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Abstract 

In this paper, we consider the minimum maximal network flow problem, i.e., minimizing the flow value, 

minimizing the total time among maximal flow with time-windows, which is a combinatorial optimization and 

an NP-hard problem. After a mathematical modeling problem, we introduce some formulations of the problem 

and one of them is a minimization of a concave function over a convex set. The problem can also be cast into a 

difference of convex functions programming (nonconvex optimization). We propose in this work a new 

algorithm for solving the Minimum Maximal Network Flow Problem with Time-Windows (MMNFPTW).    

Keywords: Optimization network; Minimum flow problem; Difference of convex functions optimization; Time-

windows. 

1.     Introduction 

In recent years there has been a very active research in difference of convex functions programming (nonconvex 

optimization), because most of real life optimization problems are nonconvex.  
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The field of network optimization flows has a rich and long history, a difference of convex functions 

programming and a difference of convex functions algorithms introduced by Pham Donh Tao in 1985. Such 

early work established the foundation of the key ideas of network optimization flow theory. The key task of this 

filed is to answer such questions as, which way to use a network is most cost effective? Maximum flow problem 

and minimum cost flow problem are two typical problems of them. However, from the point of view of practical 

cases, we have another kind of problems which are inherently different form the typical ones. For instance, 

Figure 1 and 2 portrays a network with edge flow capacity one unit on all edges, each edge has a transit time 

.,...,2,1,,, njijitij =≠ℜ∈ +  For each vertex ,Vi∈  a time-windows ],[ ii ba  within which the vertex may 

be served and ,iii bta ≤≤  Tti ∈  is a nonnegative service and leaving time of the vertex. A source vertex ,s  

with time windows ],[ ss ba , a sink vertex τ  with time-windows ],[ ττ ba  and st  is a departure time of the 

source vertex see  [1,2,3,4,5,6,7,15]. 

 

                  

Figure 1                                                                     Figure 2 

Minimum Maximal Network Flow Problem with Time-Windows (MMNFPTW) 

• The figure 1 illustrates the maximum flow of the network, that is, the flow on all edges is one except the 

edge ,3x  whose flow is zero. On the other hand, if the flow on 3x  is fixed at one and we cannot reduce it 

by some reasons such as emergency, then the network cannot be exploited at the most economical situation. 

In this case, we can send two unit of flow from a source vertex s  to a sink vertex τ  which satisfy a time-

windows constraint. 

• In the figure 2, the flow on 3x  is fixed at one, the possible flow value we can send between s  and τ  is 

one unit.  

The flow value, we can send between s  and τ  reduces from two (in figure 1) to one (in figure 2) due to fact 

that the flow value of 3x  is undirected. It means that the maximum flow value is not attainable if the users on 

the network are disobedient.  

Form the point of view of modeling, the above two figures cases are essentially different though they bear some 

resemblance. Assuming that the flow is directly, the figure 1 aims at an optimal value flow. The figure 2 also 
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searches for an optimal value of flow, without the directly of a network flow. The standard network flow with 

the directly has been well studied for several decades. Without the directly, many problems in network flow, the 

maximum flow problem, become more difficulty. Compared to the standard network flow theory is a new filed, 

hence is still in its infancy. 

The natural question in this new field is: given a network ,N  how to calculate the attainable maximum value 

flow of N  when the flow is undirected. To answer the question, in this paper we consider minimum maximal 

network flow problem with time-windows which finds out the minimum value and minimum total time satisfy a 

time-windows constraint among the maximal flows in the network N  from a source vertex s  to a sink vertex 

.τ     

Iri [12] gave the definition of undirected flow (u-flow) and presented fundamental problems related u-flow. 

Although the concept of u-flow is quite different from maximal flow and their relationship is not known yet so 

much, the optimal value of minimum maximal u-flow of a network N  is equal to the optimal value of 

minimum maximal flow under some assumption. In Iri [8] profound essay, several fundamental theorems and 

new research topics are described, but no algorithms for the corresponding problems are proposed. To the 

author's knowledge, no algorithms for the minimum maximal flow were known until Shi-Yamamoto [12]. As 

pointed out in [14], Shi-Yamamoto's algorithm is not efficient enough. After that, some algorithms for solving 

the problem were proposed in such as Shigeno-Yamamoto [13] and others. Since the theory dealing with the 

network flow problems without assuming the amenability of flows is still in its infancy, in this paper we focus 

on the development of algorithm for Minimum Maximal Network Flow Problem with Time-Windows 

(MMNFPTW) in virtue of difference convex functions optimization. 

