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Abstract 

Evaluating store image is a challenging task as it incorporates with multiple attributes. Earlier quantitative 

studies paid minimal attention on assessing the stores based on their image scores and overlooked the interaction 

aspects between attributes in the process of identifying the optimal strategies for image enhancement. This paper 

proposes a hybrid multiple attribute decision making model for quantitatively performing image evaluation 

involving a set of stores. The model uses factor analysis to extract the large set of interacted attributes into fewer 

independent factors, Sugeno measure to characterize the interactions between attributes, Choquet integral to 

aggregate the interactive performance scores within each extracted factor, Mikhailov’s fuzzy analytical 

hierarchy process to assign the factors’ weights, and weighted average operator to aggregate the independent 

factor scores of each store into a single global image score. An evaluation involving three stores located at 

Pekan Sabak, Selangor was conducted in order to demonstrate the feasibility of the model. The ranking on three 

stores derived via proposed model matched with the benchmark ranking unlike the ranking yielded by a 

classical aggregation operator. The model will be supportive for the retailers to identify their relative positions 

with their competitors and to systematically implement potential strategies for image enhancement by taking 

into account the interactions between attributes. 
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1. Introduction 

Store image defines the way a store is perceived by the customers [1] or the customers’ total attitude towards a 

store [2]. Customers usually illustrate a store’s overall image via their own post-purchasing experience, word-

of-mouth sources, or through marketing communications such as advertisements [3]. Every retail store has its 

own image and it influences a customer whether to choose a store for purchasing [4]. A positive image usually 

leads to customer satisfaction and increases number of loyal customers [5]. If a store does not have a unique or 

favorable image, the customers would not find a reason on why they should purchase there [6]. Therefore, the 

retailers should timely analyze and enhance the store’s image because a desirable store image appears as a 

determinant for a long-term business success in an increasingly competitive marketplace [7]. 

However, evaluating store image is somewhat challenging as it is normally measured by multiple attributes as 

presented in [8, 9, 10, 11]. Besides, the review on past literature discloses that there are only limited types of 

quantitative model have been recommended for assessing a store’s image. Most of the past studies such as [12, 

13] only employed factor analysis which enables the retailers to understand the main determinants of a store’s 

image but failed to offer other crucial information such as the prioritization or weight age of the extracted 

factors. Moreover, to our knowledge, there are no any empirical studies which have compared or evaluated a set 

of stores by measuring their image scores or dealt with the interactions between attributes in the process of 

identifying the strategies for image enhancement. By owing to these gaps, this paper aims to propose a hybrid 

multiple attribute decision making (MADM) model which can be employed to analyze the images of a set of 

stores without disregarding the interactions between the attributes.  

The paper is organized as follows. Firstly, the problem allied with store image evaluation is defined. Secondly, 

three basic phases in solving MADM problems through multiple attribute utility theory (MAUT) approach are 

explored where the main reviews are focused on the usage of fuzzy numbers and Choquet integral at the second 

and third phase respectively. Thirdly, the proposed model is introduced. Fourthly, the feasibility and 

performance of the model are presented by carrying out a real evaluation problem. Finally, the contributions of 

the paper and indications for future research are summarized.  

2. Literature Review 

2.1 MADM 

MADMis a field that develops various quantitative techniques for selecting, ranking, or classifying a set of 

alternatives based on varied, usually conflicting, attributes [14]. Applying multiple attribute utility theory 

(MAUT) techniques appears as a well-accepted standard way for modeling MADM problems [15]. There are 

only three fundamental phases in implementing any of the MAUT techniques [16]. 

2.2 First phase 

In the first phase, all the pertinent attributes for evaluating the alternatives under consideration are identified. 

The basic elements of a typical MAUT model comprised of a set of m alternatives denoted by 𝒂𝒂𝒊𝒊 =

{𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐, … ,𝒂𝒂𝒎𝒎} and a set of n attributes represented by 𝒄𝒄𝒋𝒋 = {𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐, … , 𝒄𝒄𝒏𝒏}. 
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2.3 Second phase and the usage of fuzzy numbers 

In the following phase, the attributes’ weights and performance score of each alternative with respect to each 

attribute are derived. Some preference values or judgments from the experts or respondents are normally 

required for this purpose [17]. In classical MAUT analysis, these experts or respondents are usually forced to 

express their exact preferences based on crisp scales. However, as humans are normally uncertain about their 

judgment [18], it is somewhat burdensome for them to express their exact or precise preferences [19]. In reality, 

due to uncertainty, humans tend to express their preferences  in natural languages or linguistic terms [19] such 

as ‘unimportant’, ‘important’, ‘very important’ and ‘extremely important’ instead of using crisp numbers 

(1,2,3,⋯). Unfortunately, the traditional MAUT methods are based on crisp numbers and not based on linguistic 

terms. Thus, these models do not exactly represent the actual or natural human thinking style.  

In order to deal with the aspect of uncertainty embedded in linguistic preferences, fuzzy set theory which was 

introduced by Zadeh[20] is usually applied into MADM environment. Through fuzzy analysis, the experts or 

respondents are permitted to express the required preferences in linguistic terms. These linguistic preferences 

are then converted or quantified with appropriate fuzzy numbers to mathematically represent the uncertainty 

embedded in linguistic estimations [21]. 

A fuzzy number is a generalization of basic numbers which consists of upper, lower and most optimal values 

that best represent a linguistic preference. Triangular fuzzy number (TFN) appears as one of the commonly used 

fuzzy numbers since its membership function is piecewise linear and arithmetic operations involving TFNs are 

comparatively simple [22]. A TFN, 𝐴̃𝐴 can be defined by a triplet (𝑙𝑙,𝑚𝑚,𝑢𝑢)where 𝑙𝑙, 𝑚𝑚, and 𝑢𝑢 denote the lower, 

optimal, and upper value corresponding to the linguistic preference or set, 𝐴𝐴  as portrayed in Fig. 1.Based on 

Figure 1, µ𝐴𝐴(𝑥𝑥) indicates the degree of belongingness of element, x to the set or linguistic term, 𝐴𝐴. Assume 

𝐴𝐴1� = (𝑙𝑙1,𝑚𝑚1,𝑢𝑢1) and 𝐴𝐴2� = (𝑙𝑙2,𝑚𝑚2,𝑢𝑢2) be two positive TFNs. Then, the basic fuzzy arithmetic operations on 

these fuzzy numbers can be expressed as follows [23]: (𝐴𝐴1�)−1 = ( 1
𝑢𝑢1

, 1
𝑚𝑚1

, 1
𝑙𝑙1

) ; 𝐴𝐴1� + 𝐴𝐴2� = (𝑙𝑙1 + 𝑙𝑙2,𝑚𝑚1 +

𝑚𝑚2,𝑢𝑢1 + 𝑢𝑢2) ; 𝐴𝐴1� −𝐴𝐴2� = (𝑙𝑙1 − 𝑢𝑢2,𝑚𝑚1 −𝑚𝑚2,𝑢𝑢1 − 𝑙𝑙2) ; 𝑘𝑘 × 𝐴𝐴1� = (𝑘𝑘𝑙𝑙1, 𝑘𝑘𝑚𝑚1,𝑘𝑘𝑢𝑢1)  for 𝑘𝑘 > 0 ; 𝐴𝐴1� × 𝐴𝐴2� =

(𝑙𝑙1𝑙𝑙2,𝑚𝑚1𝑚𝑚2,𝑢𝑢1𝑢𝑢2); 𝐴𝐴1� ÷ 𝐴𝐴2� = �𝑙𝑙1
𝑢𝑢2

,𝑚𝑚1
𝑚𝑚2

, 𝑢𝑢1
𝑙𝑙2
�. 

2.4 Third phase and the usage of Choquet integral 

At this phase, a specific function known as aggregation operator is used to synthesize the set of attributes’ 

weights and performance scores of each alternative into a single global score [24]. Based on these global scores, 

the alternatives can be ranked up where an alternative with highest global score signifies the most preferred 

alternative for the evaluation problem. Normally, additive operators such as weighted average (WA) are simply 

used for aggregation purpose. Unfortunately, these operators presume that the attributes are always independent 

to each other [25]. This assumption is irrelevant with real scenario where in many cases, the attributes hold inter 

active characteristics [26]. Therefore, the aggregation should not be always carried out via additive aggregators 

as they failed to model the interactions between attributes. 
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Fig. 1.TFN, 𝐴̃𝐴= (l,𝑚𝑚, u) 

However, with the aid of Choquet integral operator, the interactions aspects can be captured during aggregation 

[27]. The usage of Choquet integral requires a prior identification of monotone measure weights, 𝑔𝑔. Monotone 

measure weights not only represent the importance of each attribute but also the importance of all possible 

combinations or subsets of attributes [28, 29]. As a result, for a MADM problem comprising𝑛𝑛 number of 

attributes, 2𝑛𝑛number of weights need to be identified prior to employing Choquet integral.  

