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Abstract 

 
The good features included in the explicit ‘LS-DYNA3D’ code such as ALE, non-reflecting boundaries, 

constraint joints, contacts, multi-materials, initial volume fraction or geometry features and the flexibility in 

creation and application of load curves are explored and highlighted in the investigation. The fact that the focus 

is on structural engineering does not necessarily prevent from highlighting related issues which are crucial at the 

design stage and therefore reflected as factors directly influencing the analysis process. The mathematical 

background, time integration, drawbacks and superior features of the code are thoroughly explained in a fashion 

intended to enrich the knowledge of new engineers.  
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1.  Introduction 

 

The LS-DYNA3D is an explicit ‘3-D’ finite element code for analyses of the large deformation dynamic 

response of elastic, inelastic solids and structures. The program is extensively used by (i) aerospace, including 

effects of birds striking airplanes, aircraft analysis, improved methods of manufacturing aircraft wings (ii) 

analysis of shipping containers for radioactive materials and ship collision (iii) automobile design crash tests, 

and human effects (iv) biomedical studies, including brain impact studies, human response to balloon 

angioplasty, spinal region surgical procedures and artificial implants, and development of a new machine to 

break kidney stones using shock waves (lithotripter) (v) aluminium can and metal forming production (vi) train 

accident analysis (vii) structural analysis.  
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A wide range of material types and interfaces enable the efficient mathematical modelling of wide spectrum of 

complex engineering problems. LS-DYNA3D (dynamics in three dimensions) is a non-linear structural 

dynamics code that can analyse the complex structural response of mechanical and geometrical systems 

subjected to high-rate of loadings and impacts. The program simulates the effect of stress and displacements on 

structures. Like most engineering codes LS-DYNA3D is based on finite element method, a technique of 

examining physical systems by breaking them into discrete but interconnected elements. What makes this 

program different is its ability to span a broad spectrum of engineering problems and computing environments. 

Developed in the second half of the 1970s mainly for supercomputer applications to study the effects of 

weapons systems, the rapidly improving program became extremely versatile. The parallel development in 

computing hardware enables the use of the program on personal pc. 

 

2. Basic Formulation of LS-DYNA3D 

 

The finite element method is a numerical procedure for analysing structures and continua. The finite element 

method involves discretising differential equations into simultaneous algebraic equations. The advances made in 

the computational efficiency of digital computers have increased the use of the finite element method as an 

analysis tool since large number of the equations generated by the finite element method can be solved very 

efficiently. Discussions to follow are intended to give attention to some important features rather than to cover 

the whole topic they are extracted from [1,2,3,4]. 

Based on the momentum conservation principle, the basic formulation could be derived as follows, [1]; 

σij,j +ρƒi= ρ ix (1) 

Equation (1) should satisfy the traction boundary conditions  

σĳnі = ti (t)                                                                                                    (2) 

On boundary δb1, while the displacement boundary conditions  

      xi ( Xα, t) = Di (t)                                                                                    (3) 

On boundary δb2, the contact discontinuity  

      (σ+ĳ  - σ-ĳ) ni = 0                                                                                   (4) 

Along an interior boundary δb3 when x+i=x-i, here σĳ is the Couchy stress, ρ is the density, ƒi is the body force 

density, x  is the acceleration, and nj is the unit vector normal to the boundary δb 

Equations of global energy balance and state evaluations can be obtained by integrating the energy equation in 

time. The energy equation is given as 

VqpijVsE ij
  )( +−=

⋅

ε
                                                                         (5)  

ijs
is the deviatoric stresses and p represents the pressure. Deviatoric stress is 

       Sĳ= σĳ + (p+q) δĳ                                                                                  (6)      

Where                               

       P= ─ ⅓ σĳ δĳ ─ q = ─ ⅓ σkk─ q                                                          (7) 
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 Respectively, q is the bulk viscosity, δĳ is the Cronecker delta (δĳ =1 if i =j; otherwise δĳ =0) and ijε is the 

strain rate tensor. The weak form of the equilibrium equation when ixδ satisfies all the boundary conditions on