The reminder of this work is organized as follows. In Section 2, we give the mathematical models of the 

problem and its equivalent formulations. In Section 3, we then outline the properties of the difference convex 

programming and a difference convex algorithm. We describe the framework of the difference convex algorithm 

with time-windows. In Section 4, we give a new algorithm of a difference convex Minimum Maximal Network 

Flow Problem with Time-Windows (MMNFPTW). Finally, the conclusion is given in Section 5. 

2.     Mathematical Models and Equivalent Formulations  

2.1 Basic Concepts and Definitions 

Consider a directed network ),,( EVN =  where V  is a set of 2+m  vertices, E  is a set of n  edges with a 

non-negative transit time ijt , .,, Vjiji ∈≠  For each vertex ,Vi∈  a time windows ],[ ii ba  within which 

the vertex may be served and iii bta ≤≤ , Tti ∈  is a non-negative service and leaving time of the vertex .i  A 

single source vertex ,s  a single sink vertex τ  with time windows ],[],,[ ττ baba ss  respectively, and c  is the 

vector of the edge capacity. Let X  denote the set of feasible flow,  
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                                      }0,0,|{ cxAxxxX n ≤≤=ℜ∈=                                                         (1) 

where the matrix A  stands for a vertex edge incident relationship in the network. Obviously, X  is a compact 

convex set. 

Definition 2.1.1 A vector Xz∈  is said to be maximal flow if there does not exist Xx∈  such that zx ≥  and 

.zx ≠  

Let f  be the flow value function, f  is assumed to be linear on .X  For instant, it usually fined by 

                                       ∑∑
−+ ∈∈

−=
)()(

)(
si

i
si

i xxxf
δδ

                                                                            (2) 

where )(s+δ  and )(s−δ  are the sets of edges which leaves and enters the source vertex ,s  respectively. Then 

f  is a linear function. Let nd ℜ∈  where, ,1=id  if )(si +∈δ , ,1−=id  if )(si −∈δ  and 0=id , if 

otherwise.  

In this work, let kℜ  denotes the set of k-dimensional real column vectors, }0;|{* ≥ℜ∈=ℜ xxx kk  and 

}.0;|{** xxx kk ℜ∈=ℜ  Let kℜ  denotes the set of k-dimensional real row vectors, and 

},0;|{* ≥ℜ∈=ℜ xxx kk  }.0;|{** xxx kk ℜ∈=ℜ  We denote e  to both a row vector and a column 

vector of ones, and ie  to denote the thi  with row vector of an appropriate dimension. For a set ,S  )(SV  is the 

set of extreme points of .S  Let MX  denote the set of all maximal flows, 

|{ XzX M ∈= there does not exist Xx∈  such that ,zx ≥  and }zx ≠                      (3) 

We consider the problem is given by 

                                              }|)(min{ MXxxf ∈                                                                          (4) 

Let EX  denote the efficient set of the vector optimization problem, then the problem (4) is equivalent to the 

problem 

                                              }|)(min{ EXxxf ∈                                                                           (5)  

2.2 Primal Formulation Model 

We define the function r  as; 
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},|)(max{)( Xyxyxyexr ∈≥−=                                                              (6) 

Clearly, .,0)( Xxxr ∈∀≥  It is easy to see that r  is a concave function on .X  In fact, )1,0(∈∀α  and 

Xxx ∈21,  we have, 

),)1((
},)1(|)))1(((max{

)))1(()1((

)()1()(
},|)(max{)1(},|)(max{

)()1()(

21

2121

2121

2)(1)(

2211

21

21

xxr
Xyxxyxxye

xxyye

xyexye
XyxyxyeXyxyxye

xrxr

xrxr

αα
αααα

αααα

αα
αα

αα

−+=
∈−+≥−+−≤

−+−−+=

−−+−=
∈≥−−+∈≥−=

=−+

                  (7) 

where }.,|)(max{arg)( Xyxxyey xr ∈−∈  Moreover, )(xr  is piecewise linear on .X  In fact, adding a 

slack z  such that, 

                           �
𝐴 0 0
𝐼 𝐼 0
𝐼 0 −𝐼

� �𝑦𝑧� = �
0
𝑐
𝑥
�, cyxAyz n ≤≤=⇔ℜ∈ ,02

*                                       (8) 

Then for a given )(,* xrx nℜ∈  is a solution of the following linear programming: 

                                      exey −max  

                 subject to    �
𝐴 0 0
𝐸 𝐸 0
𝐸 0 −𝐸

��𝑦𝑧� = �
0
𝑐
𝑥
� , 𝑦 ≥ 0, 𝑧 ≥ 0                                                         (9) 

where E  is an nn×  matrix. As )(xr  is a solution of a linear maximization, we assume that 

                                    ex
x
cBcxr B −















= −

0
)( 1                                                                                (10) 

where Bc a corresponding coefficient is vector of objective function, and B  is a basic matrix of problem (9). 