λ- measure which was introduced by Sugeno [30] emerges as one of the broadly used monotone measures due to 

its ease of usage, mathematical soundness and modest degree of freedom features[31].Let 𝑐𝑐𝑗𝑗 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 ) be 

a finite set. A set function 𝑔𝑔𝜆𝜆(. ) defined on the set of the subsets of 𝑐𝑐𝑗𝑗 ,𝑃𝑃(𝑐𝑐𝑗𝑗 ), is called a λ- measure if it satisfies 

the following conditions: 

• 𝑔𝑔𝜆𝜆 :𝑃𝑃�𝑐𝑐𝑗𝑗 � → [0,1], and 𝑔𝑔𝜆𝜆(∅) = 0,𝑔𝑔𝜆𝜆�𝑐𝑐𝑗𝑗 � = 1(boundary condition)  

• ∀𝐴𝐴,𝐵𝐵 ∈ 𝑃𝑃�𝑐𝑐𝑗𝑗 �, if 𝐴𝐴 ⊆ 𝐵𝐵, then implies 𝑔𝑔𝜆𝜆(𝐴𝐴)  ≤ 𝑔𝑔𝜆𝜆(𝐵𝐵) (monotonic condition) 

• 𝑔𝑔𝜆𝜆(𝐴𝐴 ∪ 𝐵𝐵) = 𝑔𝑔𝜆𝜆(𝐴𝐴) + 𝑔𝑔𝜆𝜆(𝐵𝐵) + 𝜆𝜆𝑔𝑔𝜆𝜆(𝐴𝐴)𝑔𝑔𝜆𝜆(𝐵𝐵),  for all 𝐴𝐴,𝐵𝐵 ∈ 𝑃𝑃(𝑐𝑐𝑗𝑗 )  where 𝐴𝐴 ∩ 𝐵𝐵 = ∅  and 𝜆𝜆 ∈

[−1, +∞] 

According to Hu and Chen [32]: 

• If 𝜆𝜆 < 0 then, it interprets that the attributes are sharing sub-additive (redundancy) effects. This means 

a significant increase in the performance of the target can be achieved by simply simultaneously enhancing 

some attributes in 𝑐𝑐𝑗𝑗  which have higher individual weights. 

• If 𝜆𝜆 > 0 then, it implies that the attributes are sharing super-additive (synergy support) effects. This 

means a significant increase in the performance of the target can be achieved by simultaneously enhancing 

all the attributes in 𝑐𝑐𝑗𝑗  regardless of their individual weights.  

• If 𝜆𝜆 = 0 then, it reflects that the attributes are non-interactive.  

As 𝑐𝑐𝑗𝑗 = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 } is finite, then the entire λ- measure weights can be identified using the equation (1).  

𝑔𝑔𝜆𝜆{𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 } = 1
𝜆𝜆
⎸∏ (1 + 𝜆𝜆𝑔𝑔𝑗𝑗𝑛𝑛

𝑗𝑗=1 )− 1, ⎸𝑓𝑓𝑓𝑓𝑓𝑓 − 1 < 𝜆𝜆 < +∞(1)  

where 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝜆𝜆�𝑐𝑐𝑗𝑗 �, 𝑗𝑗 = 1, … , 𝑛𝑛  denotes the individual weights of attributes. If ∑ 𝑔𝑔𝑗𝑗𝑛𝑛
𝑗𝑗=1 = 1 ,  𝜆𝜆 = 0 

whereasif∑ 𝑔𝑔𝑗𝑗𝑛𝑛
𝑗𝑗=1 ≠ 1, the value of 𝜆𝜆 can be identified by solving equation (2). 
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1 + 𝜆𝜆 = ∏ (1 + 𝜆𝜆𝑔𝑔𝑗𝑗 )𝑛𝑛
𝑗𝑗=1 (2) 

The identified λ-measure weights and available performance scores can be then replaced into Choquet integral 

model to compute the global score of each alternative.  

Let 𝑔𝑔𝜆𝜆 be a monotone measure on 𝑐𝑐𝑗𝑗 = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 ) and 𝑥𝑥𝑗𝑗 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ) be the performance score of an 

alternative with respect to each attribute in 𝑐𝑐𝑗𝑗 . Suppose 𝑥𝑥1 ≥ 𝑥𝑥2 ≥ ⋯ ≥ 𝑥𝑥𝑛𝑛 . Then, 𝑇𝑇𝑛𝑛  = (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 ) and the 

aggregated score using Choquet integral can be identified using equation (3) [33]. 

𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔𝜆𝜆 (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) 

= 𝑥𝑥𝑛𝑛 .𝑔𝑔𝜆𝜆(𝑇𝑇𝑛𝑛 ) + �𝑥𝑥𝑛𝑛−1– 𝑥𝑥𝑛𝑛�.𝑔𝑔𝜆𝜆(𝑇𝑇𝑛𝑛−1) + … + [𝑥𝑥1 − 𝑥𝑥2].𝑔𝑔𝜆𝜆(𝑇𝑇1)(3) 

= 𝑥𝑥𝑛𝑛 .𝑔𝑔𝜆𝜆(𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 ) + [𝑥𝑥𝑛𝑛−1– 𝑥𝑥𝑛𝑛 ].𝑔𝑔𝜆𝜆(𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛−1) +⋯+ [𝑥𝑥1 − 𝑥𝑥2].𝑔𝑔𝜆𝜆(𝑐𝑐1) 

where the arrangement of attributes in 𝑇𝑇𝑛𝑛  parallel with the descending order of the performance scores.  

For better understanding, presume that the scores of a student, x in three subjects (attributes), Mathematics (𝑥𝑥𝑀𝑀), 

Physics (𝑥𝑥𝑃𝑃), Biology (𝑥𝑥𝐵𝐵) are 75, 80, and 50 respectively. Since𝑥𝑥𝑃𝑃 ≥ 𝑥𝑥𝑀𝑀 ≥ 𝑥𝑥𝐵𝐵 then, 𝑇𝑇𝑛𝑛 = (𝑃𝑃,𝑀𝑀,𝐵𝐵) and the 

aggregated score of the student using Choquet integral, 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑔𝑔𝜆𝜆 (𝑥𝑥𝑀𝑀 ,𝑥𝑥𝑃𝑃 ,𝑥𝑥𝐵𝐵) = 𝑥𝑥𝐵𝐵 .𝑔𝑔𝜆𝜆(𝑃𝑃,𝑀𝑀,𝐵𝐵) +

�𝑥𝑥𝑀𝑀–𝑥𝑥𝐵𝐵�.𝑔𝑔𝜆𝜆(𝑃𝑃,𝑀𝑀) + �𝑥𝑥𝑃𝑃–𝑥𝑥𝑀𝑀�.𝑔𝑔𝜆𝜆(𝑃𝑃). Figure 2 illustrates the idea of aggregation via Choquet integral. 

 

Fig. 2: Aggregation based on Choquet integral 
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3. Methodology 

The proposed hybrid MADM model is developed with the combination of five main components namely factor 

analysis, Sugeno measure, Choquet integral, Mikhailov’s fuzzy analytical hierarchy process (MFAHP), and AW 

operator. The nine main steps for implementing the proposed model are as follows. 

3.1. Identification of store attributes 

In step 1, each possible attribute that can be used to assess the image of the stores under consideration is 

identified. This could be the most time consuming process as omittingany crucial attributes would lead to 

distorted result. 

