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Abstract 

Prostate cancer is among the widespread men’s diseases in the world. Prostatectomy has been the strength 

treatment for men with restricted prostate tumor. On the other hand, surgery, frequently can cause some side 

effects initiated from damage and removal of nerves and muscles surrounding the prostate. Prostate-specific 

membrane antigen (PSMA), a type II membrane antigen highly expressed in prostate cancer, has been an 

attractive target for imaging and therapy. Photodynamic therapy (PDT) is a non-invasive therapy which is used 

clinically in the treatment of various cancers and other diseases. The objective of this study is to segment and 

analyze the near-infrared (NIR) images of prostate cancer cells obtained using developed low molecular weight 

PSMA-targeting PDT agents, which would provide image-guidance for prostate tumor resection and allow for 

subsequent PDT to eliminate un-resectable or remaining cancer cells. The segmentation of NIR color images, of 

prostate cancer cells, is performed using Unsupervised Hopfield Neural Network Classifier (UHNNC) which 

gives better distribution of pixels among a predefined number of clusters. The clusters’ statistics needed for 

analysis are given using ENVI software product for image analysis.  

------------------------------------------------------------------------ 

* Corresponding author.  

218 
 

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied


International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 25, No  2, pp 218-232 

The results of this study show that the combination of the segmentation results with the clusters’ statistics with 

the appropriate PSMA, creates a better visualization of the cancerous tissues and help medical doctors for a 

more accurate diagnosis and surgery planning. 

Keywords: Prostate cancer; near-infrared (NIR) images; molecular weight PSMA-targeting PDT agents. 

1. Introduction  

(As the introduction of Prostate-specific membrane antigen (PSMA) analysis, significantly additional males 

have been diagnosed and treated for prostate cancer [1]. Approximately 220,800 new diagnoses and 27,540 

deaths from the disease are projected in 2015 among men in the United States [2].  Over 90% of men have 

localized tumors at initial screenings and are candidates for radical prostatectomies [3]. However, at surgery, 

cancer has been shown to extend outside the prostate (pathological stage C) in 20-42% of patients [4] and 

surgery fails to halt the disease in approximately 20% of the patients who undergo radical prostatectomy, and 

over a 60% recurrence rate of this disease in this population has been reported [5-7]. 

Although surgeons are experienced with this disease, radical prostatectomy remains an imperfect intervention.  

During surgery, it’s difficult for surgeons to access the invasion of prostate cancer; therefore, many malignant 

nodules escape detection, leading to disease recurrence. A retrospective multivariate analysis by Wright et al. of 

incomplete resection of prostate cancer in over 65,000 patients who underwent radical prostatectomies [8] found 

that positive surgical margins were associated with a 2.6-fold increased unadjusted risk of prostate cancer 

specific mortality and are an independent predictor of mortality. 

This study also underlined the need for surgeons to optimize surgical techniques to achieve the negative surgical 

margins essential for sound oncological outcomes. Surgical achievement of this without side effects is a 

challenge, however, because the prostate is surrounded by many nerves and muscle fibers controlling different 

excretory and erectile functions that are difficult but necessary to avoid. In 1983 Walsh defined nerve locations 

around the prostate and inspired a number of “nerve-sparing” surgical approaches, including robotic-assisted 

laparoscopic prostatectomy [9]. Unfortunately, the success of these approaches to mitigate side effects is mixed 

[10, 11] and surgical approaches to prostate cancer are still associated with significant morbidity, e.g. 

incontinence (3-74%) and impotence (30-90%) [12-17]. There remains an unmet clinical need to improve 

surgical techniques for identifying and removing cancerous tissue without damaging surrounding tissues during 

prostatectomy. Recently, Neuman et al. have shown that near-infrared (NIR) fluorescence probe YC-27 can 

improve the surgical treatment of prostate cancer and reduce the rate of positive surgical margins in real-time 

laparoscopic extirpative surgery [18].  

Photodynamic Therapy (PDT) is a non-invasive therapy, which is used clinically in the treatment of cancers and 

other diseases [19-21]. PDT uses photosensitizers which are pharmacologically inactive until they are exposed 

to light in the presence of oxygen. The active drug forms reactive oxygen species such as singlet oxygen to kill 

nearby cells. Various agents, including porphyrins and phthalocyanines have been examined as photosensitizers 

[22-24]. Most photosensitizers are fluorescent and emit near-infrared (NIR) light that can be used for in vivo 
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imaging to identify the location of cancer cells and provide image-guided PDT treatment potentially leading to 

improved therapeutic accuracy and outcome [22]. The main challenge for PDT treatment is off-target tissue 

accumulation and activation of photosensitizer leading to cell death in normal tissue [25]. Development of a 

highly selective delivery method for photosensitizers to minimize side effects and generate better therapeutic 

outcomes would be optimal.   

