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Abstract 

As businesses grow more complex, so do their supply chains. Data envelopment analysis (DEA) is a useful method 

for supplier selection. Weight restrictions allow for the integration of managerial preferences in terms of relative 

importance levels of various inputs and outputs. In some situations there are some factors which play both input and 

output roles as well. The purpose of this research is to propose a method for selecting the best suppliers in the 

presence of weight restrictions and dual-role factors. This study shows the supplier selection process through a DEA 

model, while allowing for the incorporation of decision maker’s preferences and considers multiple factors which 

simultaneously play both input and output roles. The proposed model does not demand exact weights from the 

decision maker. This study presents a robust model to solve the multiple-criteria problem. A numerical example 

certifies the application of the proposed method. 
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1. Introduction 

Supplier selection is a key operational task for developing sustainable supply chain partnerships. Currently, due to 

outsourcing initiatives, organizations have become more dependent on suppliers making it more critical to choose 

and evaluate their supplier performance. Supplier evaluation and selection requires the consideration of multiple 

objectives and criteria [1]. 

Supplier selection is the process by which suppliers are reviewed, evaluated, and chosen to become part of the 

company’s supply chain. Shin et al. [2], Farzipoor Saen [3], Farzipoor Saen and Zohrehbandian [4], argue that 

several important factors have caused the current shift to single sourcing or a reduced supplier base.  

 

First, multiple sourcing prevents suppliers from achieving the economies of scale based on order volume and 

learning curve effect. Second, multiple supplier system can be more expensive than a reduced supplier base. For 

instance, managing a large number of suppliers for a particular item directly increases costs, including the labor and 

order processing costs to managing multiple source inventories. Meanwhile multiple sourcing lowers overall quality 

level because of the increased variation in incoming quality among suppliers. Third, a reduced supplier base helps 

eliminate mistrust between buyers and suppliers due to lack of communication. Fourth, worldwide competition 

forces firms to find the best suppliers in the world.  

The supplier selection process has only recently (within the last decade) started to integrate various environmental 

dimensions. The decision models will necessarily become more complex due to the many new dimensions brought 

in by green supply chain efforts, where the tradeoffs become more evident and numerous. The decisions will also 

include more intangible dimensions such as reputation, supply chain risk, business continuity, and social impact. 

These new criteria and dimensions required rethinking some of the more established approaches and models. In 

addition, decision makers, or agents that influence the decisions, continue to grow when environmental factors come 

into play[5].Models for supplier selection represent only one of over a dozen supply chain management areas (a 

comprehensive review of supply chain modeling literature).[6] Thus, it is easy to see that a strategic direction in 

supplier management practices requires the ability to take multiple criteria and measures in order to arrive at a clear 

and straightforward prioritization or final selection [7]. The extensive nature and modeling complexity of the regular 

supplier selection process makes the problem heavily reliant on multiple criteria decision models. This real world 

complexity in the outsourcing and vendor selection process generated the need to help organizations make more 

thoughtful and simplified decisions. Simplifying complex managerial decision making is the role of many pragmatic 

theories and models [8]. 

Supply chain management has become a key aspect that has implications for effective and efficient management of 

industrial relations. It has also become an important focus for firms and organizations to obtain a competitive 

advantage [9]. 

 One of the uses of data envelopment analysis (DEA) is supplier selection. In original DEA formulations the 
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assessed decision making units (DMUs) can freely choose the weights or values to be assigned to each input and 

output in a way that maximizes its efficiency, subject to this system of weights being feasible for all other DMUs. 