3.2. Data collection by means of questionnaire  

In step 2, questionnaires are used as a method to gather the data on the customers’ satisfaction towards each 

store with respect to each image attribute. For the sake of convenient data offering and to deal with the usual 

uncertainty embedded in humans’ estimations or preferences, the customers are allowed to express their 

satisfaction in linguistic terms. Therefore, the questionnaire should be designed based on a predetermined 

linguistic scale which comprised of a set of linguistic terms,  𝑺𝑺𝒊𝒊 = (𝑺𝑺𝟏𝟏,𝑺𝑺𝟐𝟐, … , 𝑺𝑺𝑻𝑻)together with their TFNs, 

𝑨𝑨�𝒊𝒊 = �𝑨𝑨�𝟏𝟏,𝑨𝑨�𝟐𝟐, … ,𝑨𝑨�𝑻𝑻�  where𝑺𝑺𝟏𝟏  and 𝑺𝑺𝑻𝑻denote “extremely unsatisfied” and “extremely satisfied” respectively 

and𝑻𝑻 implies the total number of linguistic term in the scale. 

3.3. Deriving decision matrix: stores versus attributes  

In step 3, the decision matrix of the evaluation problem which shows the performance score of each store with 

respect to each attribute is derived. For this purpose, firstly, the collected raw data are converted into fuzzified 

data by quantifying the linguistic scores in the raw data into their respective fuzzy scores based on the 

predetermined linguistic scale. Then, the fuzzy performance score of a store,𝒊𝒊 with respect to an attribute, 𝒋𝒋 can 

be identified by averaging the scores obtained from 𝒌𝒌 number of respondents. Each of these fuzzy performance 

scores is then converted into crisp scores by using centroid of area (COA) technique in order to obtain the 

required decision matrix (stores versus attributes). Assume a fuzzy performance score, 𝑨𝑨�𝒊𝒊𝒊𝒊 = (𝒍𝒍𝒊𝒊𝒊𝒊,𝒎𝒎𝒊𝒊𝒊𝒊,𝒖𝒖𝒊𝒊𝒊𝒊). 

Then, its corresponding crisp value,𝑨𝑨𝒊𝒊𝒊𝒊 can be identified using COA equation (4). 

𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖 + ��𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑖𝑖𝑖𝑖 � + �𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑖𝑖𝑖𝑖 ��/3(4) 

3.4. Performing factor analysis  

In step 4, the same collected raw data are utilized to perform factor analysis in order to extract the large set of 

store attributes into fewer independent factors. However, as the collected raw data encompass scores in 

linguistic forms then, they need to be transformed into valid forms where factor analysis can be performed. As 

the first stage of carrying out this transformation, the linguistic scores in the raw data need to be converted into 

their respective TFNs based on the same predetermined scale (but this stage can be actually bypassed as the 

fuzzified data should have been obtained in the process of deriving decision matrix). Secondly, each of these 
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fuzzy scores is directly defuzzified into crisp scores using COA equation (4). Finally, each crisp score is 

translated into their equivalents in𝑻𝑻-point Likert scale which can be identified by multiplying the crisp score 

with number of linguistic terms in the predetermined scale,𝑻𝑻. By end of this stage, the data are ready to be 

factor analyzed. 

3.5. Decomposing complex store evaluation problem into simpler hierarchy system 

In step 5, based on the factor analysis result, the complex store evaluation problem is decomposed into simpler 

hierarchical structure that comprised of ‘stores’, ‘attributes’, ‘factors’, and ‘goal’ levels in order to conduct the 

analysis in a more systematic and interpretable means. 

3.6. Identifying λ- measure weights within each factor  

Since the attributes within each factor are being interactive, Choquet integral can be then employed in order to 

aggregate the performance scores within each factor. However, prior to employing Choquet integral, the 

monotone measure weights need to be identified. For this purpose, an approach applied in the [34] is utilized. 

The identification process can be simplified as follows. 

Firstly, the experts are required to express the individual importance or contribution of each attribute towards its 

corresponding factor in linguistic terms. These linguistic importance are then quantified into their corresponding 

TFNs based on a preset scale. The scale should comprise a set of linguistic terms, 𝑰𝑰 = (𝑰𝑰𝟏𝟏, 𝑰𝑰𝟐𝟐 , … , 𝑰𝑰𝑻𝑻)  together 

with their respective TFNs, 𝑳𝑳� = �𝑳𝑳�𝟏𝟏,𝑳𝑳�𝟐𝟐, … ,𝑳𝑳�𝑻𝑻�  where 𝑰𝑰𝟏𝟏  and 𝑰𝑰𝑻𝑻  denote ‘least important’ and ‘extremely 

important’ respectively. Subsequently, the average fuzzy importance, 𝑳𝑳�𝒋𝒋𝒋𝒋 of an attribute,  𝒋𝒋 corresponding to 

factor, 𝒑𝒑 can be determined using equation (5). 

𝐿𝐿�𝑖𝑖𝑖𝑖 = 1
𝑧𝑧
∑ 𝐿𝐿�𝑗𝑗𝑒𝑒𝑝𝑝
𝑧𝑧
𝑒𝑒=1 (5) 

Suppose 𝐸𝐸𝑒𝑒 = {𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑧𝑧} denotes the experts involved in the analysis. Then, based on equation (5), 𝐼𝐼𝑗𝑗𝑒𝑒𝑝𝑝  

represents the fuzzy importance of attribute, 𝑗𝑗 with respect to factor, 𝑝𝑝 that is derived from expert, 𝑒𝑒 and 𝑧𝑧 

implies the total number of experts involved. The average fuzzy importance are then defuzzified into crisp 

importance via COA equation (4). These crisp importance actually represent the individual weights of attributes, 

𝑔𝑔𝑗𝑗 = 𝑔𝑔𝜆𝜆�𝑐𝑐𝑗𝑗 �, 𝑗𝑗 = 1,2, … , 𝑛𝑛. Equation (2) and (1) can be then applied in order to find the interaction parameter, λ 

and monotone measure weights of each factor. 

3.7. Aggregating interactive scores using Choquet integral 

In step 7, the identified monotone measure and performance scores are replaced into Choquet integral model 

(3)to aggregate the interactive performance scores within each factor. As a result, by end of step 7, each store 

will have an aggregated score with respect to each factor (in other words, each store will have a set of factor 

scores).Hence, a new decision matrix, stores versus factors, can be constructed for further analysis. 
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3.8. Estimating weights of independent factors 

In step 8, to assign the weights of independent factors, MFAHP [35] method is used as the consistency value of 

pair-wise comparison matrix and the weights of factors can be derived simultaneously by simply solving the 

suggested nonlinear optimization model (6). The execution of MFAHP with regards to the proposed model can 

be summarized as follows. 

Firstly, the experts are required to linguistically express the relative importance of factors through a pair-wise 

comparison matrix based on Saaty’s fuzzy AHP scale as shown in Table 1. For sake of simplicity, this paper 

suggests the experts to express their preferences via a single pair-wise matrix after achieving consensus. In order 

to avoid using reciprocal judgment (values between 𝟗𝟗�−𝟏𝟏and 𝟏𝟏�−𝟏𝟏) which could lead to rank reversal problem, 

MFAHP only requires the experts to provide assessment whenever factor,𝒇𝒇𝒂𝒂  is equally or more important 

than𝒇𝒇𝒃𝒃. If it is found that 𝒇𝒇𝒂𝒂 is less important than 𝒇𝒇𝒃𝒃 then, the evaluation should be done oppositely where 𝒇𝒇𝒃𝒃 is 

compared to𝒇𝒇𝒃𝒃. It can be noticed that the reciprocal judgments are not offered in the Table 1 as they are not 

required in executing MFAHP. 

Table 1: Saaty’s fuzzy AHP scale 

Linguistic terms Corresponding TFNs Descriptions   
Equally important 1� = (1, 1, 2) Two elements contribute equally  
Slightly important 3� = (2, 3, 4) One element is slightly favoured over another  
Strongly important 5� = (4, 5, 6) One element is strongly favoured over another  
Very strongly important 7� = (6, 7, 8) One element is very strongly favoured over another  
Extremely important 9� = (8, 9, 9) One element is most favoured over another  
The  intermediate values 2� = (1, 2, 3), 4� = (3, 4, 5),6� = (5, 6, 7), 

8� = (7, 8, 9) 
Used to compromise between 
two judgments 

 

Secondly, the linguistic terms in the assessed pair-wise comparison matrix are converted into their 

corresponding TFNs. Finally, the suggested nonlinear optimization model (6) can be constructed based on the 

fuzzy pair-wise matrix and solved with the aid of EXCEL SOLVER to concurrently derive the consistency 

value of the matrix and the weights of the factors. 

