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Abstract 

The task of acquiring information from sensor networks through generating queries is one of the most important 

issues in wireless sensor networks. The structure of traditional query processing systems requires defining query 

criteria in the form of crisp predicates with explicit and numerical thresholds, leading them to be processed in a 

certain manner. The inherent uncertainty and imprecision of sensor data call for a new approach towards them. 

Since fuzzy theory provides a toolbox to capture the imprecision associated with both data and query, in this 

paper, a new system for processing fuzzy queries in wireless sensor networks is introduced. In this system, in 

addition to presenting a new structure for fuzzy queries, a new algorithm is introduced for processing fuzzy 

queries in sensor networks. Simulation results indicate that accuracy and precision of the results obtained from 

fuzzy queries are higher than traditional ones, whereas there is no significant difference between the two 

regarding their energy consumption.  

Keywords wireless sensor networks; query processing; in-network processing; flexible processing; fuzzy query; 

fuzzy proposition; is-predicate; correlation index 

1. Introduction 

Wireless sensor networks consist of a set of nodes equipped with different kind of sensors which communicate 

each other through wireless connections for such environmental monitoring applications. In these networks, the 

task of delivering sensor readings is done in two ways; proactive and reactive approach.  
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In proactive approach, all sensor readings are sent to a base station periodically or event-based, and the raw data 

will be processed later at the base station. Whereas, in reactive (on-demand) method, the sensor readings are 

sent to the base station when they are requested by the user. For this end, user defines the desired information to 

acquire from network, through issuing a query. In respond to the query, only those sensors propagate their 

readings which are requested. It means that, the processing of data is performed inside the network in on-

demand approach. Different kinds of systems such as TinyDB [1] and Cougar [2] has been introduced which are 

acquiring information from the sensor network based on query processing paradigm. In these query processing 

systems, user specifies what he needs from the network in a form of SQL-like query and propagates the query to 

the network. Sensors who receive this query, should first process it. If the sensors’ readings satisfy the query 

criteria, it means that they could respond to the query, thus they send the requested readings to the base station. 

Whether, if the sensors’ readings could not satisfy the query criteria, nothing is sent to the base station. 

Therefore, the reactive methods are more energy-efficient than the proactive ones. For instance, if the user wants 

to identify the sensors with irregular pressure value, he could issue a query like: “Q1: SELECT nodeid FROM 

sensors WHERE pressure >= 1025”.  In this example, the criterion of the query is a certain predicate “pressure 

>= 1025”, in which the irregular pressure has been expressed by a numerical threshold 1025. Each sensor 

receives this query, process it and evaluates the predicate. If the pressure value of the sensor is exactly equal to 

1025 or higher than 1025, it can send the requested data to the base station, which is the nodeid of sensor in this 

query. 

The above example is an instance of classic queries in sensor networks. In traditional systems, the query criteria 

are expressed in the form of certain predicates with numerical thresholds. The processing of query is performed 

through evaluating the query predicates. If the truth-value of query predicate is true for a sensor, it means that 

sensor’s readings satisfy the query criteria and the sensor could respond to the query. Since the truth-value of 

certain predicate is absolutely true or false, the sensor definitely decides to answer the query, regardless of any 

additional information. Moreover, the truth-value of crisp predicate sharply separates the result set from a non-

result set. For instance, in the predicate “pressure >= 1025”, if the sensor’s pressure is equal to 1024.9, which is 

very close to desired threshold, since the truth-value of predicate “pressure >= 1025” for pressure value 1024.9 

is not true, then the sensor node could not respond to this query. Also, the fact of exact processing of crisp 

predicate will be critical in the presence of sensing error measurement, which is common in sensor networks.  

On the other hand, there are so many events in the real world that are difficult to be expressed by numerical 

values. For example, the event such as hotness does not have a certain definition. As in some domains the 

temperature value of 35 degrees of Celsius is interpreted as hot while in another domain, this value does not 

indicate the hotness. Since the linguistic labels are interpreted based on the situation, applying them to model the 

real world is more convenient. Therefore, a new tool is required to express the environmental events through 

linguistic labels, instead of numerical thresholds. Since fuzzy theory [3] provides a tool for applying linguistic 

labels and processing inexact data, we can handle imprecise data through issuing a fuzzy query. In fuzzy 

approach, each linguistic label is specified by a number of fuzzy membership functions, which can be vary in 

different situations.  