 

Lemma 2.2.1 If the capacity c  is integral and satisfy the time-windows constraint, then so is )(xr  for any 

integer .x  
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Proof: Obviously, because of the concave function, we assume that  

                       },,|)(min{)( TtbtaVIixlxr iiiii ∈≤≤⊆∈=                                                (11) 

where TttVjittt ijijiji ∈∈∀≤+ ,,,,  and iii xlxl γ+〉〈= ,)(  are linear function on .nℜ  It is easy to see 

that 0)(, =∈ xrXx  if and only if .EXx∈  Hence, problem (4) can be rewritten equivalently as 

                            }0)(,|)(min{ ≤∈ xrXxxf                                                                        (12) 

Consider the following penalized problem for a fixed number .u  

                            }|)()(min{ Xxxurxf ∈+                                                                          (13) 

Then, we proof the following lemma 

Lemma 2.2.2 Let },|)(min{}|)(max{* XxxfXxxfu ∈−∈=  then there exists a finite number 

,0* ≥u  such that for every ,*uu   the problem (12) is equivalent to the problem (13). 

Proof: For any *uu   and ,0)( ≠xr  we must have 1)( ≥xr  and  

}|)()(min{ Xxxurxf ∈+ }|)()(min{ * Xxxruxf ∈+≥  

                                           }|)(min{}|)(max{}|)(min{ XxxfXxxfXxxf ∈−∈+∈≥  

                                           }0)(,|)(min{ =∈≥ xrXxxf                                                          (14) 

and when 0)( 0 =xr  then we see, }.0)(,|)(min{)( 0 =∈≥ xrXxxfxf  Hence, 

                        }0)(,|)(min{}|)()(min{ =∈≥∈+ xrXxxfXxxurxf                          (15) 

On the other hand, a feasible solution of }0)(,|)(min{ =∈ xrXxxf  is also a feasible solution of (13). We 

have  

                        }0)(,|)(min{}|)()(min{ =∈≤∈+ xrXxxfXxxurxf                          (16) 

It implies that   

                       }0)(,|)(min{}|)()(min{ =∈=∈+ xrXxxfXxxurxf                           (17) 
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We note that, ,0(.) ≥r  then any 0* ≥uu   we have 

        }0)(,|)(min{}|)()(min{ =∈=∈+ xrXxxfXxxurxf                         

                                                                        }0)(,|)(min{ ≤∈= xrXxxf                            (18) 

Then, (12) is equivalent to (13). 

New, we denote by Xδ  the indicator of X  and ),()()( xxfxg Xδ+=  also, 

                                           




∉∞
∈−

=
Xx

Xxxru
xh

;
);(

)( *                                                                     (19) 

Then )(xg  and )(xh  are convex and problem (4) is rewritten as 

                                )}()(min{)}()()(min{ xhxgxhxxf X −=−+δ                                     (20) 

This is a difference of convex functions programming. Hereafter, we use the formation for local search in a 

difference of convex functions algorithms. 

 2.3 Dual Formulation Model 

In Philip [11], it follows that there exists a simplex nℜ⊆Λ  such that a vector x  is maximal flow if and only 

if there exists Λ∈λ  such that  

                                                 Xyyx ∈∀≥ ,λλ                                                                           (21)     

Thus, the minimum maximal flow problem with time-windows to be considered can also be formulated as: 

                                           )(min xf  

                        subject to  Xyxy ∈∀≥−− ,0)(λ , Xx∈Λ∈ ,λ                                        (22) 

                                             jiji ttt ≤+ , ,iii bta ≤≤  ,,, jiTtt iji ≠∈  Vji ∈∀ ,                         

This is a special case of mathematical programming with variation inequality and time-windows constraint. 