Maximize 𝜇𝜇 

Subject to; 

(𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑙𝑙𝑎𝑎𝑎𝑎 )𝜇𝜇𝑤𝑤𝑏𝑏 − 𝑤𝑤𝑎𝑎 + 𝑙𝑙𝑎𝑎𝑎𝑎𝑤𝑤𝑏𝑏 ≤ 0,(6) 

(𝑢𝑢𝑎𝑎𝑎𝑎 − 𝑚𝑚𝑎𝑎𝑎𝑎 )𝜇𝜇𝑤𝑤𝑏𝑏 +𝑤𝑤𝑎𝑎 − 𝑢𝑢𝑎𝑎𝑎𝑎𝑤𝑤𝑏𝑏 ≤ 0, 

�𝑤𝑤𝑝𝑝

𝑞𝑞

𝑝𝑝=1

= 1,𝑤𝑤𝑝𝑝 > 0, 𝑝𝑝 = 1, …𝑞𝑞 

With respect to the proposed model,𝑙𝑙𝑎𝑎𝑎𝑎 , 𝑢𝑢𝑎𝑎𝑎𝑎 , and 𝑢𝑢𝑎𝑎𝑎𝑎  represent the lower, upper and most probable values 

corresponding to the fuzzy judgment given by the experts when comparing factor, 𝑓𝑓𝑎𝑎  to 𝑓𝑓𝑏𝑏 . Meanwhile, 𝑤𝑤𝑝𝑝  
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denotes the weight of factor, 𝑓𝑓𝑝𝑝  and 𝜇𝜇 represents the consistency index of the pair-wise comparison. If the value 

of µ is positive then, it indicates that the fuzzy pair-wise comparison matrix is being consistent. On the other 

hand, if the value is negative then, it implies that the comparison matrix is being inconsistent and re-evaluation 

on the pair-wise comparison is required. 

3.9. Applying WAfor computing the global image score of each store  

In step 9, after identifying the weight of each independent factor through MFAHP, WA operator(7) is applied to 

compute the global image score of each store. 

∑ (𝑤𝑤𝑝𝑝 . 𝑦𝑦𝑝𝑝
𝑞𝑞
𝑝𝑝=1 )(7) 

where𝑤𝑤𝑝𝑝  denotes the weight of factor, 𝑝𝑝 and 𝑦𝑦p  denotes the score of a store with respect to factor, 𝑝𝑝. The stores 

can be then ranked based on their global scores where the store with the highest global score reflects the most 

preferred store by customers. The result or information derived from the model can be then utilized by the 

retailers to develop the optimal strategies for enhancing the images of their stores from the customers’ 

perceptive. Figure 3 simplifies the steps involved in the proposed model. 

 

Fig. 3: Steps in executing proposed MADM model 

4. Real Application 

In this section, an evaluation involving three stores located at Pekan Sabak was conducted in order to verify the 

feasibility of the proposed model. 

4.1. Background of the problem and stores under evaluation 

Pekan Sabak is a subdivision of Sabak Bernam district, located at the northwest Selangor. It is a rural area, 

largely covered by traditional villages and plantation estates where most of the populace is engaged with 
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agricultural activities. Alike other rural regions, Sabak has its own, progressing town which is locally known as 

‘Pekan Sabak’. The town has been experiencing a satisfying growth for the past few years. Mushrooming of 

new housing and shop lots projects, the presence of new banks, fast food franchise, new budget hotels, resort, 

and home-stays, mini convention centre, government community college and not to forget, the emergence of 

chain stores are reflecting the town’s development for the past 15 years.  

Focusing on the chain stores, there are three chain stores operating in Sabak Bernam namely Big Shop, 99 

Speedmart, and Billion. Billion is the first chain store of the town then followed by 99 Speedmart and Big Shop. 

Both Billion and Big Shop are running their business in a double storey building whereas, 99 Speedmart is 

operating in a broad, single storey building. The main selling products of these stores are household items and 

foodstuffs. The main customers of these stores are the locals from the villages and plantation estates situated 

close to the town. It is essential for the retailers to analyze their stores’ image from the viewpoints of these local 

people, so proper strategies can be organized to enhance their image as a way to boost the number of repetitive 

and loyal customers.  

Nevertheless, in this study, we were only interested to measure the images of these three stores from the 

perception of the housewives living in Sabak Bernam Plantation Estate, which is located three kilometers away 

from the town. It has to be notified that housewives not only make purchase decisions for their own 

consumption but also influence family purchase decisions [36, 37]. 

4.2. Eliciting store attributes 

With regards to this study, the two experts who involved in this analysis have initially extracted fifteen attributes 

from past literature which were believed to be significant for evaluating the image of stores located in small 

towns but latterly, after further consideration, two attributes (‘long opening hour’ and ‘distance from home’) 

were dropped out from the final list due to following reasons. The attribute ‘distance from home’ was discarded 

as the distance of the three stores from the estate is more or less same and the attribute ‘long opening hour’ was 

excluded as the three stores operate almost in a same time frame. The final list of store attributes used for this 

analysis was as presented in Table 2.  

4.3. Data collection via questionnaire 

A questionnaire was then designed based on a predetermined 9-point linguistic scale (refer Table 3) as an 

instrument to gather the perception of the housewives on each store. The questionnaire was mainly prepared in 

Malay and Tamil versions since it was understood that most of targeted respondents are only excel in their 

mother tongue. The questionnaire was organized into two major sections; 𝑨𝑨and 𝑩𝑩. Section 𝑨𝑨 was dedicated to 

obtain some profiles of respondents such as age, race, period of residing in the estate, and total household 

income. Meanwhile, in Section 𝑩𝑩, the respondents were requested to linguistically express their satisfaction 

towards each store with respect to the identified attributes based on the predetermined scale, ranging from 

‘absolutely unsatisfied’ to ‘absolutely satisfied’. 
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Table 2: Finalized list of store attributes 

No. Attributes Description 
1 Quality products (𝑐𝑐1) The products sold at the store are in good quality, durable, function as expected 

and fresh (for foodstuffs) 
2 Assortment (𝑐𝑐2) The store carries different kinds or brands of products 
3 Price(𝑐𝑐3) The price of the products are reasonable and cheaper in comparison to other 

stores 
4 Staff(𝑐𝑐4) Store staff are neatly uniformed and always welcome the customers with friendly 

attitudes. 
5 Fast checkouts(𝑐𝑐5) I don’t have to wait for so long in the queue at payment counters 
6 Cleanliness(𝑐𝑐6)  The store is clean, neat, and tidy 
7 Internal 

environment(𝑐𝑐7) 
The internal atmosphere of the store always creates a pleasurable mood during 
purchasing activities  

8 Store layout(𝑐𝑐8) The design of store is spacious and makes shopping is easier and comfortable 
9 Product display(𝑐𝑐9) The products are displayed and arranged according to their usage and  in an easy-

to-find manner 
10 Storefront(𝑐𝑐10) The store has attractive storefront with eye-catching decors, banners, or posters 
11 In-store facilities(𝑐𝑐11) The store has satisfying level of necessary facilities within the stores such as 

such baskets, carriers, and fitting rooms 
12 Parking facility(𝑐𝑐12) It is easy to get parking space around the store 
13 Promotion(𝑐𝑐13) Good sales are offered timely 

 

Table 3: 9-point linguistic scale for expressing satisfaction 

Linguistic preferences TFNs 
𝑆𝑆1 = Extremely unsatisfied 𝐴̃𝐴1 = (0,0,0.125) 
𝑆𝑆2 = Very unsatisfied 𝐴̃𝐴2 = (0,0.125,0.25) 
𝑆𝑆3 = Unsatisfied 𝐴̃𝐴3 = (0.125,0.25,0.375) 
𝑆𝑆4 = Somewhat unsatisfied 𝐴̃𝐴4 = (0.25,0.375,0.5) 
𝑆𝑆5 = Neutral 𝐴̃𝐴5 = (0.375,0.5,0.625) 
𝑆𝑆6 = Somewhat satisfied 𝐴̃𝐴6 = (0.5,0.625,0.75) 
𝑆𝑆7 = Satisfied 𝐴̃𝐴7 = (0.625,0.75,0.875) 
𝑆𝑆8 = Very satisfied 𝐴̃𝐴8 = (0.75,0.875,1) 
𝑆𝑆9 = Extremely satisfied 𝐴̃𝐴9 = (0.875,1,1) 

Prior to conducting the actual survey, the questionnaire was pre-tested with a group of 45 housewives from a 

housing area who were found to have purchasing experience at the designated stores. They were given three 

days to respond on the given questionnaire and also recommended to comment on the clarity of the 

questionnaire, puzzling terms, and overall format of the questionnaire. Based on the respondents’ feedback, 

some alterations were made on the questionnaire especially some rare terms were replaced with simpler and 

straightforward words. Before embarking the actual survey, an approval from the estate management was 

obtained. The overall data collection procedure for this study can be summarized as follows. 