Hence, in this paper, we propose a new fuzzy query processing system for sensor networks. We present a basic 
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structure for fuzzy queries and a distributed algorithm for processing fuzzy queries in sensor networks. We 

propose to use fuzzy proposition in the query predicate rather than crisp proposition. By this way, the desired 

criteria could be expressed through linguistic labels. Furthermore, since the truth-value of fuzzy propositions is 

not definitely true or false and they have a degree of truth, the sensor node cannot definitely decide to answer 

the query. To this end, we propose a new component in the query structure, which is a correlation benchmark to 

specify which sensors should respond to the query. This benchmark is evaluated as the correlation between a 

node and a query. Given that, our query is a fuzzy query, we also express this benchmark as fuzzy. We propose 

a correlation index to specify the user-desired correlation in the query, through linguistic labels such as weak, 

medium and strong. Whenever the query is processed by sensor nodes, this index is used to evaluate the fuzzy 

proposition and to make a decision to answer the query. 

In the following, we first review some literatures related to our work, in section 2. Then in section 3, our fuzzy 

query processing system will be presented in details. We describe the proposed structure and the processing 

mechanism in this section. The experimental analysis is described in section 4. Section 5 present concluding 

remarks.  

2. Related Works 

Inasmuch as our proposed approach is a new system for generating and processing fuzzy queries in wireless 

sensor networks, some literatures related to query processing, correlation-based query and fuzzy query 

processing in wireless sensor networks are reviewed in this section.  

Recent researches use a database-like abstraction for acquiring information in sensor networks [1,2] and [4]. In 

effect, we can view the sensor networks as a distributed database into which data can be stored and from which 

desired data can be extracted by injecting queries. In-network processing has proved as one of the most energy 

efficient techniques to be used along with the database abstraction to retain query processing inside the sensor 

networks and close to the data sources. A number of query processing systems have been proposed to use in 

sensor networks such as TinyDB [1] and COUGAR [2]. TinyDB incorporates acquisitional techniques which in 

smart sensors have control over where, when, and how often data is physically acquired and delivered to query 

processing operators [1]. Yao et al. [2] evaluate the design of a query layer that accepts queries in a declarative 

language which are then optimized to generate efficient query execution plans with in-network processing 

which can significantly reduce resource requirements. Typically, these systems use the Structured Query 

Language (SQL) with the form “SELECT, FROM, WHERE” for specifying queries. Another aspect of 

acquisitional query processing is to maximize in-network query processing to reduce sensor resource usage 

while still meeting the query precision specifications. However, these query models usually require a precise, 

unambiguous specification of a query and the predicative thresholds in its WHERE-clause. Furthermore, in 

these systems all sensor nodes have an identical interpretation of data, which limits their application to 

homogenous settings. Moreover, since these models use two-valued logic in the querying process, small error in 

data values may consequence inadequacy of the selected data. Hence, they are not tolerable against imprecise 

data. Furthermore, it is not possible to use semantic concepts in their query structure, while it is more convenient 

for the user to express the preferences in conceptual terms.  
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Applying the correlation concept in processing queries has been subject of many research papers. The authors of 

[5] showed how to exploit correlations between attributes in a database system by modifying the query 

optimizer to produce conditional plans that significantly outperform plans produced by traditional database 

optimizers. Their approach is particularly useful in systems where the cost of acquiring some of the attributes is 

non-negligible and where correlations exist between one or more attributes. [6,7] use a correlation-aware 

probabilistic model for processing queries. Rather than directly querying the sensor network, they build a model 

from stored and current readings, and answer SQL queries by consulting the model. Such a correlation model in 

[5,6] builds one joint distribution table over all the sensors attributes and infers the probabilistic value of an 

attribute by conditioning all the other attributes on it. However, model-driven schemes are only applicable in 

scale systems with relatively low statistical dynamics. In contrast, [8] uses Bayesian networks to extract 

correlations between the attributes. Hence, for the estimation of a given sensor value instead of defining the 

model based on all other sensors, they use just those sensors that have a direct effect on that sensor. Our work is 

most related to the research work proposed in [9]. In [9], the correlation between a query and a node is 

calculated by the vector space model (VSM), and a query correlation indicator (QCI) is designed to quantify the 

priority of answering a query for individual nodes. However, a shortcoming associated with [9] as well as the 

aforementioned correlation-based schemes is that they do not explicitly factor in the imprecision of data or 

query in their design. Our technique on the other hand, utilize a fuzzy model to capture the correlation between a 

query and a node. Moreover, since our query is issued in the form of fuzzy query, our design can particularly 

handle imprecisions of both data and query.   

