} 𝛽 ω+α 휀{𝑖−1} 

Nonlinear models 

EXACD log 𝜓{𝑖} 𝛽 𝜔 + 𝛼 휀{𝑖−1} + 𝑐|휀{𝑖−1} − 1| 

ABACD 𝜓{𝑖}
{𝛿₁}

 𝛽 
𝜔 + 𝛼 (|휀{𝑖−1} − 𝑏| + 𝑐(휀{𝑖−1} − 𝑏))

{𝛿₂}

 

Augmented ACD Models 

AMACD 𝜓{𝑖} 𝛼휀{𝑖−1} + 𝛽 𝜔 + 𝜈 휀{𝑖−1} 

SNIACD models 

SNIACD 𝜓{𝑖}  𝑜𝑟 log 𝜓{𝑖} β 

𝜔 + ∑ 𝛼{𝑚}
+

{𝑀+}

{𝑚=0}

¶
{{ {𝑖−1}≥ {𝑚}}}

(휀{𝑖−1} − 휀{̅𝑚})

+ ∑ 𝛼{𝑚}
−

{𝑀−}

{𝑚=0}

¶
{{ {𝑖−1}< {𝑚}}}

(휀{𝑖−1} − 휀{̅𝑚}) 

Source: [17] 
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4. Estimation and interpretation of results 

Before presenting the estimation results of the different models, and since we are interested in modeling the time 

between two trades, we started by calculating the duration in seconds between two trades 𝑥{𝑖} = 𝑡{𝑖} − 𝑡{𝑖−1} for 

the two securities Adwya and Uib. When data are recorded in seconds, such precision allows us to aggregate 

trades made at the same second and at the same time eliminate zero durations. As shown in the figure 4, the 

durations between transactions present a clustering phenomenon, such that we observe strong moments of 

exchange followed by strong moments of exchange and weak moments of exchange followed by weak moments 

of exchange. However, the transaction durations have a clear daily structure because the level of activity varies 

during the day, in particular, this activity is very strong at the beginning and end of the day and this then allows 

a variation of the average over time. Therefore, we observe in this chronicle, a daily seasonal variation which is 

modeled in the literature by a seasonal factor ∅{𝑗} (𝜏{𝑡{𝑖}}) (Diurnally pattern or also deterministic term). 

To obtain stationarity of the series, this seasonal factor will be modeled by a cubic spline function
5
 at the time of 

the realization of each transaction, that is, we have calculated at each moment when a transaction is carried out a 

seasonal coefficient that will be adopted for all days of the week (See Table.2). The seasonal coefficient is 

obtained by splitting the spline function into four nodes of one hour each and counting from midnight (10 ℎ =

36000 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). The series will be stationary after removing the seasonal coefficient from the raw series and 

the resulting series is called the seasonally adjusted �̃�{𝑡{𝑖}} =
𝑥𝑡{𝑖}

∅{𝑗}𝜏𝑡{𝑖}

 (Diurnally adjusted durations). 

4.1. Empirical illustrations of the different models 

In this paragraph, we will estimate a panoply of the different ACD specifications for the two stocks Adwya and 

Uib covering the period from 01/01/2014 to 31/06/2014. For each financial term, six ACD specifications are 

selected with exponential and Weibull distributions for the error term
6
. 

We suggested these two specifications of distributions for the error term since they are the most used for this 

type of data. The estimation of the different models is performed by the quasi-maximum likelihood method 

(QML) for the error with exponential distribution and by maximum likelihood for the weibull distribution, 

while, the choice of the delay is defined by the Bayes information criterion (BIC). Tables 5 and 6 gives the 

estimation results of the different models knowing that the SNIACD model in [17] was changed slightly 

according to the Belfrage [28] model.
7
 

By analyzing the estimation results of the different models, some conclusions can be drawn. All the coefficients 

of the different models are significant at the 5% level except for the gamma parameter of the AMACD model of 

the Uib stock. 