• Target population: As mentioned formerly, this study was intended to understand the image of the 

stores from the view of female housewives who are dwelling in Sabak Bernam Estate. By interviewing the 

head of workers’ union, it was discovered that around 51 houses in the area were occupied by Malaysian 

families (the remaining were occupied by few male bachelors and some foreign labors who were beyond of 
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the study’s focus). Therefore, the finalized population of this analysis was the 51 housewives from each of 

these families. 

• Sampling procedure: Using the online calculator available at http://www.surveysystem.com/sscalc.htm, 

it was understood that the minimum sample size required to correctly represent the population of this study is 

45 (in the case of 5% of confidence interval). However, in this analysis, no specific sampling procedure was 

applied as we believed that the overall population was small and thus, the perception from all the housewives 

can be obtained without any difficulties.  

• Data collection process: With the help of two primary school teachers who are familiar with the local 

people, a house-to-house survey was conducted. For sake of caution, prior to offering the questionnaire, a 

screening question was asked to the respondents to ensure they had the purchasing experience at all the three 

stores. As expected, all of them had purchased at the three stores for at least once. In addition, in order avoid 

biased evaluation from the loyal customers, it was clearly explained to them that the intention of the survey is 

not to compare the performance of the stores. They were simply informed that the survey is being conducted 

to enhance the existing services and facilities within each store. Each of these 51 housewives was requested 

to express their perception on each item in the questionnaire with respect to each store. We assisted them 

throughout the answering process and assured that the questionnaires were fulfilled completely. The survey 

was scheduled and conducted after 5pm as most of the working women would be only available after this 

point of time. Therefore, it took almost a week to accomplish the survey.  At the end of survey, a large data 

set comprising a total of 153 observations [number of observations on each store (51) × number of stores (3)] 

were obtained. Since the store image evaluation system constructed by 13 attributes, as per the rule of ‘10 

observations per attribute’, the total observation, 𝑁𝑁 for this problem should be at least 130 to perform a 

meaningful factor analysis. This indicated that the total observation (N=153) gathered via this survey was 

enough to guarantee a trustworthy factor analysis result.  

4.4. Deriving decision matrix (3 stores versus 13 attributes) 

At this step, firstly, the collected raw data were converted into fuzzified data by quantifying the available 

linguistic scores into their corresponding TFNs based on the preset 9-point linguistic scale. Then, the fuzzy 

performance scores of each store with respect to each attribute was identified by averaging the scores obtained 

from the 51 respondents. Finally, these fuzzy performance scores were defuzzified into crisp scores using COA 

equation (4) in order to attain the decision matrix of the evaluation problem (3 stores versus 13 attributes) as 

presented in Table 4. 

 

Table 4: Decision matrix (stores versus attributes) 

 𝐜𝐜𝟏𝟏 𝐜𝐜𝟐𝟐 𝐜𝐜𝟑𝟑 𝐜𝐜𝟒𝟒 𝐜𝐜𝟓𝟓 𝐜𝐜𝟔𝟔 𝐜𝐜𝟕𝟕 𝐜𝐜𝟖𝟖 𝐜𝐜𝟗𝟗 𝐜𝐜𝟏𝟏𝟏𝟏 𝐜𝐜𝟏𝟏𝟏𝟏 𝐜𝐜𝟏𝟏𝟏𝟏 𝐜𝐜𝟏𝟏𝟏𝟏 
B 0.7271 0.7753 0.6291 0.5547 0.7418 0.7435 0.7288 0.6855 0.6462 0.6871 0.7263 0.7663 0.7132 

S 0.8374 0.7247 0.7770 0.8521 0.7582 0.8685 0.8268 0.7549 0.8358 0.7255 0.7631 0.3374 0.4592 

BS 0.6438 0.8137 0.6977 0.7541 0.7574 0.7002 0.6087 0.8080 0.8145 0.8113 0.8015 0.8668 0.8121 

*B=Billion, S=Speedmart, and BS= Big Shop 
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4.5. Factor analyzing the collected data  

In order to assure the data are in valid forms to be factor analyzed, the scores in the fuzzified dataset which were 

obtained in the process of identifying decision matrix were directly converted into their crisp scores using COA 

equation (4) and finally into their equivalents in 9-pointLikert scale (𝑇𝑇 = 9). Prior to conducting factor analysis, 

the factor ability of the transformed data was investigated. The assessment on the correlation matrix disclosed 

the presence of several coefficients of 0.3 and above. Besides, by referring to SPSS output as in Table 5, it was 

noted that the KMO value was 0.662, surpassing the recommended 0.6 and Bartlett’s Test of Sphericity reached 

statistical significance as the p-value, 0 is less than 0.05. These three circumstances clearly justified that the 

dataset was appropriate to be factor analyzed. 

Table 5: KMO and Bartlett's Test for store image data 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .662 

Bartlett's Test of Sphericity Approx. Chi-Square 496.844 
df 78 
Sig. .000 

 

After factor analyzing the modified data via SPSS software, the large set of thirteen attributes was reduced into 

five independent factors. However, it has to be understood that the attributes within each extracted factor were 

still inter-correlated to each other. The result of factor analysis for this study can be further detailed as follows. 

Extraction through principal component analysis revealed the presence of five common factors with eigen 

values exceeding one, explaining 24.386 %, 16.679 %, 10.071 %, 8.269 %, and 7.705 % of the variance 

respectively as shown in Table 6. The total variance explained reached 67.110 %. To aid in the interpretation of 

these five common factors, varimax rotation was performed and the result as in Table 7 was obtained.  

Four attributes 𝑐𝑐7 , 𝑐𝑐6 , 𝑐𝑐3  , and 𝑐𝑐1which had higher loading at factor 1 was renamed as ‘in-store experience’ 

factor (𝑓𝑓1) as it is believed pleasing internal environment, cleanliness level, price and quality of products could 

play significant roles in determining assenting in-store purchasing experience. Another four attributes 𝑐𝑐9, 𝑐𝑐4, 𝑐𝑐10  

, and 𝑐𝑐8 had higher loading at factor 2 and was labeled as ‘first impression’ factor (𝑓𝑓2) as the way the products 

are displayed and arranged, the appearance and attitude of staff, the exterior and layout of store are the first 

features which can be noticed by the customers even before purchasing the products.  Meanwhile, attributes 𝑐𝑐13 , 

𝑐𝑐12 , and 𝑐𝑐11  formed a new common factor which was then identified as ‘customer care’ factor (𝑓𝑓3) because 

usually, with a good sales promotion, sufficient facilities provided within the stores, and satisfactory parking 

facility, the customers believe the retailers are reflecting their appreciation and concern towards them.  Both 𝑐𝑐2 

and 𝑐𝑐5  did not show any relationships with other attributes and independently had higher loading at factor 4 and 

factor 5 respectively. Therefore, the name of these two factors were retained as ‘assortment’ (𝑓𝑓4) and ‘checkout’ 

(𝑓𝑓5).  
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Table 6: Total Variance Explained 

Component Initial Eigenvalues 
Total % of Variance Cumulative % 

1 3.170 24.386 24.386 
2 2.168 16.679 41.066 
3 1.309 10.071 51.137 
4 1.075 8.269 59.405 
5 1.002 7.705 67.110 
6 .868 6.676 73.786 
7 .783 6.022 79.809 
8 .658 5.062 84.871 
9 .563 4.333 89.204 
10 .476 3.665 92.869 
11 .346 2.658 95.527 
12 .302 2.321 97.848 
13 .280 2.152 100.000 

*Extraction method: Principal component analysis 
 

Table 7: Rotated component matrix 

 Component 
 1 2 3 4 5 
Environment(𝑐𝑐7) .835     
Clean(𝑐𝑐6) .760    .357 
Price(𝑐𝑐3) .750     
Quality(𝑐𝑐1) .616     
Display(𝑐𝑐9)  .818    
Staff(𝑐𝑐4)  .694    
Storefront(𝑐𝑐10)  .566 .314   
Layout(𝑐𝑐8)  .549  .389  
Promotion(𝑐𝑐13)   .865   
Parking(𝑐𝑐12)   .690 .386  
Facility(𝑐𝑐11) .335  .574   
Assortment(𝑐𝑐2)    .863  
Checkout(𝑐𝑐5)     .911 

  *Extraction Method: Principal Component Analysis 
  *Rotation Method: Varimax with Kaiser Normalization. 
  *Rotation converged in 25 iterations. 
 