This freedom of choice shows the DMU in the best possible light, and is equivalent to assuming that no input or 

output is more important than any other. The free imputation of input–output values can be seen as an advantage, 

especially as far as the identification of inefficiency is concerned. If a DMU (supplier) is free to choose its own 

value system and some other supplier uses this same value system to show that the first supplier is not efficient, then 

a stronger statement is being made. The advantages of full flexibility in identifying inefficiency can be seen as 

disadvantages in the identification of efficiency. An efficient supplier may become so by assigning a zero weight to 

the inputs and/or outputs on which its performance is worst. This might not be acceptable by decision makers as 

well as by the analyst, who after spending time in a careful selection of inputs and outputs sees some of them being 

completely neglected by suppliers. Decision makers may have in supplier selection problems value judgments that 

can be formalized a priori, and therefore should be taken into account in supplier selection. These value judgments 

can reflect known information about how the factors used by the suppliers behave, and/or ‘‘accepted” beliefs or 

preferences on the relative worth of inputs, outputs or even suppliers. For example, in supplier selection problem in 

general, one input (material price) usually overwhelms all other inputs, and ignoring this aspect may lead to biased 

efficiency results. Suppliers might also supply some outputs that require considerably more resources than others 

and this marginal rate of substitution between outputs should somehow be taken into account when selecting a 

supplier. To avoid the problem of free (and often undesirable) specialization, input and output weights should be 

constrained in DEA. In some situations there is a strong argument for permitting certain factors to simultaneously 

play the role of both inputs and outputs. In supplier selection context, the research and development cost can be 

considered as both an input and an output. Remembering that the simple definition of efficiency is the ratio of output 

to input, an output can be defined as anything whose increase will cause an increase in efficiency. Similarly, an 

input can be defined as anything whose decrease will cause an increase in efficiency. If the research and 

development cost is considered as an output, then the increase in the research and development cost will increase the 

efficiency of the supplier. Likewise, if the research and development cost is considered as an input, then any 

decrease in the research and development cost without a proportional decrease in the outputs will increase 

efficiency. So, depending on how one looks at it, either increasing or decreasing the research and development cost 

can increase efficiency [10]. 

Generally speaking, the criteria for supplier selection highly depend on individual companies and industries. On the 

one hand, different companies have different organizational structure, management strategy, enterprise culture and 

others. All of these influence the determination of supplier selection criteria. On the other hand, industry background 

causes huge difference and greatly impacts the selection of suppliers. Therefore, the identification of supplier 

selection criteria are on the basis of specific environments, and largely requires domain experts’ assessment and 

judgment [11]. Supplier selection highly depends on large amounts of domain knowledge, where experts’ 

assessments play an important role. However, various uncertainties are present in domain experts’ subjective and 

qualitative judgment, such as imprecision, fuzziness, incompleteness and so on. Therefore it is necessary to develop 

a more effective method for supplier selection, which should be able to handle various types of uncertainties [12]. 
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2. Literature review:                                       

Some mathematical programming approaches have been used for supplier selection in the past. With the increased 

emphasis on manufacturing and organizational philosophies such as total quality management and just in time, all 

companies are faced with quality assurance issues in design, manufacturing, purchasing, and delivery. The 

performance of suppliers has become a crucial element in a company’s quality success or failure, and clearly 

influences the responsiveness of the company [13]. 

When relative weight of purchased product feature, relationship measure between purchased product feature and 

supplier assessment criteria and ratings of suppliers with respect to each supplier assessment criteria are represented 

as fuzzy numbers, computation of the weights of supplier assessment criteria and the ratings of suppliers fall into the 

category of fuzzy weighted average [14]. 

A ranking method based on area measurement that attempts to alleviate the drawbacks of the existing fuzzy number 

ranking methods is employed to rank the potential suppliers. Most ranking methods observe the order of fuzzy 

numbers and do not measure the degree of difference between them. Furthermore, some of the ranking methods can 

only be applied when membership functions are known. This issue can be problematic when one considers that 

fuzzy numbers to be ranked are generally the output of fuzzy number aggregation operations and their exact 

membership functions are unknown. Moreover, the inclusion or omission of fuzzy numbers to or from the 

comparison may alter the original ranking [15]. 