2bδ is given 

By: 

0)()()(
31, =−+−+−− −+

∫∫∫ dsxndsxtndvxfx ijijb ijiijijbiijijiv
δδσδρσρ σσδδ


                 (8)                                             

Application of jiijijijiij xxjx ,,),( δδδ σσσ =−
 this to the divergence theorem, leads to the statement of 

principle of virtual work, which can be given as  

δπ =∫υρ ix δxi dv+∫υσĳ,j δx ji , dv -∫υρƒiδxi dv - ∫∂b1 ti δxi ds = 0                                                       (9)           

Superimposing a mesh of finite elements, interconnected at nodal points on a reference configuration and track 

particles through time, i.e. 

xi (Xα ,t) = xi (Xα(ξ,η,ζ), t) = 
∑
=

k

j 1 Φj(ξ,η,ζ)xij (t)                                                                                (10) 

Where Φјare shape interpolation functions of the parametric coordinates (ξ,η,ζ) ,k is the number of nodal points 

defining the element, and xij is the nodal coordinate of the jth node in the ith direction. One of the widely used 

8-noded mesh solid element typically shown in Figure (1). The node definition for this element is shown next to 

the solid element. 

 

 
Figure (1) Solid element 
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For a mesh with a 8-node hexahedron solid element, equation (10), becomes  

    xi (Xα ,t) = xi (Xα(ξ,η,ζ), t) = 
∑
=

8

1j Φj(ξ,η,ζ)xij (t)                                           (11)   

and the shape function 

jφ  =
)1)(1(

8
1

jj ηηξξ ++
(1+ζζj)                                                                       (12) 

where jjj ζηξ ,,
 take their nodal values of ( )1,1,1 ±±±  as shown in the previous figure. 

Summing over the n elements δπ may be approximated to                                                                           

δπ = 
∑
=

n

m 1 δπm (13) 

And applying this to equation, (9) we get the global finite element equilibrium as 

∑
=

n

m 1 {
∫

mv ρ ix Φim dυ +∫υmσ
m
ij Φ

m
ji , dv - ∫υmƒiΦim dυ -

dst m
i

b
iφ∫

∂ 1  } = 0        (14)         

 Where: 

Фim = ( Φ , Φ2, Φ3,………Φk)im                                                                              (15) 

 In matrix notation equation (14) becomes 

∑
=

n

m 1 {∫υmρNtNa dυ + ∫υmBtσ dυ - ∫υmρNt bdυ -
tdsN

b

t∫
∂ 1 }m = 0                           (16)   

 Where N is an interpolation matrix, σ is the stress vector  
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σt=(σxx ,σyy ,σzz , σxy , σyz ,σzx )                                                                            (17) 

node      ξηζ 

1       -1      -1    -1 

2       1      -1     -1 

3     1       1     -1 

4       -1       1     -1  

5       -1      -1      1  

6        1      -1      1 

7       1       1      1 

8      -1       1      1    
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     B is the strain-displacement matrix, a is the nodal acceleration vector 

     b is the body force load vector, and t are applied traction loads 
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For an 8-node hexahedron solid, B is 6 x 24 strain-displacement matrix and N is 3x 24 rectangular interpolation 

matrix and is given by: 

B=






















z

y

x

δ
δ

δ
δ

δ
δ

00

00

00

 and N ( ),, ζηξ =
















−−
−−
−−

81

821

21

000000
00000
000000

φφ
φφφ

φφ

 

By summing the rows we can obtain a diagonal mass matrix and the kth   diagonal term is given as: 

 
∫∑∫ ==

= v
k

i
iv kkk dvdvm ρφφρφ

8

1                                                                              (19) 

Terms in the strain-displacement matrix are calculated instantly, the above matrixes: 

δξ
δ

δ
δφ
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δ
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δ
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δφ z
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x
iiii ++=
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iiii ++=

                                                                           (20) 

δζ
δ

δ
δφ

δζ
δ

δ
δφ
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δφ z

z
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x
iiii ++=

 
or in matrix form 
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                                         (21) 

Hence the desired terms can be obtained by inverting the Jacobean matrix J as 
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                                                (22) 

 

A similar formulation could be reached for other elements; they are detailed in the theoretical manual, [1].  