We denote that, }
2
1{max

2
1

2
1),( 222 vvvxxxg

Xv
−+++=

∈
λλλ                                      (23) 
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and                     
22

2
1

2
1),( xxxh ++= λλ                                                                             (24) 

Then, we proof the following lemma 

Lemma 2.3.1 The constraints in (22) can be cast into the form 

                           Xxxhxg ∈Λ∈=− ,,0),(),( λλλ                                                                (25) 

Proof: We note that, }
2
1)({max),(),( 2xvxvxhxg

Xv
−−−=−

∈
λλλ                                   (26) 

Since X  is a convex set. Suppose that (21) holds for some Xx∈  and some ,Λ∈λ  we have that;  

0}|max{}
2
1{max0 2 =∈−≤−−−≤

∈
Xvxvxvxv

Xv
λλλλ                            (27) 

which yields 0),(),( =− λλ xhxg   

Suppose that 0),(),( =− λλ xhxg  for some Xx∈  and .Λ∈λ  Then we have that,  

0}
2
1)({max 2 =−−−

∈
xvxv

Xv
λ                                                                     (28) 

which implies that 0)( ≤− xvλ  for all .Xv∈  In fact, if we have some Xv ∈0  such that ,0)( 0 xv −λ  

then we can take a point v  on line segment ],[ 0 xv  satisfying ,cosθλxv −  where θ  is the acute 

angel between λ  and .0 xv −  Since X  is convex, then Xv ∈  but .0
2
1)( 2

xvxv −−−λ  It 

contradicts (28). 

Note that: The functions g  and h  are convex and differentiable.  

From lemma 2.3.1, it follows that the problem can be formulated by the following a difference of convex 

functions of differentiable programming with time-windows constraint: 

                                 )(min xf  

subject to 0),(),( =− λλ xhxg , Xx∈Λ∈ ,λ                                                         (29) 

                                jiji ttt ≤+ , ,iii bta ≤≤  ,,, jiTtt iji ≠∈  Vji ∈∀ ,               
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By Shigeno-Takahashi-Yamamoto [11], we see that the Λ  in (29) could be replaced by 

}.,,|{ 2** neen =≥ℜ∈ λλλλ  Then we take the above set as Λ  to design the algorithms.  

3.     A Difference Convex Programming and a Difference Convex Algorithm 

A difference convex programming and a difference convex algorithms introduced by Pham Dinh Tao in 1985 

and extensively developed in other works. A difference convex algorithms was successfully applied to a lot of 

different and various nonconvex optimization problems to which  it  quite often gave a global solutions and 

proved to be more robust and more efficient than related standard methods, especially in the large scale setting. 

In [10] a difference convex algorithm is a primal-dual approach for finding local optimum in a difference 

convex programming. More detailed results on a difference convex algorithms can be found in such as [9]. 

Some numerical experiments are reported that it finds a global minimizer often if one chose a good start point. 

Consider the following general problem: 

}|)()(inf{ n
p xxhxgv ℜ∈−=                                                                                     (30) 

where },{:(.)(.), ∞−∞∪ℜ→ℜnhg  are low semi-continuous convex functions on .nℜ  It is easy to see 

that problem (20) is a special case of (30) as shown in (20) under the conservation .∞+  We also suppose that 

)()( xhxg −  is bounded below on .nℜ  The ε -subgradient of g  at point 0x  are defined by: 

 },,)()(|{)( 000 Xxyxxxgxgyxg n ∈∀−〉−〈+≥ℜ∈=∂ εε                               (31) 

and ).()( 000 xgxg ∂=∂  The conjugate function of g  is given by: 

        }|)(,sup{)(* nxxgyxyg ℜ∈−〉〈=                                                                   (32) 

From low semi-continuous of g  and ,h  we see that **gg =  and **hh =  hold. Consider a dual problem of 

(30): 

        }|)()(inf{ ** n
d yygyhv ℜ∈−=                                                                         (33) 

We have that }|)()(inf{ n
p xxhxgv ℜ∈−=  

                          }|}|)(,sup{)(inf{ * nn xyyhyxxg ℜ∈ℜ∈−〉〈−=  

                          }|}|,)(inf{)(inf{ * nn xyyxyhxg ℜ∈ℜ∈〉〈−+=  
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                          }|}|,)(inf{)(inf{ * nyXxyxxgyh ℜ∈∈〉〈−+=                                       (34) 

                          }|}|)(,sup{)(inf{ * nyXxxgyxyh ℜ∈∈−〉〈+=  

                          d
n vyygyh =ℜ∈−= }|)()(inf{ **  

For a pair ),,( yx  Fenchel's inequality 〉〈≥+ yxygxg ,)()( *  holds for any proper convex function g  and 