Previous studies have identified some criteria for evaluating suppliers. Based on the relationships between suppliers 

and manufacturers, summarized 23 criteria, which fell into four categories: quality, deliverability, performance, and 

warranty policy [16]. In order to increase a company’s competitive advantage in supply chain management, 

enterprises have to maintain long-term relationships with their most reliable suppliers. When companies select the 

right suppliers, cost is not the only criterion to be considered; companies also need to consider quality, 

deliverability, and service [17]. 

US manufacturing company assessed its supply chain risk and made its offshore sourcing decisions. The case 

company adopted the AHP method to evaluate the weights of its main objectives (such as product, partner, and 

environment) and sub-objectives (such as quality, cost, service, and management capabilities). Based on the weights 

of the 16 factors, the case company could evaluate several offshore alternatives: finished goods from China; finished 

goods from Mexico; parts from China, Maquiladora, no investment; parts from China, Maquiladora, with 

investment; and parts from China, with assembly in the US. The results showed that sourcing finished goods from 

China would be the best offshore strategy for the case company [18].  

A fuzzy-based mathematical programming approach to account for multiple criteria and vagueness within the 

supplier selection procedure. Recently, a weighted max–min fuzzy multi- objective model developed to deal with 

the vagueness of input data and criteria weights effectively in supplier selection [19, 20]. 
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A two phase decision model for supplier management including supplier selection, evaluation, and development. In 

the first phase, QFD model was integrated with a quantitative model to select the appropriate internet service 

providers. In the second phase, the selected internet service providers were evaluated from customer, performance, 

and competition perspectives [21]. 

Forker and Mendez proposed an analytical method for benchmarking using DEA that can help companies identify 

their most efficient suppliers, the suppliers among the most efficient with the most widely applicable total quality 

management (TQM) programs, and those suppliers who are not on the efficient frontier but who could move toward 

it by emulating the practices of their ‘‘best peer” supplier (s) [22]. 

 Although previously reported studies developed approaches for supplier selection process, further studies are 

necessary to integrate imprecise information concerning the importance of purchased product features, relationship 

between purchased product features and supplier assessment criteria, and dependencies between supplier assessment 

criteria into the analysis. 

3. Proposed method for supplier selection: 

DEA proposed by Charnes et al. [23] (Charnes–Cooper–Rhodes (CCR) model) and developed by Banker et al. [24] 

(Banker– Charnes–Cooper (BCC) model) is an approach for evaluating the efficiencies of DMUs. One serious 

drawback of DEA applications in supplier selection has been the absence of decision maker judgment, allowing total 

freedom when allocating weights to input and output data of supplier under analysis. This allows suppliers to 

achieve artificially high efficiency scores by indulging in inappropriate input and output weights. 

The most widespread method for considering judgments in DEA models is, perhaps, the weight restrictions 

inclusion. Weight restrictions allow for the integration of managerial preferences in terms of relative importance 

levels of various inputs and outputs. The idea of conditioning the DEA calculations to allow for the presence of 

additional information arose first in the context of bounds on factor weights in DEA’s multiplier side problem. This 

led to the development of the cone-ratio [25] and assurance region models [26]. Both methods constrain the domain 

of feasible solutions in the space of the virtual multipliers. To introduce the method for supplier selection, Table 2 

lists the nomenclature used to formulate the problem under consideration. The discussions in this paper are provided 

with reference to the original DEA formulation by Charnes et al. [23] below, which assumes constant returns to 

scale and that all input and output levels for all DMUs are strictly positive. The CCR model measures the efficiency 

of DMUo relative to a set of peer DMUs: 

1

1

max ,
t

q qoq
o k

r ror
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e

h v
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=

=
∑
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3.1. Problem parameters: 