 

3. Volume Integration 

 

Gaussian quadrature is used to carry the volume integration. For some functions g defined over with n 

integration point then: 

ζηξ dddjggdv
v

∫∫ ∫∫
−−−

=
1

1

1

1

1

1                                      (23) 

Which may be approximated by  

lkjjkl

n

l
jkl

n

k

n

j
wwwJg∑∑∑

=== 111                                        (24) 

Where lkj www ,,
 are weighting factors and gjkl=g

),( lkj ζηξ
 and 

J
 is the determinant of the Jacobean 

matrix. For one point quadrature n=1, 2=== lki www and 111 ζηξ == = 0 from which it follows 

∫ = )0,0,0()0,0,0(8 Jggdv
                                        (25)  

Note that 8
)0,0,0(J

 give an approximation to the element volume. 

The biggest advantage of one point integration is a substantial saving in the computer time. An anti-symmetry 

property of the strain matrix 

iiii xxxx ∂
∂−

=
∂
∂

∂
∂

−=
∂
∂ 5371 φφφφ

 

iiii xxxx ∂
∂

−=
∂
∂

∂
∂

−=
∂
∂ 6482 φφφφ

                                           (26) 

At 0=== ηζξ  reduces the amount of effort to compute strain matrix given by equation (26) by 25 times 

over the 8–point integration [1, 4]. This cost savings extends to strain and element nodal forces calculations 

where the number of multipliers is reduced by a factor of 16, [2]. Because only one constitutive evaluation is 

needed, the time spent determining stresses is reduced by a factor of 8. However 8-point integration has another 

disadvantage in addition to cost. When fully integrated elements used in the solution of plasticity problems and 

problems with Poisson’s ratio approaching 0.5 get locked up in the constant volume bending modes, [1]. An 

average pressure must be applied to all elements to avoid the locking up of elements in the constant volume 

bending modes; consequently the hourglass modes are resisted by the deviatoric stresses. If these deviatoric 
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stresses become negligible, when compared to the pressure or if the material failure causes loss of this stress 

state component, then hourglass will still occur without any means to resist it. 

 

4. Control of Hourglass 

 

Any explicit time integration scheme calls for what is called “economic” element, which can reduce the overall 

time. This can be done when a reduced one (Gauss) point integration is used. One point integration however 

gives rise to “zero energy modes” called the “hourglass modes” as already been discussed. These undesirable 

hourglass modes are often observed to be oscillatory and they tend to have periods that are typically much 

shorter than the periods of the structural response. If these hourglass modes tend to have periods that are 

comparable to the structural response periods it forms a stable kinematics component of the global deformation 

and they are admissible. A viscous damping or small elastic stiffness capable of stopping the anomalous modes 

while having a negligible effect on the state global deformation modes can in a way resist the formation of the 

undesirable hourglass modes. To understand the formation of the undesirable hourglass modes, the following 

strain rate for an 8-node solid element is considered:   

 











+= ∑
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8

12
1
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k
i
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kk
j

i

k
ij xx xx 

δ
δφ

δ
δφε

                                                          (27) 

If diagonally opposite nodes have identical velocities, then the strain energy rates (due to the asymmetries in 

equation (26) are identically zero ( ijε = 0) that is when the following “hourglass” condition occur (diagonally 

opposite nodes have identical velocities): 

xxxxxxxx iiiiiiii 
64538271 ,,, ====

                                              (28)                                                                                                        

It is possible to prove the orthogonality of the hourglass shape vectors with the derivatives of shape functions as 

follows: 

 

∑
= ∂
∂8

1k i

k

x
φ

Γ kα  =0                              i=1,2,3             α=1,2,3,4                   (29) 