Introducing flexibility into queries in sensor networks is a relatively new research topic. In [10] authors have 

proposed an active database approach employing a fuzzy Petri net model, which processes uncertain sensor data 

and handles flexible and continuous queries. However, this approach proposes no in-network processing of 

sensor data. It requires that all data be transmitted to a central gateway, thus treating the sensor network as an 

input data stream device, which may not be practical in large networks. Doman et al. [11] builds on the 

SwissQM platform [12] and extends it to implement a fuzzy query processing model. The proposed approach 

applies fuzzy membership functions to evaluate threshold-based predicates in a given query. However, [11, 13] 

did not explicitly support the fuzzy declaration of the query predicates in the more user-friendly form of “is-

predicates”. Our work is also related to this research, however, we define a novel structure for fuzzy query in a 

more general form. In our proposed structure, query predicate can also be expressed as fuzzy predicate. This 

relieves the query issuer from dealing with numerical values in the query’s WHERE-clause. In addition, we 

introduce a new fuzzy-based query correlation index into the query structure, which can be specified by the user 

in fuzzy form to further restrict the results set according to user’s soft preferences. Also, we propose a 

comprehensive distributed algorithm for processing fuzzy queries in sensor networks. 

3.  Basic Fuzzy Query Processing System 

In this paper, a fully fuzzy based system has been introduced in which queries are expressed and processed in a 

fuzzy manner. We first propose our new structure for expressing fuzzy queries and then present a 

comprehensive distributed algorithm for processing these queries. The incentive behind proposing a new 

structure is to provide the ability of expressing sensor queries as fuzzy. In the fuzzy queries, linguistic labels and 
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fuzzy propositions can be applied instead of crisp propositions with certain numerical thresholds. While the 

truth value of fuzzy propositions is in the range of [0, 1], that of crisp propositions is certainly 0 or 1 [14]. Since 

the truth value of fuzzy propositions is not definitely true (1) or false (0), it is satisfied by more sensors and will 

therefore lead to collecting more results compared to crisp propositions. Consequently, using a mechanism to 

prune collected results is required. For this end, we propose to apply a node query correlation, which shows the 

correlation between a node and a query, as a benchmark for selecting more correlated results [15]. Since this 

benchmark should also be quantified as fuzzy, we have defined a fuzzy correlation index which indicates a 

desired correlation that the user considers for collecting the most related results. In the query structure, we have 

added a new clause for the user to express his desired correlation through a fuzzy term. This clause is used to 

filter the results in the processing phase. Thus, only those sensors could respond to the query which not only 

their readings satisfy the query criteria, but also their correlation to the query meets the desired index. In what 

follows, we first explain the suggested structure for fuzzy query in section 3.1. After that, in section 3.2 the 

proposed processing algorithm will be described. 

3.1. The Proposed Structure For Fuzzy Query  

In this section, we present our proposed basic structure for fuzzy queries. This structure is the enhanced form of 

the structure that has been used in TinyDB [1], which is also a clause-based. The proposed structure is shown in 

Figure 1. It consists of some clauses such as SELECT, WHERE, EPOCH and CORRELATION. As regards 

before, we added the CORRELATION-clause in the query structure for pruning results by correlation index. We 

explain each of these clauses by details in the following.  

SELECT attr1, attr2, …  

FROM     Sensors 

WHERE   PQ 

EPOCH    t 
CORRELATION desired-corr 

Figure 1: The proposed structure for fuzzy query. 

In the SELECT-clause, the user specifies the list of sensor attributes that he would like to extract them from the 

sensor network. This clause starts with “SELECT” followed by a list of sensor attributes. The sensor attributes 

could be fuzzy or non-fuzzy attributes, such as light or humidity for fuzzy attributes and, node id or position for 

non-fuzzy attributes.   