With no negativity restriction on the parameters of the different regressions the coefficients associated with the 

                                                           
5 ∅(𝑡{𝑖}) = 𝜉{𝑘,3}

3 (𝑡{𝑖} − 𝑡{𝑘}) + 𝜉{𝑘,2}
2 (𝑡{𝑖} − 𝑡{𝑘}) + 𝜉{𝑘,1}(𝑡{𝑖} − 𝑡{𝑘}) + 𝜉{𝑘,0} with 𝑡{𝑘} is the kth node. 

6
 See the appendix for the two distributions. 

7
 See the package under R in [28]. 
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innovations term are too small and for some models where the coefficient α₂ is negative, this is 

overcompensated by the positivity of the parameter 𝛼₁ (0 ≤ 𝛼₁ + 𝛼₂ ≤ 0,5), while the persistence parameters 

are close to unity. Nevertheless, from the estimates, we find no violation of the conditional mean non-negativity 

restriction. 

Comparing the goodness of fit of the models through the BIC value, we find that the two logarithmic models 

have the better specification than the others for the Adwya stock. On the other hand, for the Uib stock, the best 

specification is given to the LACD₁ model, nevertheless, for all these specifications, we found a strong increase 

in the log likelihood function and thus, this result is obvious since the non-linear modeling of the different 

models is only an extension of the linear models such as the ACD and 𝐿𝐴𝐶𝐷1,2 models which is an important 

and crucial specification to take into account the non-linear effects of the new impacts. Thus, for Adwya stock 

the WABACD and WSNIACD models are the best fits to the data, however, for Uib stock the WABACD model 

is the best specification. 

Table 5: Estimation of the different ACD models of Adwya stock with breakpoints for the SNIACD model 

0.5, 1.5 
 

 ACD ACD LACD1 LACD2 AMAC

D 

EXAC

D 

BACD WABAC

D 

WLSNIA

CD 

ω 0.00806

(0.001)
 

0.0033

(0.00052)
 

0.1231

(0.0080)
 

−0.0735

(0.005)
 

−0.00098

(0.00215)
 
−0.05183

(0.00507)
 

−0.0897

(0.00935)
 

−0.0490

(0.00374)
 

−0.308

(0.0139)
 

α₁ 0.13

(0.01)
 

0.2928

(0.023)
 

0.0948

(0.00606)
 

0.0677

(0.00430)
 
0.132992

(0.01299)
 

0.9782

(0.00269)
 

0.1410

(0.01217)
 

0.1067

(0.00380)
 

 

α₂  −0.2215

(0.023)
 

     −0.0281

(0.00461)
 

 

β₁ 0.87309

(0.00832)
 

0.9299

(0.00607)
 

0.9875

(0.00231)
 

0.9865

(0.00215)
 
0.424491

(0.078)
 

0.1813

(0.01242)
 

0.9832

(0.0032)
 

0.6137

(0.00903)
 

0.970

(0.006)
 

β₂     0.429787

(0.07292)
 
  0.3676

(0.00888)
 

 

c₀         0.714

(0.03771)
 

c₁      −0.1221

(0.01253)
 
 0.6315

(0.008)
 

−0.517

(0.06368)
 

c₂        0.8581

(0.00886)
 

−0.138

(0.04198)
 

ν     0.018173

(0.00368)
 
    

δ₁       0.5160

(0.0397)
 

0.236

(0.007)
 

 

δ₂       0.4086

(0.028)
 

0.373

(0.007)
 

 

γ        0.6262

(0.00756)
 

0.616

(0.00744)
 

b        0.0666

(0.00288)
 

 

LL -1929.8 -1865.17 -2114 -1999.1 -1892.3 -1930.4 -1884 -821.986 -846.239 

BI

C 

3884.14 3763.08 4252.49 4022.81 3825.53 3893.69 3808.86 1734.015 1741.592 

AI

C 

3865.58 3738.34 4233.94 4004.25 3794.6 3868.8 3777.93 1665.973 1704.479 
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Concerning the two estimated parameters δ₁ and δ₂, their sums are less than one for the Adwya stock while, for 

the Uib stock we have a sum greater than one for both BACD and WABACD models which is in conflict with 

the linearity of the ACD models especially the 𝐿𝐴𝐶𝐷1,2 models. Note also, that the concavity of the curve of 

new impacts is well verified, the coefficient 𝑐₁ of the two headings of the EXACD model is negative, this means 

that negative shocks (휀{𝑖−1} < 1) on the conditional mean act more violently than positive shocks (휀{𝑖−1} > 1), in 

other words, bad information only increases the waiting time of the trade realization time and vice versa. 