Hourglass modes are avoided by the use of artificial resisting forces consistent with the orthogonal nature of the 

modes Γk and related to the element volume, material sound speed. The product of the base vectors with the 

nodal velocities for these modes are given by  

∑
=

=
8

1k

k
ii xh α

Γ kα =0                                                                                   (30) 

If hourglass modes are present then equation (30) becomes nonzero. And the resisting 12 hourglass force vectors 

are: 

αα ih
k

i haf = Γ kα  and 
3/2

ehgh vQa ρ= 4
c

                                                (31) 

Where Qhg is an empirical constant defined between 0.05 and 0.15 
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Refined finite element meshing of components tends to reduce the hourglass modes which otherwise produce 

artificial energies in excess of the initial energy of the system. 

Thus in conclusion, the biggest disadvantage to one-point integration is the need to control the zero energy 

modes, which arise, called hourglass modes. Undesirable hourglass modes tend to have periods that are typically 

much shorter than the periods of the structural response, and they are often observed to be oscillatory. However, 

hourglass modes that have periods that are comparable to the structural response periods may be a stable 

kinematics component of the global deformation modes and must be admissible. One way of resisting 

undesirable hourglass is with viscous damping or small elastic stiffness capable of stopping the formation of the 

anomalous modes but having a negligible effect on the stable global modes. 

Since the hourglass deformation modes are orthogonal to the strain calculations, work done by the hourglass 

resistance is neglected in the strain energy equation. This may lead to a slight loss of energy; however, hourglass 

control is always recommended for the under-integrated solid elements. The energy dissipated by the hourglass 

forces reacting against the formations of the hourglass modes is tracked and reported in the output files.   

 

5. Time Step Control 

 

A new time step size is determined by taking the minimum value over all elements as follows  

( )tttt N
n ∇∇∇=∇ + ,......,, 21min

1 α
                                                  (32) 

Where N the number of elements. For stability reasons the scale factor α is typically set to a value of 0.9 

(default) or smaller value. 

For a solid element, a critical time step size te∇
 is computed as follows: 

[ ]( )2/122 )( cQQ
Lete ++

=∇
                                                                   (33) 

Where Le= eA
ve

max  for 8-node solid element and Q (C0, C1) and C0, C1 are the bulk viscosity coefficients and 

Q is given by  

             Q = max

01

e

kke

A
vCcC ε+

 for kkε < 0                                                 (34) 

             Q = 0 for 0≥kkε  

eL  Is the characteristic length: 

     8-nodes:                             maxe

e
e A

vL =
 

     4-node tetrahedras:          =eL  minimum altitude 

Where ev is the element volume, maxeA is the area of the largest side, and c is the adiabatic sound speed given 

by 
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                c = 
( )

2/1

03
4









+ s

pG
δρ
δ

ρ
                                         (35) 

And ρ is the specific mass density. 

For an isentropic sound speed, c is given by 

       c =   
) )

2/1

0

2

03
4









++ ρδ

δ
ρδρ

δ
ρ E

ppVpG
E

                        (36) 

For the incremental energy, E in the units of pressure is the product of pressure p and the incremental relative 

volume dv: 

SEs

E
E
ppp







+




=




δρ
δ

δ
δ

δρ
δ

δρ
δ

ρ                                                  (37) 

And 

dE = -pdv 

Sound speed for elastic materials with constant bulk modulus is given by  

            c = ρνν
ν

)21)(1(
)1(

−+
−E

                                                 (38) 

Where E is the Young’s modulus and ν is the Poisons ratio. 

This is the approach for solid elements, while reference is made to the LS-DYNA3D theoretical manual, [1] for 

time step calculation of beam and truss elements, shell elements and discrete elements. Explicit methods are 

based on time integration; therefore time step factors in the time step control cards are of utmost importance. 