 

4.6. Simplifying complex store image evaluation problem into hierarchical structure 

By adhering to the result of factor analysis, the complex store image evaluation system was decomposed into 

simpler and interpretable system which was helpful in conducting the further analysis gradually from one level 

to the others. Based on fig. 4, the first level of the hierarchical structure shows all the three stores under 

evaluation. The second level encompasses the groups of attributes that influence each of the extracted factors 

with their respective scores captured from the decision matrix. Meanwhile, the third level depicts the actual 

determinants or factors that affect the overall image of the stores and the fourth level reflects the goal of the 

MADM problem which was to assess the images of the three stores from the housewives’ perspective. 

4.7. λ-measure weights within each store image factor 

As the first step of identifying the monotone measure values, the two experts expressed their independent 

perception on the individual importance of each attribute towards its factor based on a nine-point linguistic scale 
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as shown in Table 8. The perception of the experts and the identification of individual weights of attributes 

within each factor via equation (5) and (4) are summarized into Table 9. 

 

 

Fig. 4:  Hierarchical system of the store image evaluation problem 

 
 

Table 8: 9-point linguistic scale for expressing individual importance of attributes 

Linguistic variables TFNs 
𝑆𝑆1 = Least important 𝐼𝐼1 = (0, 0, 0.125) 
𝑆𝑆2 = Somewhat important 𝐼𝐼2 = (0, 0.125, 0.25) 
𝑆𝑆3 = Important 𝐼𝐼3 = (0.125, 0.25, 0.375) 
𝑆𝑆4 = Somewhat strongly important 𝐼𝐼4 = (0.25, 0.375, 0.5) 
𝑆𝑆5 = Strongly important 𝐼𝐼5 = (0.375, 0.5, 0.625) 
𝑆𝑆6 = Somewhat very stongly important 𝐼𝐼6 = (0.5, 0.625, 0.75) 
𝑆𝑆7 = Very strongly important 𝐼𝐼7 = (0.625, 0.75, 0.875) 
𝑆𝑆8 = Somewhat extremely important 𝐼𝐼8 = (0.75, 0.875, 1) 
𝑆𝑆9 = Extremely important 𝐼𝐼9 = (0.875, 1, 1) 
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Table 9: Identification of individual weights within each store image factor 

Factor Attributes Importanc
e 
(Linguistic 
terms) 

Fuzzy importance Average 
fuzzy 
importance 

Final 
individua
l 
weights 

1stE 2ndE 1stE 2ndE 
In-store  
experience 

Environmen
t 

I SI (0.125,0.25,0.375
) 

(0,0.125,0.25) (0.0625,0.1875,0.3125
) 

0.1875 

Clean I SI (0.125,0.25,0.375
) 

(0,0.125,0.25) (0.25,0.375,0.5) 0.3750 

Price SI SI (0,0.125,0.25) (0,0.125,0.25) (0.1875,0.3125,0.4375
) 

0.3125 

Quality STI VSI (0.375,0.5,0.625) (0.625,0.75,0.875
) 

(0.5,0.625,0.75) 0.625 

First  
impressio
n  

Display I SI (0.125,0.25,0.375
) 

(0,0.125,0.25) (0.0625,0.1875,0.3125
) 

0.1875 

Staff SSI I (0.25,0.375,0.5) (0.125,0.25,0.375
) 

(0.1875,0.3125,0.4375
) 

0.3125 

Storefront SSI I (0.25,0.375,0.5) (0.125,0.25,0.375
) 

(0.1875,0.3125,0.4375
) 

0.3125 

Layout SI SI (0,0.125,0.25) (0,0.125,0.25) (0, 0.125, 0.25) 0.125 
Customer 
care  

Promotion STI SSI (0.375,0.5,0.625) (0.25,0.375,0.5) (0.3125,0.4375,0.5625
) 

0.4375 

Parking I I (0.125,0.25,0.375
) 

(0.125,0.25,0.375
) 

(0.125,0.25,0.375) 0.25 

Facility SI I (0,0.125,0.25) (0.125,0.25,0.375
) 

(0.0625,0.1875,0.3125
) 

0.1875 

*E= expert, SI= somewhat important, I= important, SSI= somewhat strongly important, STI= strongly important, VSI= very 
strongly important 

 

The identified individual weights were then replaced into equation (2) in order to estimate the interaction 

parameter, λ of each factor. Finally, with the available individual weights and interaction parameters, λ, equation 

(1) was used to estimate the monotone measure weights within each factor. The identified interaction parameter, 

λ and monotone measure weights of each store image factor were as presented in Table 10. 

As the proposed model consists of factor analysis, it is able to reduce the actual number of monotone measure 

weights which need to be identified by the retailers prior to applying Choquet integral from 8192 (213) weights 

to 40 (24+24+23) weights. Therefore, there was about 99.5% computational saving achieved in determining the 

weights of monotone measure for this specific problem. The percentage of computational saving relies on the 

result of factor analysis. In general, through the proposed model, the actual number of monotone measure 

weights can be reduced from 2𝑛𝑛  to ∑ 2�𝑓𝑓𝑝𝑝 �𝑞𝑞
𝑝𝑝=1  where 𝑓𝑓𝑝𝑝 =  (𝑓𝑓1 ,𝑓𝑓1, … , 𝑓𝑓𝑞𝑞) set of extracted factors, 𝑞𝑞 denotes the 

total number of factors, and |𝑓𝑓𝑝𝑝  | represents the  number of attributes within factor, 𝑝𝑝. 

4.8. Applying Choquet integral to aggregate interactive performance scores 

After identifying weights of monotone measure, Choquet integral model (3) was then applied to aggregate the 

interacted performance scores within each factor to obtain factor scores. The performance scores within each 

factor their aggregated scores via Choquet integral model are shown in Table 11. 
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Table 10: Monotone measure weights of each factor 

In-store experience  
(λ= -0.7470) 

First impression 
 (λ= 0.1922) 

Customer-care attitude 
 (λ= 0.5029) 

Subsets Weights Subsets Weights Subsets Weights 
{} 0.0000 {} 0.0000 {} 0 
{Environment} 0.1875 {Display } 0.1875 {Promotions } 0.4375 
{Clean } 0.3750 {Staff} 0.3125 {Parking} 0.2500 
{Environment, Clean} 0.5100 {Display, Staff} 0.5113 {Promotions,  

Parking} 
0.7425 

{Price } 0.3125 {Storefront} 0.3125 {Facility} 0.1875 
{Environment, Price} 0.4562 {Display ,Storefront} 0.5113 {Promotions,  

Facility} 
0.6663 

{Clean, Price} 0.6000 {Staff, Storefront} 0.6438 {Parking, Facility} 0.4611 
{Environment, Clean , Price } 0.7034 {Display , Staff, Storefront} 0.8545 {Promotions,  

Parking, Facility} 
1.0000 

{Quality} 0.6250 {Layout } 0.1250  
{Environment, Quality} 0.7250 {Display ,Layout } 0.3170 
{Clean ,Quality} 0.8249 {Staff, Layout } 0.4450 
{Environment, Clean ,Quality} 0.8969 {Display, Staff, Layout } 0.6485 
{Price, Quality} 0.7916 {Storefront, Layout } 0.4450 
{Environment, Price ,Quality} 0.8682 {Display, Storefront, Layout 

} 
0.6485 

{Clean, Price, Quality} 0.9449 {Staff, Storefront, Layout } 0.7842 
{Environment, Clean , 
 Price ,Quality} 

1.0000 {Display ,Staff,  
Storefront, Layout } 

1.0000 

 

Table 11: Factor scores of each store 

Stores Attributes/performance scores Factor scores 

 Environment Cleanliness Price Quality In-store experience  
Billion 0.7288 0.7435 0.6291 0.7271 0.7234 
Speedmart 0.8268 0.8685 0.7770 0.8374 0.8421 
Big 0.6087 0.7002 0.6977 0.6438 0.6751 
 Display Staff Storefront Layout First impression  
Billion 0.6462 0.5547 0.6871 0.6855 0.6320 
Speedmart 0.8358 0.8521 0.7255 0.7549 0.7910 
Big 0.8145 0.7541 0.8113 0.8080 0.7913 
 Promotions Parking Facility 

 

Customer care   
Billion 0.7132 0.7663 0.7263 0.7292 
Speedmart 0.4592 0.3374 0.7631 0.4755 
Big 0.8121 0.8668 0.8015 0.8230 

 

Based on the factor scores, a new decision matrix, stores versus factors, was constructed as shown in Table 12. 