Thus, for the WABACD and ABACD models, we have evidence for both stocks of a concavity of the news 

impact curve since the value of δ₂<1. Whereas, for the last SNIACD model, it is estimated using breakpoints for 

both headings {0.5,1.5} which allow more flexibility for strong and weak innovations. All coefficients are 

significant at 5% for different thresholds. As can be seen from the second lag of the coefficient c₂, flexibility for 

new impacts is achieved. 

Table 6: Estimation of the different ACD models of Uib stock with breakpoints for the SNIACD model 0.5, 1.5 

 

 ACD LACD1 LACD2 AMACD BACD EXACD WABAC

D 

ABACD SNIACD 

ω 0.127

(0.0175)
 

0.232

(0.0164)
 

−0.0654

(0.00909)
 

0.00871

(0.00496)
 

−0.341

(0.0897)
 

−0.0668

(0.01453)
 

−0.1306

(0.00511)
 

0.07277

(0.00351)
 

−0.308

(0.01390)
 

α₁ 0.254

(0.0265)
 

0.207

(0.0115)
 

0.0617

(0.00821)
 

0.08983

(0.01995)
 

0.664

(0.0881)
 

0.8140

(0.025)
 

0.4244

(0.0062)
 

0.17605

(0.00288)
 

 

α₂       −0.0813

(0.00536)
 

  

β₁ 0.638

(0.0354)
 

0.763

(0.0219)
 

0.9775

(0.00670)
 

0.51184

(0.07856)
 

0.825

(0.0189)
 

0.322

(0.0272)
 

0.9109

(0.00673)
 

0.79349

(0.00357)
 

0.8415

(0.00575)
 

β₂    0.34779

(0.07276)
 

   −0.0686

(0.00576)
 

 

c₀         0.5094

(0.02658)
 

c₁      −0.2474

(0.02715)
 

0.1452

(0.00794)
 

−0.17938

(0.00434)
 

−0.2025

(0.066)
 

c₂       0.3139

(0.0106)
 

 −0.2627

(0.0608)
 

ν    0.04358

(0.01342)
 

     

δ₁     0.863

(0.0487)
 

 0.7739

(0.0108)
 

0.17836

(0.004)
 

 

δ₂     0.290

(0.0617)
 

 0.4332

(0.007)
 

0.26783

(0.00385)
 

 

b       0.0231

(0.00261)
 

0.00436

(0.00122)
 

 

γ       0.6219

(0.00913)
 

  

LL -

1933.03 

-1930.8 -1952.97 -1924.56 -

1844.48 

-

1909.475 

-1173.742 -

1892.368 

-1859.1 

BI

C 

3889.30

1 

3884.83 3929.19 3887.87 3727.68

6 

3849.935 2432.694 3838.96 3756.927

3 

AI

C 

3872.06

2 

3867.6 3911.957 3859.138 3698.95

5 

3826.95 2369.484 3798.736 3728.196 
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4.2. Estimation results for Aggregate Data 

Transaction data is often used in an aggregated fashion. Although this natural process results in a loss of 

information, there are three reasons for using such a process. First, temporal aggregation allows the construction 

of relevant economic variables of interest. Second, temporal aggregation reduces the impact of the market 

microstructure effect whenever the latter is losing interest and causing noise. Third, temporal aggregation 

reduces the amount of useful data whenever the study period is long or when a large cross-section is involved. 