 

6. Time Integration 

 

The equations of equilibrium for a nonlinear finite element system in motion are nonlinear differential equations 

for which numerical solutions much easier to obtain in general than analytical solution. The procedure used to 

solve the equations of equilibrium can be divided into two methods: direct integration and mode superposition.  

In direct integration, equations of equilibrium are integrated using a numerical step-by-step procedure. The term 

‘direct’ is used because the equations of equilibrium are nottransformed into any other form before the 

integration process is carried out. Some ofthe few commonlyused direct integration methods are the central 

difference method, Houbolt method, Wilson-theta method, and Newmark method, [1, 2, 3, 4]. 

LS-DYNA3D is based on the central difference method of direct integration therefore; the description of the 

direct integration method will concentrate on the central difference method.     

Considering the single degree of freedom damped system as shown below, the equilibrium equations for the 

given system are obtained from d’Alembert’s principle 
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                       ƒI  +ƒD +ƒint = p (t) ƒI + ƒD + ƒint = p (t)                                   (39) 

ƒI = mü; ü=
2

2

dt
ud

 is acceleration 

                     ƒD = c
•

u ; dt
duu =

•

 is velocity, and c is the damping coefficient  

ukf .int = ; u displacement and k is the linear stiffness  

For a linear behaviour the equations of motion lead to linear ordinary differential equations given by 

.
)(. tpukucum =++  and for a nonlinear case the inertial force varies as a nonlinear function of the 

displacement which leads to a nonlinear ordinary differential equation given by )()(int tpufucum =++ 

Analytical solutions of such equations is available, considering the dynamic response of a linear system 

subjected to a harmonic loading, with the knowledge of the common used terms 

 

Harmonic loading:         P (t) = Po sinϖ t 

Circular frequency:   m
k

=ω
  for single degree of freedom 

Natural frequency:    T
f 1

2
==

π
ω

, T is the period 

Damping ratio:          ω
ζ

m
c

c
c
cr 2
==

 

Damped vibration:            
2

0 1 ζωω −=  

Applied load frequency:    ω
ϖβ =

 

The closed form solution with initial conditions u0= initial displacement, 0u = initial velocity and 
=

k
p0

static 

displacement is given by;   
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)sin(sin

1
1sincos)( 2

00
0 tt

k
ptututu ωβϖ

β
ω

ω
ω −

−
++=



                            (40) 

For nonlinear problems, only numerical solutions are possible. LS-DYNA3D uses the explicit central difference 

method to integrate the equations of motion.  

The semi-discrete equations of motion at time n are: 

      Man = Pn – Fn + Hn                                                                                                      (41) 

Where M is the diagonal mass matrix, Pn is the external and body force loads, Fn is the stress divergence vector, 

and Hn is the hourglass resistance. The central difference time integration method is used to advance time tn+1 

as follows: 

)(1 nnnn HFPMa +−= −
                                                                                           (42) 

nnnn tavv ∇+= −+ 2/12/1
                                                                                                   (43) 
2/12/11 +++ ∇+= nnnn tvuu                                                                                                  (44) 

    Where  2
)( 1

2/1
+

+ ∇+∇
=∇

nn
n ttt

 

And v and u are the global nodal velocity and displacement vectors, respectively. 

Initial geometry can be updated by adding the displacement increments  

             Xn+1 = x0 +un+1                                                                                                      (45) 

The stability of the central difference method is determined by looking at the stability of the linear system. The 

equations of a linear system is uncoupled into the model equations where the model matrix of Eigen vectors, Φ, 

are normalized with respect to the mass matrix M, and linear stiffness matrix K. The decoupling of damping 

matrix, C for viscous proportional damping is obtained from the normalization as  

                  ΦT C Φ =2ξω                                                                                                        (46) 

The equations of motion in the modal coordinates x are: 


y

T pxxx
=

=++ φωζω 22 

                                                                                                    (47) 

With central differences we obtain for the velocity and acceleration  

t
xx

x nn
n ∇

−
= −+

2
11

 and   
2

11 2
t

xxx
x nnn

n ∇
+−

= −+
                                                               (48) 