.*g  If )(xgy ∂∈  then .,)()( * 〉〈=+ yxygxg  

Definition 3.1 A point *x  is said to be local minimal of hg −  if there exists a neighborhood N  of *x  such 

that Nxxhgxhg ∈∀−≥− ),)(())(( *  

Lemma 3.2 A point *x  is local minimal for ,hg −  then ).()( ** xgxh ∂⊆∂   

Proof: Let .),)(())(( * Nxxhgxhg ∈∀−≥−  Then ).()()()( ** xhxhxgxg −≥−  Taking ),( *xhz ∂∈  

we have 〉−〈+≥ zxxxhxh ,)()( **  for all .nx ℜ∈  Therefor, we see that 〉−〈+≥ zxxxgxg ,)()( **  for 

.Nx∈  We note that g  is convex, then 〉−〈+≥ zxxxgxg ,)()( **  holds for .nx ℜ∈   

Lemma 3.3 If h  is a piecewise linear convex function on )(hdom  and ),()( ** xgxh ∂⊆∂  then *x  is local 

minimal for .hg −  

Proof: It is enough to consider ).(gdomx∈  Let h  is piecewise linear convex. Then there exist a 

neighborhood )( *xN  such that for any )( *xNx∈  we can choose )( *xhz ∂∈  such that 

.,)()( ** 〉−〈=− zxxxhxh  For )()( ** xgxh ∂⊆∂  we have 〉−〈+≥ zxxxgxg ,)()( **  holds for 

).( *xNx∈  It implies that )()()()( ** xhxgxhxg −≥−  for ).( *xNx∈  Then *x  is local minimal for 

.hg −  

• A Difference Convex Algorithm with Time-Windows 

We describe a framework of the Difference Convex Algorithm with Time-Windows is the first algorithm. 

0: pick up a point ),(0 hdomx ∈  calculate ;1);( 00 =∂∈ kxhy  

1: each point has satisfied a time-windows constraint, i.e.,   
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                  jiji ttt ≤+ , ,iii bta ≤≤  ,,, jiTtt iji ≠∈  Vji ∈∀ , ;   

2: calculate };|),)(()(min{arg 111 nkkkk xyxxxhxgx ℜ∈〉−〈+−∈ −−−  

                   calculate };|),)(()(min{arg 11** nkkkk yyyxygyhy ℜ∈〉−〈+−∈ −−  

3: If ,)()( φ≠∂∩∂ kk xgxh  stop; otherwise, 1+= kk  go to step 1. 

Lemma 3.4 Suppose that the points kx  and ky  are satisfied a time windows-constraint and generated in the 

above first algorithm, then )(* kk yhx ∂∈  and ).(1 kk xgy ∂∈−  

Proof: Assume that 1−kx  and 1−ky  are satisfied a time windows constraint and in hand.  

We have }|),)(()(min{ 111 nkkk xyxxxhxg ℜ∈〉−〈+− −−−  

 〉〈+−ℜ∈〉〈−= −−−− 1111 ,)(}|,)(min{ kkknk yxxhxyxxg  and        

                  }|),)(()(min{ 11** nkkk yyyxygyh ℜ∈〉−〈+− −−  

            .,)(}|),)(min{ 11** 〉〈+−ℜ∈〉〈−= −− kkknk yxygyyxyh                                     (35) 

Thus, from step 2 in the above first algorithm, 〉〈−≥〉〈− −− 11 ,)(,)( kkkk yxxgyxxg  for all ,x  and 

〉〈−≥〉〈− kkkk yxyhyxyh ,)(,)( **  for all .y  It yields )(1 kk xgy ∂∈−  and ).(* kk yhx ∂∈  

4.     Methods and Algorithm 

Now we go back to problem (20). In this section, we give an algorithms to solve the problem. A General 

Framework of branch-and-bound algorithm with time-windows can be stated follows. 

• Algorithm General Framework: 

0: initial setting and calculating; 

1: branching operation with time-windows constraint, i.e.,  

    jiji ttt ≤+ , ,iii bta ≤≤  ,,, jiTtt iji ≠∈  ;, Vji ∈∀  

2: local search for a smaller upper bound; 
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3: find a larger lower bound; 

4: remove some regions, do to step 1. 