, , , , , , , , , , , ,r r q q r r q q r q q r rd c a bλ γ ε µ β ϑ ϖΩ Φ
  User-specified constants 

p    =           1, . . . , n collection of suppliers (DMUs) 

q     =           1, . . . , t the set of outputs 

r     =           1, . . . , k the set of inputs 

f    =           1, . . . , F the set of dual-role factors 

qpU
 =           the qth output of pth DMU 

prV
 =            the rth input of pth DMU 

qoU
 =           qth outputs of the DMUo under investigation 

roV   =            rth inputs of the DMUo under investigation 

jZ
 =             the factor that plays the role of both an input and output 

fpZ
 =            the fth dual-role factor of pth DMU Decision variables 

qg
 =             weight of the qth output 

rh =               weight of the rth input 

 

Where there is a set of n peer ,{ : 1, 2,..., },DMUt DMUp p n=  which produce multiple 

outputs
( 1, 2,... ),qpU q t=

 by utilizing multiple inputs 
( 1, 2,... ).prV i m= oDMU is the DMU under 
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consideration. qg
is the weight given to output q and rh is the weight given to input r . ς is a positive non-

Archimedean infinitesimal. oDMU is said to be efficient. ( 1)oe = if no other DMU or combination 

of DMUt can produce more than oDMU on at    least one output without producing less in some other output or 
requiring more of at least  one input. The linear programming equivalent of (1) is as follows: 

 

1

1

1 1
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       0  ,
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∑ ∑                                                                      (2) 

 

In (3) the various types of weight restriction that can be employed to multiplier models are shown [32]. 

Absolute weight restrictions 

 

   ( )      ( ),r r r r q q q oh a g aλ γ ε µ≤ ≤ ≤ ≤  

 

Assurance region of type I  

                                                                                                                                                                       (3)    

1 1
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r r r q q o

r q
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Assurance regions of type II  

 

   ( ),r r qh g cϖ ≥  
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These letters (
, , , , , , , ,r r q q r r q q rλ γ ε µ β ϑ ϖΩ Φ

) are user-specified constants to reflect value judgments the 

decision maker wishes to incorporate in the assessment. They may relate to the perceived importance or worth of 

input and output factors. The restrictions (a) and (b) in (3) relate on the left hand side to input weights and on the 

right hand side to output weights. Constraint (c) links directly input and output weights. Absolute weight restrictions 

are the most immediate form of placing restrictions on the weights as they simply restrict them to vary within a 

specific range. Assurance region of type I, link either only input weights ( )rb  or only output weights ( )ob . The 

relationship between input and output weights are termed assurance region of type II. Weights restrictions may be 

applied directly to the DEA weights or to the product of these weights with the respective input or output level, 

referred to as virtual input or virtual output. The virtual inputs and outputs can be seen as normalized weights 

reflecting the extent to which the efficiency rating of a DMUqt understood by a given input or output variable. 

Restrictions on virtual inputs/virtual outputs assume the form in (4), where the proportion of the total virtual output  

of DMUp accounted for by output q is restricted to lie in the range [ qc
, qd

] and the proportion of the total virtual 

input of DMUp accounted for by input r is restricted to lie in the range [ rb , ra ]. 

 

1

1

,            q=1,.....t.

,                r=1,.....k.

q pq
q qt

q pqq

r pr
r rk

r prr

g h
c d

g h

h v
b a

h v

=

=

≤ ≤

≤ ≤

∑

∑

                                                       (4) 

 

The range is normally determined to reflect prior views on the relative ‘‘importance” of the individual outputs and 

inputs. Constraints such as (5) are DMU specific meaning that the DEA model with such constraints may become 

computationally expensive. Wong and Beasley [27] suggest some methods for implementing restrictions on virtual 

values: 

– Method 1: Add the restrictions only in respect of DMUo being assessed leaving free the relative virtual values 

of the comparative DMUt; 

– Method 2: Add the restrictions in respect of all the DMUt being compared. This is computationally expensive 

as the constraints added will be of the order of 2n (t + k);  

_Method 3: Add the restrictions (4) only in relation to the assessed DMU, and add constraints (5) with respect to 

the ‘‘average”  
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DMU, which has an average level of the qth output equal to 1
/n

pqp
u n

=∑ and has an average level of the rth 

input equal to 1
/n

rpp
v n

=∑ . 