Substituting equation (43) into equation of motion at time tn leads to  

nnnn y
t

tx
t
tx

t
tx 2

2

12

22

1 2121
21

21
2

∇+
∇

+
∇+
∇−

−
∇+
∇−

= −+ ζωζω
ζω

ζω
ω

                                           (49) 

 

And equation (48) in the matrix form is given by  
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                                                                      (50) 

Or 
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[ ] [ ][ ] [ ] nnn YLXAX +=+1                                                                (51) 

Where A is the time integration operator for discrete equations of motion. After m time steps with L = 0 the 

value [ ] [ ][ ]0XAX mm =  

The spectral radius ρ (A) is the largest Eigen value of A the solution will be stable if and only if 
1)( ≤Aρ

. 

The condition that 
1)( ≤Aρ

 for an undamped equation of motion gives the value of time step t∇  as 

max

2
f

t ≤∇
 

Thus the time step size is bound by the largest natural frequency in the model, which in turn is bound by the 

highest natural frequency of any element in the model. 

The time step size is always limited by the single element in the model. The disadvantage of this method is that 

even if only one element has a time step much less, then all other elements should also be calculated for the 

same step size. Hence, ‘sub-cycling’ called as mixed time integration has to be introduced. This method 

employs in grouping the elements based on their step size and individual time integration should be carried out 

for each group. This method could be helpful as it reduces the time for solving. However the use of mass scaling 

to preserve a reasonable time step size works better than sub cycling and hence the later is turned off. 

 

6.1 Central Difference Method 

 

Considering dynamic system, represented mathematically by a system of ordinary differential equations with 

constant coefficients. The central difference method is an effective solution scheme for such a system of 

equations. The velocity and acceleration are approximated, Figure (2) as follows: 

)(
)(

1
112 uu nnn u

t −+ −
∆

=
                                                                       (52) 

)2(
)(

1
112 −+ +−

∆
= nnnn uuu

t
u

                                                             (53) 

 

Substituting the approximate values for the velocity and acceleration from the central difference scheme in the 

equations of equilibrium, to get 

1
22

1 2
)2(

2
1

−+ 





 ∆

−−−∆−∆=





 ∆+ nnnn uctmumktptutcm

   (54) 

Where pn is the external body force loads, the solution for un+1 can be determined. Since the solution for un+1 

is based on conditions at time tn-1 and tn, the central difference integration procedure is called the explicit 

integration method. Also this method does not require the factorization of the effective stiffness matrix in the 

step-by-step solution. On the other hand, other methods like Newmark, Wilson and Houbolt does not involve 

conditions at time tn+1 hence called implicit integration methods, [1, 2, 3]. 
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Figure (2) Central difference method representation 

 

6.1.1 Advantages of the Central Difference Method 

 

The main advantage of the central difference method is that no stiffness and mass matrices of the complete 

element assemblage are calculated, [4, 5, 6]. The solution can be essentially carried out on an element level and 

relatively very little storage is needed. The method becomes more effective if the element stiffness and mass 

matrices of subsequent elements are the same, since it is only necessary to calculate or read from back-up 

storage the matrices corresponding to the first element in the series. This is why systems of large order can be 

solved very efficiently using the central difference scheme. The effectiveness of the central difference procedure 

depends on the use of a diagonal (lumped) mass matrix and neglect of general velocity-dependent damping 

forces. The benefits of performing the solution at the element level are preserved only if the diagonal damping 

matrix is included. 

 

6.1.2 Disadvantages of the Central Difference Method 

The central difference methods as well as other explicit methods are conditionally stable. If the time step t∆  is 

too large for a given element size L the method fails and if t∆  is smaller than required the solution time 

becomes very expensive losing the effectiveness of the method. Therefore, it is necessary to determine the 

critical time for the given problem. For central difference method, critical t∆  is governed by the following 

equation. 

C
Lt =∆

  (55) 

Where, =C  light wave speed = ρ
E

  , E= Material Young’s Modulus 

ρ =Material Density. The above equation is called the CFL (Courant, Friedrichs and Lewy) condition, [5, 6]. 