Note that the stores’ scores with respect to assortment and checkout factor were elicited from the previous 

decision matrix (refer Table 4). Further evaluation was based on this newly constructed decision matrix. 

Table 12: New decision matrix (stores versus factors) 

 In-store experience  First impression  Customer care Assortment Checkout 
Billion 0.7234 0.6320 0.7292 0.7753 0.7418 

Speedmart 0.8421 0.7910 0.4755 0.7247 0.7582 

Big 0.6751 0.7913 0.8230 0.8137 0.7574 
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4.9. Estimating weights of independent store image factors 

MFAHP technique was then utilized in order to estimate the weights of independent factors. As the first step to 

employ MFAHP, the two experts involved in the analysis had a detailed discussion on the relative importance 

between the store factors. After achieving consensus, a single pair-wise matrix was assessed linguistically as 

shown in Table 13by using Saaty’s fuzzy AHP scale. It can be noticed that since ‘first impression’ and 

‘customer care’ were found to be less important than ‘assortment’ factor, the evaluation was done vice versa to 

avoid using reciprocal values as mentioned in section 3.8.    

Table 13: Linguistic pair-wise comparison between store image factors 

 In-store  
experience 

First  
impression 

Customer  
care 

Assortment Checkout 

In-store  
experience 

(1,1,1) Slightly  
important 

Somewhat  
strongly 
important  
 

Somewhat  
slightly 
important 

Somewhat  
strongly 
important 

First  
impression 

 (1,1,1) Somewhat  
slightly 
important 
 

 Somewhat  
slightly 
important 

Customer  
care 

  (1,1,1)  Equally  
Important 
 

Assortment  Somewhat  
slightly 
important 

Slightly  
important 

(1,1,1) Slightly  
important 

Checkout     (1,1,1) 

The linguistic terms in the evaluated pair-wise matrix were then quantified into their corresponding TFNs.Based 

on the fuzzy pair-wise matrix, the suggested nonlinear optimization model (5) was constructed and solved with 

the aid of EXCEL Solver. Following result was obtained: weight of in-store experience factor,𝑤𝑤1 = 0.4091; 

weight of first impression factor,𝑤𝑤2 = 0.1532; weight of customer care factor,𝑤𝑤3  = 0.0937; weight of assortment 

factor,𝑤𝑤4 = 0.2503; weight of checkout factor,𝑤𝑤5 = 0.0937; consistency index, µ = µ =0.6340. The value of µ 

implied that the consistency of pair-wise matrix was satisfactory. 

4.10. Computing global image score of each store 

Finally, based on estimated weights of factors and available factor scores, the overall image of each store was 

computed via WA operator (7). The image score of each store and its corresponding ranking are summarized in 

Table 13.  

Table 13: Image scores and ranking of stores 

 In-store 
experience 
(𝒘𝒘𝟏𝟏
= 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒) 

First 
impression 
(𝒘𝒘𝟐𝟐
= 𝟎𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏) 
 

Customer 
care 

(𝒘𝒘𝟑𝟑
= 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎) 

Assortment 
(𝒘𝒘𝟒𝟒 =
𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐) 

Checkout 
(𝒘𝒘𝟓𝟓
= 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎) 

Global 
score 

Ranking 

Billion 0.7234 0.6320 0.7292 0.7753 0.7418 0.7247 3 
Speedmart 0.8421 0.7910 0.4755 0.7247 0.7582 0.7627 1 

Big 0.6751 0.7913 0.8230 0.8137 0.7574 0.7492 2 
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4.11. Proposed model versus a conventional aggregation operator 

In this section, the same stores’ image problem was solved through a classical aggregator (to be specific, by 

only using the common WA operator) and the obtained result was compared with the result from the proposed 

model. The reason of choosing classical WA was to mainly illustrate the consequence of disregarding the 

interactions between attributes in analyzing the images of stores.  As usual, the analysis was conducted by 

employing the basic three phases of MAUT as follows. 

• Identifying the alternatives and attributes of problem: The same three stores and thirteen attributes were 

used to carry out the analysis. The problem was then decomposed into hierarchy structure comprising of 

‘alternatives’ (three stores), ‘attributes’ (store attributes), ‘goal’ (evaluating the stores based on their image 

score) levels. 

• Identifying performance scores of alternatives and weights of attributes: In order to make sensible 

comparison on the results (outputs) from two different MADM tools, same data (inputs) should be used. 

Therefore, in this case, the existing store image data were utilized to derive the local scores and weights 

required for the application of WA. In the process of obtaining the performance or decision matrix forthe 

evaluation using conventional WA, firstly, the linguistic scores in raw data were converted or represented 

with their equivalent crisp numbers in 9- point Likert scale (instead of quantifying into fuzzy numbers as 

required in the proposed model). Then, by averaging the crisp scores corresponding to each store, the 

performance scores were computed. As a result, a decision matrix as shown in Table 15 was attained. On the 

other hand, since WA assumes interdependency between attributes then, it is essential to ensure the sum of 

weights of the 13 attributes is being additive or equal to one. To derive the weights for WA, firstly, the 

individual weights of attributes within each factor were normalized to assure the sum of the weights is equal 

to one. These normalized weights were just implied the contribution or importance of attributes towards their 

respective factor. Therefore, the final weight of each attribute (contribution of attributes towards overall 

image) was then estimated by multiplying its normalized weight with the weight of respective factor. It has to 

be reminded that the weights of factors do not demand normalization as they were already in the additive 

state. Table 16 recaps the computational process of determining the additive weights of attributes for WA. 

 

Table 15: Decision matrix for WA 

 𝒄𝒄𝟏𝟏 𝒄𝒄𝟐𝟐 𝒄𝒄𝟑𝟑 𝒄𝒄𝟒𝟒 𝒄𝒄𝟓𝟓 𝒄𝒄𝟔𝟔 𝒄𝒄𝟕𝟕 𝒄𝒄𝟖𝟖 𝒄𝒄𝟗𝟗 𝒄𝒄𝟏𝟏𝟏𝟏 𝒄𝒄𝟏𝟏𝟏𝟏 𝒄𝒄𝟏𝟏𝟏𝟏 𝒄𝒄𝟏𝟏𝟏𝟏 

Billion 6.843
1 

7.235
3 

6.039
2 

5.451
0 

6.960
8 

7.000
0 

6.882
4 

6.509
8 

6.196
1 

6.529
4 

6.843
1 

7.196
1 

6.745
1 

Speedmar
t 

7.803
9 

6.823
5 

7.274
5 

7.941
2 

7.117
6 

8.058
8 

7.725
5 

7.098
0 

7.784
3 

6.843
1 

7.156
9 

3.666
7 

4.686
3 

Big 6.196
1 

7.607
8 

6.647
1 

7.098
0 

7.117
6 

6.647
1 

5.882
4 

7.568
6 

7.607
8 

7.568
6 

7.490
2 

8.078
4 

7.607
8 
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Table 16: Final additive weights for WA 

Factors Attributes Individual  
weights  

Normalized  
weights 

Final weights 

In-store experience 
(0.4091) 

Environment 0.1875 0.1250 0.0511 

Clean 0.3750 0.2500 0.1023 

Price 0.3125 0.2083 0.0852 
Quality 0.625 0.4167 0.1705 

SUM 1.5000 1   

First impression  
(0.1532) 

Display 0.1875 0.2000 0.0306 

Staff 0.3125 0.3333 0.0511 
Storefront 0.3125 0.3333 0.0511 
Layout 0.125 0.1333 0.0204 
SUM 0.9375 1   

Customer care 
 (0.0937) 

Promotion 0.4375 0.5000 0.0469 
Parking 0.25 0.2857 0.0268 
Facility 0.1875 0.2143 0.0201 
SUM 0.875 1   

Assortment (0.2503)  -     0.2503 
Checkout (0.0937)  -     0.0937 
SUM    1 

• Aggregation: In this phase, the local scores of each store were composed into a global score using WA 

operator. Based on these global scores which represented the overall image, the stores were ranked up. Table 

17 portrays the variation on the global scores and ranking of the stores derived from the proposed model and 

classical WA. 