 

( )

( )

1

1
1

1

1
1

/
,         q = 1,....,t,

/

/
,         r = 1,....,m.

/
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q pqp

q qt
n

q pqp
q

n
r rpp

r rm
n

r rpp
r

g u n
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g u n

h v n
b a

h v n

=

=
=

=

=
=

≤ ≤

≤ ≤

∑
∑ ∑

∑
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                                     (5) 

 

Restrictions on the virtual input–output weights represent indirect absolute bounds on the DEA weights of the type 

shown in (a) in (3). The imposition of restrictions on virtual inputs or outputs is sensitive to the model orientation. 

The multipliers formulation, with the virtual weights restrictions applying to DMUo (method 1), is as below2, 3, 4: 
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1 1
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∑

∑ ∑

∑

∑

                                                    (6) 

 

In summary, Model (6) proposes a method for selecting the best suppliers in the presence of weight restrictions. 
Now, to consider dual-role factors and weight restrictions, a new model is proposed. Consider a situation where 

members p of a set of n DMUt are to be evaluated in terms of t outputs 
( )

1

t

p pq q
u u

=
=

 and m inputs 

( )
1

m

p rp r
v v

=
=

.In addition, assume that a particular factor is held by each DMU in the amount pz
, and serves 

as both an input and output factor. The proposed model for considering single dual-role factor is as follows [28]. 
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1 1
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q qo o o
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 
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∑ ∑
    (7) 

At this point, to demonstrate how to consider multiple dual-role factors in the model, the following new model is 

presented. Assume that some factors are held by each DMU in the amount  
( )1,... ,fpz f F=

 and serve as 
both an input and output factors. The proposed model for considering multiple dual-role factors is as follows: 

 

1 1 1
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1 1 1 1

,

max ,
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 (8) 

The linear programming form of Model (8) is as follows: 

1 1 1

1

1 1 1 1

,

max   
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         1
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t F F

q qo f fo f fo
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k
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 (9) 
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At this stage, the model that considers both dual-role factors and weight restrictions is introduced. 
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(10) 

4. Numerical example: 

The data set for this example is partially taken from Talluri and Baker [29] and contains specifications on 18 

suppliers. The supplier inputs considered are Total Cost of shipments (TC), 5 Number of Shipments per month (NS), 

and Research and Development cost (R&D). The outputs utilized in the study are Number of shipments to arrive On 

Time (NOT), Number of Bills received from the supplier without errors (NB), and R&D. R&D plays the role of 

both input and output. According to the decision of decision maker, the importance of TC, as expressed by the 

weight rh , must be as follows (method 1): 

                                            

1

1

0.5  3r o
m

r ror

h v
h v

=

≤ ≤
∑  

Table 1 reports the results of efficiency assessments in the presence of virtual weight restriction and dual-role factor 
and their input/output behavior for the 18 suppliers obtained by using Model (10). 
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Supplier no.          Efficiency score in the presence of                                  1Θ̂                           1ϒ̂                              1 1
ˆ ˆΘ −ϒ

 

                               virtual weight restriction and dual                                                                                         

                               -role factor (applying Model (10)) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

.934 

.9695 

1 

1 

.9705 

1 

1 

.8842 

.8859 

.7653 

.7628 

.9053 

.9228 

.9132 

.9775 

.8169 

1 

1 

.002354147 

.002213107 

.002267565 

.003359652 

.00228148 

.007130057 

0 

.001762005 

.001780101 

.001767251 

.001824056 

.003981494 

.005004239 

.001989893 

.00466217 

.0017675 

.019386 

.005784615 

0 

0 

0 

0 

0 

0 

.9176708 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

.002354147      

.002213107 

.002267565 

.003359652 

.00228148 

.007130057 

_.9176708 

.001762005 

.001780101 

.001767251 

.001824056 

.003981494 

.005004239 

.001989893 

.00466217 

.0017675 

.019386 

.005784615 

Table 1: Efficiency scores in the presence of virtual weight restriction and dual-role factor, and input/output 
behavior [10] 