The physical interpretation of the condition is that the time step t∆  must be small enough that the information 
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does not propagate across more than one element per time step. In some structural analysis depending on the 

material properties and dimensions of the geometry the time step required could be very small resulting in a 

longer computational time. 

 

7. Numerical Analysis 

 

The numerical analysis attempts to solve the differential equations by numerical procedures, which can be easily 

programmed using a standard programming language. The higher time step values from the initial boundary 

values can be programmed by the differential equations. This is done by splitting the differential equation into 

numerical components in the time axis using the forward, central or the backward differentiation methods. The 

numerical methods can be broadly classified as the explicit and implicit methods. In the explicit method, the 

previous time step is used to calculate the next time step. On the other hand, the implicit method calculates the 

next time step values by solving a matrix of the present and the previous time step values.Theexplicit method 

gives an accurate solution for a shorter time step and is conditionally stable, whereas the implicit method 

requires larger time steps for correct results, as already been discussed in the previous section.  

 

8. Contact-Impact Algorithms 

 

LS-DYNA3D uses three approaches for dealing with the impact contact and sliding interfaces of the models. 

The methods are known as the "kinematics constraint method", the "penalty method", and the "distributed 

parameter method", [2, 3]. The kinematics constraint method is used only for tying surfaces. In this method, 

constraints are imposed in the global equations by a transformation of the nodal displacement components of the 

"slave" nodes along the contact interfaces. This way only the global degrees of freedom of each master node are 

coupled. This method requires "consistent" zoning of the interfaces. In the penalty method, artificial interface 

springs are placed normal to the contacting surfaces on all the penetrating nodes. These artificial spring elements 

are assembled in the global stiffness matrix and their modulus is determined based on the elements in which the 

nodes reside. This method is stable and produces less noise for hourglass modes. However, for relatively large 

interface pressures, the stiffness has to be scaled up and the time step reduced. In such cases the third method 

"distributed parameter" is more appropriate. This last method is mainly used for "sliding interfaces" in which the 

internal stress in each element in contact determines the pressure distribution for the corresponding master 

surface. Accelerations are updated after mass and pressure distributions on the master surface are completed. 

With these three algorithms, an array of contacting interfaces is available in LS-DYNA3D, which allows the 

simulation of most contact conditions. 

Treatment of sliding and impact along interfaces are very critical in simulating the correct load transfer between 

components in an analysis. Contact forces generated influence the acceleration of the body. Contact algorithms 

employed in finite element codes divide the nodes of bodies involved in contact into slave and master nodes. 

After the initial division, each slave node is checked for penetration against master nodes for an element face. 

Therefore, using a robust contact algorithm that can efficiently track and generate appropriate forces to the slave 

nodes without generating spurious results is very important. A brief discussion of the three methods used by LS-

DYNA3D with merits and demerits follows: 
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8.1 Kinematics constraint method 

 

This method uses the impact and release conditions of [1]. Constraints are imposed on the global equations by a 

transformation of the nodal displacement components of the slave nodes along the contact surface. This 

transformation has the effect of eliminating the normal degree of freedom of nodes. Since computational 

efficiency of the explicit time integration needs to be preserved, the mass is lumped to the extent that only the 

global degrees of freedom of each master node are coupled. Impact and release conditions are imposed to ensure 

momentum conservation. This method is advantageous to use when materials in contact have very different 

material properties. The nodes are constrained to stay on or very close to the surface without causing 

penetrations due to the difference in the stiffness. However, problems arise when the master surface zoning is 

finer than the slave surface zoning. Certain master nodes can penetrate through the slave surface without 

resistance and create a kink in the slide line. 

 

8.2 Penalty method 

 

This method consists of placing normal interface springs between all penetration nodes and the contact surface. 