In the WHERE-clause, user stipulates the query predicate to determine the criteria for extracting data. This 

clause starts with “WHERE” followed by the query predicate PQ. Since queries in the proposed system, have 

only a single predicate, we use simple fuzzy proposition for query predicate. The formal form of simple fuzzy 

proposition, according to “unqualified fuzzy proposition” [16] (Definition 5 in Appendix), is defined in below, 

in which V belongs to fuzzy attribute set. The notation ○ is used to indicate “is” or ‘is not” phrase, and F is one 

of the fuzzy terms which has been defined for fuzzy attribute V. Based on fuzzy term’s definition, the F could be 

a simple fuzzy term, or a composite fuzzy term that combined with some fuzzy modifiers (see Definition 3 in 
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Appendix) [17]. 

FVP
def

Q =   (1) 

In the EPOCH-clause, the sampling rate or duration of the query is expressed. 

In the CORRELATION-clause, user expresses a fuzzy term to specify the desired correlation index. As regards 

before, we introduced a new index to determine by which intensity, the selected results should satisfy the query 

predicate stipulated in the WHERE-clause. So the desired-corr could be a fuzzy term such as, strong, medium or 

weak. For instance, when a user wants to select the sensors that their readings satisfy the query criteria with high 

correlation, he sets the correlation index as strong. This clause is started with “CORRELATION” followed by 

desired-corr. In the Table 1, definition of fuzzy terms for correlation index and their related fuzzy sets are 

shown. 

Table 1: Fuzzy terms and related fuzzy sets for correlation index. 

correlation index Related Membership Functions 

Strong Gamma-Function(a,b) 
Medium Trapezoid-Function(a,b,c,d) 
Weak L-Function(a,b) 

For instance, in Q1 user wants to extract the nodeid and light values of sensors whose temperature values are hot 

every 15 Sec and he desires to select sensors with strong correlation. In the next section, we describe how sensor 

nodes process this query. 

Q1: SELECT nodeid, light 

       FROM sensors 

       WHERE temperature is hot  

       EPOCH 15 sec  

       CORRELATION strong 

3.2. Fuzzy Query Processing Algorithm 

Here, we describe the overall processing that has been done in each sensor node. When a sensor node receives a 

query, it should check the query criteria. If the sensor readings satisfy the criteria, this node would respond to 

the query by sending the requested attributes. This task is performed in four steps, which are explained by 

details in the following. 

• Query Predicate Evaluation phase: 

In the first step, a query predicate, which is stipulated in the WHERE-clause, is evaluated through calculating its 

truth value. For this end, the sensor node should sample a sensor attribute, which is stipulated in the query 
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predicate. If the query predicate is PQ: V ○ F, then, the sensor node should sample the attribute value V which is 

v.  If the ○ notation is “is” phrase, then the equation (2) is used to calculate the TPQ, otherwise (it is “is not”), the 

equation (3) is utilized. 

)( vVT FPQ
== µ  (2) 

)(1 vVT FPQ
=−= µ  (3) 

In the above equations, according to the definition of fuzzy terms (see Definition 3 in Appendix), the defined 

membership function for fuzzy term will be used, if that term is simple. Whereas, the modified form of the 

membership function will be used, for the composite fuzzy term. The output of this step, is the truth value of 

query predicate, TPQ, which we call node-degree. 

Since this node-degree does not definitely clarify whether a sensor reading satisfies a query criteria or not, we 

introduce a correlation index, which is a fuzzy correlation benchmark for demonstrating the correlation between 

a query and a sensor node. 

• Correlation Calculation phase:  

In the second step, this correlation is computed and the node-corr is given as result. The node-corr 

demonstrates, by which intensity the sensor readings satisfy the query criteria. The node-corr is a fuzzy term 

that has the maximum membership degree in the associated fuzzy sets. In order to find out this term, a 

membership degree of the node-degree in all three fuzzy sets that are associated with “weak”, “medium” and 

“strong” terms, should be calculated and the maximum degree is chosen as correlation-degree (equation (4)). In 

this way, the fuzzy term related to the correlation-degree is considered as node-corr. The query-corr is 

calculated through equation (5).  