In general, we distinguish between two major types of sampling and aggregation: 

1. Event aggregation or aggregation of the process according to the specific events of the exchange. 

2. Temporal aggregation or aggregation of the specific process in calendar time. 

In this section, we consider temporal aggregation for the 5- and 30-minute time intervals that will be applied to 

the ACD, EXACD and SNIACD models. The choice of these two different time intervals was based on the fact 

that it was found that between an aggregation of 30 seconds and 2 minutes the data did not change and this is 

due to the long waiting time between the transactions. Tables 7 and 8 provide the results of estimates of the 

aggregate seasonally adjusted durations of both titles. The estimation of the three models by quasi-maximum 

likelihood with exponential distribution error shows a persistence of the parameters accompanied by very clear 

evidence of the asymmetry of the shocks as indicated by the EXACD model.  

Table 7: Aggregate estimation of the different ACD models of Adwya stock with breakpoints for the 

SNIACD 0.5 and 1.5 model. 

 

 5min 30min 

Coefficients Estimates P values Estimates P values 

ACD     

w 0.007 0.003 0.0085 0.134 

α 0.06 0.000 0.0391 0.000 

β 0.9321 0.000 0.9581 0.000 

BIC 2792.16 2110.33 

LL -1385.5 -1045.52 

EXACD     

w -0.03 0.001 -0.008 0.55 

α 0.085 7.03e-13 0.07 8.6e-06 

c -0.053 0.0002 -0.05 0.031 

β 0.99 0.000 0.993 0.000 

BIC 3644.45 2126.93 

LL -1807.727 -1050.608 

SNIACD     

ω -0.014 0.000 -0.0290 0.000 

c₀ -0.198 0.000 -0.0828 0.000 

c₁ 0.556 0.000 0.4235 0.000 

c₂ -0.355 0.000 -0.4248 0.000 

β 0.982 0.000 0.9935 0.000 

BIC 3722.615 2104.45 

LL -1843.15 -1036.15 

N.Obs 1425 620 
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Table 8: Aggregate estimation of the different ACD models of Uib stock with breakpoints for the SNIACD 

0.5 and 1.5 model 

 

 5min 30min 

Coefficients Estimates P values Estimates P values 

ACD     

w 0.0134 0.005 0.0156 0.032 

α 0.0592 0.000 0.0693 0.000 

β 0.9321 0.000 0.9229 0.000 

BIC 2792.16 1501.3 

LL -1385.5 -741.2 

EXACD     

w -0.040 2.73e-05 -0.043 0.007 

α 0.0716 2.76e-06 0.08 0.002 

c -0.027 0.12 0.03-  0.344 

β 0.99 0.000 0.99 0.000 

BIC 2800.93 1509 

LL -1386.354 -741.9 

SNIACD     

ω -0.029  0.000 -0.110  0.000 

c₀ -0.003  0.865 0.328 0.000 

c₁ 0.140 0.000 -0.396  0.000 

c₂ -0.102  0.000 0.157 0.009 

β 0.983 0.000 0.996 0.000 

BIC 2807.064 1503.93 

LL -1385.9 -736.21 

N.Obs 1159 546 

 

The estimate of the coefficient 𝑐 is significant and of negative sign which reveals the concavity of the shock 

function which means that the marginal effect of long durations on the conditional mean measured by (𝜔 + 𝑐) is 

weaker than the marginal effect of shorter durations measured by (𝜔 − 𝑐), i.e., on the market, as the time 

between trades becomes longer and longer, investors will be less and less sensitive to the time passages. From a 

goodness-of-fit point of view, there is not much difference between the three models, which is also confirmed 

by the log-likelihood. These effects are further confirmed by figure 4 which describes the impact of new shocks 

to these three models. 

We set 𝜓{𝑖−1} to its unconditional mean (marginal mean) and let 휀{𝑖−1} vary in order to assess its impact on the 
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conditional mean 𝜓{𝑖}. 