ς  has been set to be 0.0001. Model (10) identified suppliers 3, 4, 6, 7, 17, and 18 to be efficient with a relative 

efficiency score of 1. The remaining 12 suppliers with relative efficiency scores of less than 1 are considered to be 

inefficient. Therefore, decision maker can choose one or more of these efficient suppliers. The supplier 7 is the 

DMU that R&D is behaving like an input.  

Using T the null hypothesis that the two groups have the same population at a level of significance a can be checked. 

In this example, there is T = _1.0757. If a = 0.05 (5%) is chosen, then it holds that T0.025 = 1.96. Since T = _1.0757 

135 
 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 13, No  1, pp 124-138  

< _1.96 = _T0.025, the null hypothesis at the significance level 5% is not rejected. Consequently, the differences 

among the efficiency scores obtained by Model (2) and efficiency scores obtained by Model (10) are not statistically 

significant. 

5. Conclusion: 

Strong competitive pressure impels many organizations to deliver their products and services to customers faster, 

cheaper and better than others. Managers have come to know that it is not possible to do it alone without responsible 

suppliers. Hence the selection of suppliers has received considerable attention in the purchasing literature, because 

of the increasing importance of supplier selection decisions is forcing organizations to rethink their purchasing and 

selection strategies. 

This paper provided a model for supplier selection in the presence of dual-role factors and weight restriction. Notice 

that, whatever we propose any possible process to improve DEA model, there always is a result that shows the best 

DMUs as efficient so that their efficiency scores equal to one. The reason is that DEA measures the relative 

efficiency of DMUs. Each DEA model has a specific assumption which should be considered beforehand. In real 

world, decision makers should consider these assumptions. As a result, the proposed model is only a possible way to 

achieve better supplier selection but not sufficient. In other words, the proposed model assumes that weight 

restrictions and dual-role factors are present. It is understood that if these assumptions are not relevant, the proposed 

model cannot be used. 

One of the limitations of this paper is that the proposed model assumes all suppliers are completely homogeneous. 

As Farzipoor Saen [30] discussed, the assumption of classical supplier selection models is based on the principle 

that suppliers consume common inputs to supply common outputs. In spite of this assumption in many applications 

some suppliers do not comprehensively consume common inputs to comprehensively supply common outputs. In 

other words, different industrial suppliers may have many differences between them. To evaluate the relative 

efficiency of suppliers, all the suppliers may not have identical functions. For instance, to select a supplier most of 

inputs and outputs (selection criteria) of suppliers are common, but there are a few input (s) and/or output (s) for 

some suppliers that may not be common to all. In a supplier evaluation example that buyer consumes two types of 

materials such as type X and type Y. X supplier may not supply type Y. To evaluate this supplier, considering cost 

as an input, cost of type Y for the supplier is meaningless. It is clear that zero value allocation for this type of input, 

causes relative efficiency of the supplier, to increase unrealistically.  

In this case, it is not satisfactory saying that the suppliers which do not supply material of type Y, are not 

comparable with the suppliers which supply material of type Y. Meanwhile, allocating zero value to suppliers that 

do not supply material of type Y, is not fair. Generally, zero allocation to outputs and inputs of some suppliers, 

makes the efficiency evaluation unfair. That is zero allocation to output, may make a supplier inefficient, on the 

other hand, zero allocation to input, may make a supplier efficient, unrealistically. Farzipoor Sean [31] proposes a 
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model for selecting slightly non-homogeneous suppliers. However, he did not consider weight restrictions and dual-

role factors. A potential extension to the methodology includes the case that some of the suppliers are slightly non-

homogeneous in the presence of both weight restrictions and dual-role factors.  
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