))((
},,{

degreenodeMaxdegreencorrelatio i
strongmediumweaki

−=−
∈

µ  
(4) 

})(|{ degreencorrelatiodegreenodeicorrnode i −=−=− µ  (5) 

It should be mentioned that the fuzzy sets associated with “weak”, “medium” and “strong” terms are 

orthogonal. It means that, the sum of membership degrees of all these three sets in a specific point, should be 

equal to 1 as can be seen in equation (6). 

1)()()( =++ istrongimediumiweak xxx µµµ    (for all Xxi ∈ ) (6) 

• Decision Making Based on Desired Correlation phase 

In the third step, the sensor node decides whether or not to respond to the query. The decision is undertaken 

through comparing a desired-corr (which is stipulated in the query) with the node-corr (which is calculated in 
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the second step). If the node-corr is equal to the desired-corr, the processing goes to last step, otherwise the 

processing will be finished.  

• Responding to Query phase  

At the fourth step, the sensor node should sample requested attributes, which are listed in the SELECT-clause, 

and transmits them with the calculated node-degree value to the base station. If the outcome of third phase lead 

to responding to the query, sensor node will sample the attributes which are requested in the SELECT-clause, 

and will transmit them with a calculated node-degree to the base station. This processing will repeat in time 

interval which is specified by Epoch-clause.   

4. Analytical Results 

In this section, the performance of our fuzzy-based query processing approach is compared with classical non 

fuzzy-based mechanism. Classical schemes may entail almost all ordinary SQL-like query processors (e.g. 

TinyDB [1], Cougar [2], etc.) which rely on rigid predicate-based evaluation of sensor readings to determine the 

response set for a given query.  

We have deployed our proposed query processing scheme in Castalia 3.2 simulation environment [18] which is 

based on OMNET++ [19] simulator. We have modified the sensor manager module to extend the single sensing 

device type to multiple sensing device types (such as temperature, light, pressure, etc.). The MAC layer’s 

operation is managed by TMAC [20], and the routing process is handled by Multipath Ring Routing Protocol 

[21]. Both of our proposed fuzzy processor and classical querying scheme are implemented at the application 

layer on top of the aforementioned protocol stack. In the study, the network is comprised of a single sink node 

together with a number of resource-constrained immobile homogeneous sensor nodes with symmetric radio 

links in between. The query dissemination process by the sink is a simple reception-broadcast protocol, i.e. the 

sink relies on a basic multi-hop broadcasting scheme to diffuse each received query throughout the network.  

4.1. Experiment Description 

The purpose of this study is to demonstrate the robustness of our fuzzy querying scheme against varying degrees 

of device measurement error and environmental noise. The experimental setting is a homogenous sensing 

environment and we are interested in identifying the sensor nodes with temperature values in a specific range. 

We consider a wireless sensor network comprised of 100 nodes deployed in a 10m×10m grid-like environment. 

30% of the nodes are located in a region with temperature values in the range (12°c, 22°c), 10% of nodes are in 

the 12°c region, and 10% of nodes are in the region with 22°c temperature. We assume that the query issuer is 

interested in identifying the sensors located within the so-called cool region of the network with temperature 

values in the closed interval of [12°c, 22°c]. The classical query and its fuzzy counterpart are shown in below. 

Given the homogeneity of the environment, the fuzzy membership function is defined for cool temperature to be 

a trapezoid function (equation (7)) with identical parameters uniformly across all nodes. The correlation index 

of strong, medium and weak are characterized through equations (8) to (10) according to Table 1. The 

simulation parameters for this scenario are shown in Table 2.  
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Classical Query: 

Q: SELECT nodeid, temperature  

       FROM sensors 

       WHERE temperature <= 22 AND 

                      temperature >=12 

       EPOCH 200 sec 

Fuzzy Query: 

FQ: SELECT nodeid, temperature  

          FROM sensors 

          WHERE temperature is cool 

          EPOCH 200 Sec 

          CORRELATION strong 
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Table 2  Simulation parameter for measuring temperature in homogenous noisy environment. 