Table 17: Comparing the result from proposed model and conventional WA  

Stores Proposed model Classical AHP 
Global scores Ranking Global scores Ranking 

Billion 0.7247 3 6.6247 3 
Speedmart 0.7627 1 6.2881 2 
Big  0.7492 2 7.3283 1 

 

Based on Table 17, it can be concluded that there was a significant disparity between the result generated 

through the proposed model and classical WA. For example, the proposed model assigned Speedmart as the 

store with the finest image but, based on classical WA, Big Shop appeared as the most preferred store. However, 

based on the data collected on the frequency of purchasing at each of the store (through section A of the 

questionnaire) which are summarized into Table 18, it was discovered that 82.85 % of the respondents purchase 

at Speedmart for at least twice in a month. Meanwhile, 72.55% of the same group of housewives purchase at 

Billion for at least twice in a month. Only 52.94% of the housewives purchase at Billion for at least twice a 

month.  
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Table 18: Frequency of purchasing at each store 

Stores Frequency of purchasing at each of the store Percentage (%) of respondents 
Billion Once in a month 47.06 
 Twice in a month                 25.49 
 More than twice in a month 27.45 
 SUM 100 
Speedmart Once in a month                  17.65 
 Twice in a month                 23.53 
 More than twice in a month 58.82 
 SUM 100 
Big Shop Once in a month                  27.45 
 Twice in a month                 21.57 
 More than twice in a month 50.98 
 SUM 100 

Obviously, in actual scenario, Speedmart appeared as their first choice store then followed by Big Shop and 

Billion. By using this order as the benchmark ranking, it can be concluded that the proposed model manage to 

yield a ranking which is closer to the actual ranking in comparison to the classical WA for this specific case 

study. It depends on the retailers either to choice the proposed model or to simply adhere to the common WA 

before conducting the evaluation. Nevertheless, if they believe that the attributes are interacted to each other 

then, the proposed model is recommended.  

4.12. Discussion on the result 

In this empirical study, the proposed model was applied in order to assess the image of three chain stores located 

in Pekan Sabak from the viewpoints of all the housewives who are residing at Sabak Bernam Plantation Estate.  

The result of the analysis can be summarized as follows.   

Through the proposed model, the thirteen attributes which were finalized to characterize the image of the stores, 

were then clustered into five main factors namely in-store experience, first impression, customer care, 

assortment, and checkout factors. The prioritization on these five store image factors based on the proposed 

model was as follows. In-store experience (0.4091) ≥ assortment (0.2503) ≥ first impression (0.1532) ≥ 

customer care (0.0937) ≥ checkout (0.0937). It was understood that both in-store experience and assortment 

factors played major role in forming positive image on the stores from the housewives’ perception. This showed 

that the retailer of each store should concentrate more on preserving satisfactory in-store experience and 

assortment aspects. 

In addition, the interaction parameter of service factor, λ = -0.7470 indicated that in order to improve the image 

of a store in term of in-store experience, it is sufficient to simultaneously enhance some of the attributes which 

had higher individual weights such as quality of product (0.6250) and cleanliness (0.3750). In general, if the 

customers know that the products are being in good quality, the customer would consider the prices are 

reasonable and acceptable where they should be willing to pay the prices [38]. Besides, a clean store always 

plays a role in creating pleasing internal atmosphere for purchasing [39, 40] and encourages the customers to 
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purchase longer or revisit the store [41]. In addition, the acceptance on the pricing could be high during 

purchasing if the internal environment of the specific store is clean and pleasurable as claimed in [42].   

Meanwhile, the interaction parameter, λ= 0.1922 implied that in order to significantly improve the customers’ 

first impression on a store, all the attributes such as products display (0.1875), staff (0.3125), storefront 

(0.3125), and layout (0.1250) have to be enhanced simultaneously regardless of their individual weights. The 

similar approach can be applied in order to augment the customer care factor as it had a positively valued 

interaction parameter, λ = 0.5029. 

According to the proposed model, the ranking of the stores based on global image scores was as follows. 

Speedmart ≥ Big Shop ≥ Billion. Speedmart ruled the top position as it had satisfactory scores with respect to 

in-store experience factor, which was the main determinant of the stores’ image. However, to retain the position 

and to form a greater image among the customers, the retailer could broaden the assortment of products (the 

second main determinant) in the store. From our observation, Speedmart does not carry much variety in food 

stuffs and there is no clothing section in the store in contrary to Billion and Big Shop. Big Shop has the potential 

to be in top position in future if the retailer puts major efforts on creating a satisfactory in-store experience by 

simultaneously assuring the quality of products is in high standard and ensure the store is always clean.  

Meanwhile, Billion was identified as the store with most unfavorable image due to its unsatisfactory 

performance with respect to in-store experience and first impression aspects. Thus, appropriate strategies should 

be planned to achieve perfection in those aspects. With an average score in in-store experience factor, the 

retailer should focus on bringing in more quality products and assure the store is being cleaned timely and 

flawlessly. Besides, to improve the customers’ first impression on the store, the retailer should simultaneously 

enhance all the attributes that influence the factor (display, staff, storefront, and layout), regardless of their 

individual weights.  

The same problem was analyzed using a classical AW operator to demonstrate the consequence of ignoring the 

interactions between attributes.  As a result, a dissimilar ranking as follows was obtained. Big Shop ≥ Speedmart 

≥ Billion. However, it was discovered that the ranking generated by the proposed model was matching with the 

benchmark ranking. Yet, the choice of retailers between these two models depends on their interest whether to 

deal with the interaction aspects. It has to be notified that the paper was only interested to investigate the image 

of the stores from the viewpoints of housewives who are dwelling at Sabak Bernam Estate. The derived result 

was solely based on the perception of housewives staying in the estate. Therefore, the result is not a total 

representative of all the housewives living in Sabak. 

5. Conclusion 

The paper has finally presented a new hybrid MADM model which is tested and proven to be feasible in 

assessing the images of a set of stores from the customers’ perspective. The model was developed by 

converging five main components namely factor analysis, Sugeno measure, Choquet integral, MFAHP, and WA 

operator. With the inclusion of the Choquet integral and its associated sugeno measure, the global image score 

of each store and strategies for image enhancement are identified by modeling and understanding the interaction 

aspects between store attributes. The presence of factor analysis and MFAHP helps the retailers to understand 
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the actual determinants or factors contributing to a positive store image together with their priorities. Besides, 

the model enables the respondents or experts to provide or express their preferences in natural languages as way 

to deal with the usual uncertainty integrated with human’s thought by utilizing the idea of fuzzy numbers. In 

addition, through the proposed model, the actual number of monotone measure weights which need to be 

identified prior to applying Choquet integral can be reduced from 2𝑛𝑛  to ∑ 2�𝑓𝑓𝑝𝑝 �𝑞𝑞
𝑝𝑝=1  where 𝑛𝑛  represents the 

number of attributes,𝑓𝑓𝑝𝑝 =  (𝑓𝑓1, 𝑓𝑓1 , … ,𝑓𝑓𝑞𝑞)denotes  the set of extracted factors, 𝑞𝑞 is the total number of factors, and 

|𝑓𝑓𝑝𝑝  | represents the  number of attributes within factor, 𝑝𝑝.   

To demonstrate the workability of the proposed model, a real image evaluation problem involving three stores in 

Pekan Sabak was performed using the model where some potential strategies have been proposed by adhering to 

the derived result. Besides, the ranking of the three stores yielded via the model was found to be matching with 

the benchmark ranking unlike the ranking generated by the classical aggregation model (AW operator) which 

assumes the attributes are independent to each other. Therefore, the retailers are recommended to utilize the 

proposed model in the scenario where they believe the attributes are interacted to each other,for a more 

trustworthy result.  

For future studies, the proposed model can be employed in other real MADM problems occurring in different 

domains. Besides, the target population in the presented case study can be extended in future where the images 

of the stores can be investigated based on the viewpoints of all housewives dwelling in Sabak division by 

adhering to the same list of attributes. Further enhancing the proposed model is a commendable direction for 

future work. For example, as the proposed model could sometimes demand massive size of datasets to perform 

factor analysis, future research can focus on finding a simpler technique for clustering large set of attributes into 

fewer independent factors and swap it appropriately into the proposed model. 
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