With the exception of the spring stiffness matrix, which must be assembled in the global stiffness matrix, the 

implicit and explicit methods are similar. Momentum is conserved without the necessity of impact and release 

conditions. The equations involving the stiffness of the contact spring are as follows: 

KAreafk s
2*=

Minimum diagonal length for shell elements            (56)   

 

   Vlume
KAreafk s ** 2

=
          for solid elements                                               (57)        

        Area = Area of contact segment  

           K   = Bulk modulus of contacted element  

sf  = penalty factor (0.1 by default) 

The interface stiffness k is chosen to be approximately the same order of magnitude as the stiffness of the 

interface element normal to the interface. Consequently the computed time step size is unaffected by the 

existence of the interfaces. However, if interface pressure becomes large, unacceptable penetration may occur. 

By scaling up the stiffness sf  and scaling down the time step t∆ , this may be overcome. K for a contact 

segment is calculated based on the material properties of the component involved in the contact. If two different 

materials with varying stiffness such as foam and steel come in contact, the stiffness of the lesser magnitude is 

taken as the contact stiffness. This causes penetration problems as the force generated by foam is small 

compared to that generated by steel. This is overcome by scaling sf  until the forces generated by the two 

materials are in equilibrium. Determining the appropriate value of sf  is important so that the forces are in 

equilibrium. 
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8.3 Distributed parameter method 

 

This method is derived from TENSOR programs, [1], which displaced fewer mesh instabilities compared to the 

nodal constraint algorithm. In this method one half the slave element mass of each element in contact is 

distributed to the covered master surface area. Also, the internal stress in each element determines a pressure 

distribution for the master surface area that receives mass. After the distribution of mass and pressure the 

acceleration of the master surface is updated. 

 

9. Contact Energy Calculations 

 

The contact energy contactE  is incrementally updated from time n to n+1 for each contact interface.  contactE  is 

determined using the following equation, 
2/1
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                 (58) 

where 

      nsn      = number of slave nodes 

     msn      = number of master nodes 

F slave
i∆

= interface force between the ith slave node and the contact segment 

F master
i∆

= interface force between the ith master node and the contact segment 
slave
idist∆   = is the incremental distance the ith slave node has moved during the 

                      current time step. 
master
idist∆ = is the incremental distance the ith master node has moved during  

                     the current time step. 

Monitoring the contact energy calculated is very important to ensure proper calculation made by the contact 

algorithm. In the absence of friction, the slave and master side energies should be close in magnitude but 

opposite in sign. The sum contactE  should equal the stored energy. Large negative contact energy is a sign of 

undetected nodal penetrations. 

 

10.  Conclusions 

 

An extremely powerful commercial implicit finite element code basic formulation is introduced through which a 

wide variety of dynamic structures can be analysed. Features involved in this program includes but not limited 

to: wide material element library, flexibility in load application techniques through load curves, automatic and 

manual time step control for analysis stability. The code is using time integration technique and hence features 

such as hourglass control is included and highlighted to reader. The program is running in an interactive mode 

hence enabling intervention of the operator if needed, literally there is almost no limit to the engineering stress 

analysis problem that cannot be tackled by this code given excellent user knowledge is available. Moreover, 
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code has an interface with the well-known implicit code ANSYS, therefore adding to its complications and 

powerfulness, such feature is important for certain analysis problems.  

Code provider is running a very helpful website through which a licence key can be provided online as well as 

well-trained team who can provide help online, as well as providing team work environment for problem 

solving. The code is periodically updated and improved, hence user need be following such improvements and 

can mean time participate in such improvements via feedbacks if he or she wishes.  

If any; drawbacks simply summarised in technical difficulties such as: code contains huge number of statements 

and subroutines, therefore running time as well as computer memory requirements are significantly large added 

to that extremely good knowledge is required, this of course will add to the expenses, hence only carefully 

selected stress analysis problems must be involved. 

Due to the powerfulness of the code researchers and stress analysts faced with complicated and or highly 

sensitive stress problems are encouraged to join the good team and be involved in applying the various features 

to their problems given the worthiness of the problem.    
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