We describe the step 1, 2 and 3 as the following explained: 

- Describe step 1: Branching operation with time-windows constraint 

A simplex based division is usually exploited in branch-and-bound method. At some step, a contemporary 

simplex S  is divided into two smaller ones 1S  and .2S  Taking into account the convergence of the algorithms 

and a time-windows constraint, we need the division to be exhaustive, i.e., a nested sequence of simplexes 

,...2,1},{ =kSk  has the following properties: 

1. φ=∩ )int()int( ji SS  if ;ji ≠  Vji ∈,  has a time windows ],[],,[ jjii baba  where iii bta ≤≤ , 

jjj bta ≤≤  respectively and jiji ttt ≤+ , kk SS ⊆+1  for all ,k   

2. 0
1lim xSkkk

=∩∞
=∞→

 for some .0x  

At each step, we chose divide a simplex kS  into two smaller ones kS2  and 12 +kS  by bisecting the longest edge 

of .kS  The sequence ,...2,1},{ =kSk  in such process is exhaustive. 

- Describe step 2: Local search for a smaller upper bound 

There are many methods to do local search. Here we exploit the first algorithm in this step. Even the first 

algorithm is not going to find a global optimum theoretically, but in many numerical experiments, it finds a 

global optimum practically. 

As shown in problem (20) can be rewritten as a difference convex programming },min{ hg −  then we can use 

the first algorithm to obtain a locally optimal solution.  Then we assume that  i
i SXo ∩=   of  

the first algorithm is a local optimal solution satisfy the time-windows constraint on iSX ∩  by using the first 

algorithm. 

- Describe step 3: Find a larger lower bound 

Assume that )(xli  is an affine function such that )()( jji vhvl =  for all vertices )( ij SVv ∈  with time-

windows ],,[
jj vv ba  ,

jjj vvv bta ≤≤  Tt
jv ∈  be a non-negative time. From the convex of ),(xh  we have 

)()( xhxli ≥  for all .iSx∈  Then,  
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}|)()()(min{)( n
iSXi xxlxxfSXL

i
ℜ∈−+=∩ ∩δ  

                                                  }|)()()(min{ n
SX xxhxxf

i
ℜ∈−+≤ ∩δ                               (36) 

Moreover, if },...,{)( 1 ipi vvSV =  is in hand and satisfy the time-windows constraint, then it is easy to 

calculate )( iSXL ∩  because  

}|)()()(min{ n
iSX xxlxxf

i
ℜ∈−+ ∩δ  

∑ ∑ ∑∑∑
= ===

≤≤=≥=+=
j

p

j

p

j
jjjjjj

p

j
jj

p

j
jj

i iii

cvbvAvruvd
1 11

*
1

}0,,0,1|)(min{ λλλλλλ        (37) 

Based on the above discussion, we give the following algorithm of the difference convex algorithm of the 

Minimal Maximum Network Flow Problem with Time-Windows (MMNFPTW). 

• The Difference Convex Algorithm of the Minimal Maximum Network Flow Problem with Time-

Windows 

0: let ε  and 0S  such that .0SX ⊆  let ),1,...,1(,0 00 −−== yx  ),(xbasiDCAbU =              

;},0,|)(min{ 0SMbxbAxxfbL =≤≤==  

1: select MS ∈0  such that )( 0SXLbL ∩=  and dived 0S  into 1S  and 2S ; 

2: i
i SXo ∩=  from the first algorithm for all 2,1=i  if Ui bo   then ;Ui bo =  

3: if Li bSXL )( ∩  then ),( iL SXLb ∩=  if εLU bb −  then Stop; 

4: },)(|{ UbSXLMSM ∩∈=  if φ=M  then Stop, otherwise, go to step 1. 

The convergence of the above new algorithm of the Minimum Maximal Network Flow Problem with Time 

Windows (MMNFPTW) is from the exhaustive partition.  

5.     Conclusion 

A branch-and-bound algorithm via a difference convex algorithm subroutine for solving problem (4) is proposed 

in this work. A part from the algorithm, we also discussed a dual formulation for problem (4) and investigated 

some properties of a general difference convex programming. Though we have not proposed an algorithm for 

problem (30), it can be solved by differential programming. Due to that problem (13) is a concave minimization 

over a convex set, we can solve it by many existing methods directly or indirectly. Among these methods, it 
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might be interesting to compare the behavior of the different algorithms. Also, we introduce a new algorithm of 

the Minimum Maximal Network Flow Problem with Time-Windows (MMNFPTW). 
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