As can be seen, the linearity of the ACD model is observed for both stocks and for the two-time intervals 

considered. For the EXACD model, we observe clear evidence for the asymmetry of the impact curve which is 

concave (휀{𝑖−1} < 1) and, when 휀{𝑖−1} ≥ 1, the new impact curve is kinked upwards (with a negative rotation 

coefficient c. (𝑐 < 0)). The EXACD model predicts a shorter duration than the linear ACD model for both short 

and long shocks. We observe that the non- linearity of the curve is observed especially for small shocks we even 

observe a news response function that implies a downward shape for low values of 휀{𝑖−1}  and this was 

confirmed in [2]. The shape of the impact curve of the SNIACD model also confirms these results, since for 

shocks 휀{𝑖−1} < 1.5 for both stocks and as shown in Figure 4, the magnitude of the response to weak shocks is 

greater than for shocks 휀{𝑖−1} ≥ 1.5 since after this level, the curve becomes constant for the Adwya stock and 

linear in shape for the Uib stock and this for the two different time intervals. This result shows that the reaction 

of investors to shocks of small durations is faster, this is explained by the fact that when several informed 

operate in the market and if one of these participants refrains from taking immediate advantage of a trade and 

thus to wait for new market liquidity in the future, someone else will take his place to make even a limited profit 

since competition prevents the waiting strategy. 

 

 

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4

P
si

 

eps(t-1) 

Adwya 5min 

ACD EXACD SNIACD

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

P
si

 

eps(t-1) 

Uib 5min 

ACD EXACD SNIACD



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2022) Volume 64, No  1, pp 166-188 

185 
 

 

 

 

Figure 4: ACD Models for aggregation time data 

5. Conclusion 

In this paper, we model high frequency data for which the time of occurrence of each event is a random 

variable. These models are based on the assumptions of the distribution of the durations studied and in which the 

conditional expectation has an autoregressive form. Our study focused on the estimation of MEM multiplicative 

error models. We have estimated a set of models whose main specification is to determine the shape of the new 

impacts curve. This specification admits a concave form for the non-linear models such as the EXACD model 

and the SNIACD model while the linearity for the ACD model has been preserved for both titles. 
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The estimation of the different models is performed by quasi-maximum likelihood with an exponential or 

Weibull distribution of the error term. The results are rather satisfactory, all the coefficients are significant at the 

5% level except for the gamma parameter of the AMACD model of the Uib stock. Similarly, we have a negative 

value of the coefficient c₁ of the EXACD model and thus a curve of new impacts which means that small shocks 

act with a very large magnitude on the conditional mean. For both coefficients 𝛿{𝑖} < 1 (𝑖 = 1,2) of both BACD 

and ABACD models the curve is concave. The coefficients of the SNIACD model are significant allowing more 

flexibility in the case of small and large innovations. 

In the second part of the chapter, we aggregated the 5- and 30-minute data applied to the ACD, EXACD and 

SNIACD models. The estimation of the last two models shows a persistence of the parameters, i.e., a persistence 

of the long and short durations between exchanges, as well as an asymmetry of the shocks explained by the 

concavity of the curve and the negative coefficient c. This evidence was well observed at the level of the graphs 

of the two titles for these different temporal aggregations. Thus, the new impact curve appears to be a generous 

way to capture the nonlinear dynamics of the ACD to MEM models. These effects are confirmed by the 

EXACD and SNIACD models, which are in our view the best models capable of capturing the non-linear 

dynamics of MEM models for fixed time intervals. 

Any work done has its limitations and our limitations in this work are that we have neglected the data 

concerning the opening and closing fix, since we have processed the exchanges continuously which results in a 

loss of information. In addition, in future research on the various ACD models, the intraday seasonal adjustment 

technique appears to have a significant, but not well understood, effect on any model used. The elimination of 

zero durations from observations with the same time stamp seems to us to be a biased technique. We chose to 

work on overly active stocks, whereas empirical studies have shown that the impact is greater on stocks that are 

not very active in active and quiet periods had an over-reaction effect. 

APPENDIX 

Distributions for the error terms 

Weibull distribution: (ε↝W((1/λ), γ)), 

𝑓(휀) = 휃𝛾휀{𝛾−1}𝑒{−𝜃 {𝛾}} for θ, γ≻0, with 휃 = (
1

𝜆
)

{𝛾}

 

Exponential distribution: (ε↝E(1/λ)), 

𝑓(휀) = (1/𝜆)𝑒𝑥𝑝(−(휀/𝜆)) for λ≻0 
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