Simulation Parameter Value 

Simulation Time (Sec) 600 

Simulation Area (meter) 10 × 10 

Node Deployment Grid 10 × 10 

Query Epoch (Sec) 200 

No. of Sensor Nodes 100 

No. of Nodes with Temperature in range (12,22) 30 

No. of Nodes with Temperature is equal to 12 10 

No. of Nodes with Temperature is equal to 22 10 

Number of sensors we expected to answer 50 

Standard Deviation of Device Noise 0,0.25,0.5,0.75,1,1.25,

1.5,1.75,2 

Standard Deviation of Device Bias 0,0.25,0.5,0.75,1,1.25,

1.5,1.75,2 

We assume that a sensor node’s reading is subject to Gaussian error and environmental noise. Hence, we use 

equation (11) to express a given node’s read-out value x [19] where value is the real value, Device_Bias is the 

measurement error introduced by the limitations of the device’s hardware with a normal probability distribution 

N(0,σ2
b) (see equation (12)), and Device_Noise is the environmental noise with normal distribution N(0, σ2

n) 

(equation (13)).   

NoiseDeviceBiasDeviceValuex __ ++=  (11) 
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)2,0(~_ bBiasDevice σΝ  (12) 

)2,0(~_
n

NoiseDevice σΝ  (13) 

4.2. Discussion of Results 

Figure 2- 5 depict the precision, recall and the accuracy of both the classical query scheme and our fuzzy-based 

method for varying degrees of measurement error and environmental noise. Overall, we observe that the fuzzy 

method turns out to be more accurate; more specifically, it outperforms classical query processing in terms of 

recall with only a slight detriment in precision. The classical scheme’s higher precision can be attributed to its 

threshold hypersensitivity, which strictly excludes out-of-range sensors from the result set. The fuzzy method, 

on the other hand, exhibits more flexibility towards the specified thresholds, and accordingly achieves a higher 

recall by incorporating more relevant sensors into the result set. As the error values grow larger, both schemes 

show similar trends, in that they both lose their precision and accuracy with almost equal rates. The fuzzy 

scheme’s superiority in terms of accuracy becomes more apparent at σ2=0.25 for measurement error. We single 

out the case σ2=0.25 in Table 3 as it deserves further discussion. A point of controversy is the slightly higher 

(energy) efficiency of the classical scheme (Figure 5); however, it should be noted that the energy consumed by 

our fuzzy method is roughly equal to what is actually needed to retrieve the ideal result set; in other terms, the 

classical scheme has no superiority over our proposed method once we aim for identifying the complete set of 

relevant sensors.  

Table 3  Acquired results for standard deviation 0.25 for 50 nodes. 

Query Precision Recall Accuracy Total Energy 

Consumption (Joule) 

Accuracy/ Energy 

Classic Query 0.99 0.79 0.89 0.00230 386.95 

Fuzzy Query 0.98 0.96 0.97 0.00283 342.75 

 

 

Figure 2:  Comparison between the Precision of 

fuzzy and classic results 

 

Figure 3:  Comparison between the Recall of fuzzy 

and classic results 
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Figure 4:   Comparison between the Accuracy of 

fuzzy and classic results 

 

Figure 5:  Comparison between the total Energy 

consumed in the fuzzy and classic query 

5. Conclusion and Recommendations 

In this paper, a new query processing system has been introduced for generating and processing fuzzy queries in 

wireless sensor networks. As regards, there has not been any comprehensive query processing system for fuzzy 

queries in wireless sensor networks previously, a new basic structure for generating fuzzy queries has been 

presented, in addition a new algorithm for processing these queries in the proposed system has been offered. In 

the presented structure, users can issue queries with linguistic labels and fuzzy propositions. Since, the truth 

value of fuzzy proposition is in the range of [0, 1], more sensor values are placed in the result set in compare 

with crisp proposition. To overcome the implosion of results, we recommended to use correlation as a 

benchmark for selecting more related results. For this end, the correlation index is introduced which is also 

expressed in a fuzzy manner. This index is provided the possibility of specifying a desired satisfaction degree 

for users, through some linguistic labels such as strong, medium or weak, to select more relevant results. The 

proposed system is a basic platform for fuzzy queries which can be improved in the future. The evaluation has 

shown that the completeness and the correctness of the fuzzy query, are higher in comparison with the classical 

query, which lead to achieving more accurate results while spending negligible energy. 

In this paper, we apply simple fuzzy queries with a single predicate in the proposed fuzzy system, which is the 

constraint of our work. Therefore, we intend to improve it to handle more complicated fuzzy queries. In the 

future, we will enhance the query structure to support queries with multiple predicates. When the query has 

multiple predicates, the compound fuzzy proposition with aggregation operators “AND” and “OR” should be 

used. In addition, to process queries with multiple predicates, we will also propose an enhanced version of the 

fuzzy query processing algorithm. 
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Appendix 

Regarding to our fuzzy based method for expressing and processing queries in sensor networks, we first 

elaborate some fuzzy definitions and terminologies in this section. Below we define most important fuzzy 

terminologies that are used in our discussions, such as fuzzy set, fuzzy term, linguistic variable and fuzzy 

proposition. 

Definition 1- Linguistic label: linguistic label is a word in natural language that has semantic concept such as 

hot, strong, dark, high, etc. The intuitive definition of these labels not only varies from person to person and 

from time to time, but also varies within the context they are applied [20].  

Definition 2- Fuzzy set: a fuzzy set A in a  universal set X is associated with a membership function µA(x) 

which assigns to each point of x from domain X, a real number in the interval [0,1]. The value of µA(x) 
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represents the grade of membership of x in A.  

]}1,0[:)(,))(,{( →∈= XxXxxxA AA µµ   

Depending on the type of membership functions, different kinds of fuzzy sets will be obtained. Zadeh [3] 

proposed a number of membership functions that could be classified into two groups: Linear (i.e., Triangular, L, 

Gamma, Trapezoid, etc.) and Gaussian (such as Gaussian, Gamma, S, etc.). With respect to the characteristics of 

each function and specifications of each linguistic label, we can choose the appropriate function for a given 

label. For example, Gamma and S-function are commonly used for linguistic labels such as strong or high [20]. 

The equation (14) expresses the membership function of the fuzzy set hot in the form of the Linear Gamma-

function, also see Figure 6. 
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Figure 6: Fuzzy membership function for hot. 

Definition 3- Fuzzy term: fuzzy term is a linguistic label such as hot that is identified through a fuzzy set such 

as hot which could have different membership functions in various times and places. For instance, there are 

some fuzzy terms such as cold, hot, moderate, warm, etc. which could be defined for the sensor’s temperature 

attribute. Fuzzy terms are divided into two groups: simple and composite [22]. A simple fuzzy term is atomic, 

like hot, which is identified by a fuzzy set; while a composite (modified) fuzzy term, such as very cold, consists 

of fuzzy term with some modifiers M (Modifier = {Very, Extremely, Fairly, Somewhat, More or Less}). In 

composite fuzzy terms, the membership function is calculated through some rules which are shown below 

(equations (15)-(19)) [23]. 

3))(()( vv F FExtremely µµ =  
(15) 

2))(()( vv FVery  F µµ =  
(16) 

3/1))(()( vv Fss  FMore or Le µµ =  
(17) 
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2/1))(()()( vvv FFairly FFSomewhat  µµµ ==  
(18) 

)(1)( vv FNot  F µµ −=  (19) 

Definition 4- Linguistic variable: a linguistic variable, is a variable like temperature, which its fuzzy value is 

determined through fuzzy terms such as hot, cold … and warm. In our proposed fuzzy query processing system, 

some sensor attributes are expressed by linguistic variables [24].   

Definition 5- Fuzzy proposition: a fuzzy proposition consists of a linguistic variable and a fuzzy term, which 

its truth value can be true or false. The logic of fuzzy proposition is different from the logic has been defined for 

crisp proposition. Since the truth value of fuzzy proposition is a real number in the interval [0, 1], it has some 

degree of truth. This degree is related to the membership degree of the fuzzy set defined for fuzzy term. The 

canonical form of unqualified fuzzy proposition P, is P: V is F. Where V is linguistic variable such as pressure 

which could have a numeric value v from a universal set Ev, and F is fuzzy term which Ev is the domain of 

membership function defined for fuzzy term V. The truth value of the unqualified fuzzy proposition is 

calculated through equation (20)[16]. 

V is FP
def

 =   

VFP EvvVT ∈== ),(µ  
(20) 

For example, in the predicate “temperature is high”, the truth value is calculated based on the membership 

function of fuzzy term high in Figure 7 and Figure 8. 

75.0)85(hot is etemperatur === etemperaturT hotµ
 

 

Figure 7: Membership function for hot. 

 

Figure 8: Truth value of unqualified fuzzy 

proposition 
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