PSMA is a unique membrane bound glycoprotein originally discovered in the androgen-dependent LNCaP 

human prostate adenocarcinoma cell line using a monoclonal, mAb 7E11C-5.3 [26]. PSMA is overexpressed on 

prostate cancer.  Expression of PSMA in cancer tissues correlates with the stage of disease and Gleason score 

[27]. PSMA expression is also higher in prostate cancer cells from hormone-refractory patients [27, 28] and 

increased PSMA expression has been shown to be an independent marker of disease recurrence [28-30]. In 

addition to being overexpressed in prostate cancer, PSMA is also expressed in the neovasculature of many solid 

tumors [31].  PSMA has served as a promising target for both imaging [32-34] and treatment of prostate cancer 

[35-37]. A peptide-based, highly negatively charged PSMA ligand (PSMA-1) was developed and used for 

PSMA-targeted imaging of prostate cancer [38, 39]. 

In this study, we present the segmentation and analysis results the NIR prostate images obtained using two 

PSMA-1 based PDT conjugates, PSMA-1-Pc413 Figure1.A and PSMA-1-IR700 Figure1.B. Pc413 is an 

analogue of second generation phthalocyanine PDT drug Pc4 which is currently in clinical trials [40], and IR700 

is a commercially available near-infrared dye which has been shown to have PDT activities [41-43].  

 

 
 

Figure1.A. Structure of PSMA-1-Pc413                                                                                      Figure1.B. Structure of PSMA-1-IR700                                                                                       

Figure 1: Structures of PSMA-1-Pc413 Figure1.A and PSMA-1-IR700 Figure1.B. 

2. Methods and Materials 

 PSMA targeting peptide PSMA-1 was synthesized by Fmoc chemistry as previously reported [39]. All the other 
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chemicals were purchased from Sigma-Aldrich Inc., St. Louis, MO, USA. High Performance Liquid 

Chromatography (HPLC) was performed on a Shimadzu HPLC system equipped with a SPD-20A prominence 

UV/visible detector and monitored at a wavelength at 220 nm for PSMA-1-SMCC or 350 nm for PSMA-1-

Pc413 and PSMA-1-IR700.  

For in vivo NIR imaging studies, animal experiments were performed according to policies and guidelines of the 

animal care and use committee at Case Western Reserve University (IACUC#120024). Six to eight weeks old 

male athymic nude mice were implanted subcutaneously with 1×106 of PSMA-negative PC3flu and PSMA-

positive PC3pip on the left and right dorsum respectively. Animals were ready to use when tumors reached the 

size at about 10 mm. PSMA-1-PDT was injected intravenously via the tail vein. Fluorescence imaging was 

performed using the Maestro in Vivo Imaging system (Perkin-Elmer, Waltham, MA). During imaging, mice 

were anaesthetized with isoflurane. After imaging, the mice were euthanized and tissues were harvested for ex 

vivo imaging. For in vivo competition experiments, mice were co-injected with 1 nmol of PSMA-1-Pc413 and 

1000 nmol of ZJ-MCC-Ahx-YYYG, an analogue of PSMA-1 with similar binding affinity [38], or 1 nmol of 

PSMA-1-IR700 probes and 1000 nmol of PSMA-1.  Different competitors were used for PSMA-1-Pc413 and 

PSMA-1-IR700 due to their different pharmacokinetic behaviors. Multispectral images were unmixed into their 

component spectra (PSMA probes, autofluorescence, and background) and these component images were used 

to quantitate the average fluorescence intensity associated with the tumors by creating regions of interest (ROIs) 

around the tumors. The two probes reported in [44] were found to be effective as theranostic probes allowing 

both targeted-bioimaging and targeted-photodynamic therapy of prostate cancer.  The tumors were extracted 24 

hours post the PDT treatment and processed by hematoxylin and eosin staining. Pathological analysis showed 

that the nuclei in cancer cells treated with PSMA-1-PDT probes were much smaller compared to untreated 

tumors, indicating that the cells were damaged as shown in Figure 2.  

Hopfield Neural Network Segmentation Technique: Segmentation shows a critical role in therapeutic and 

biomechanical fields, such as assisting radiologists and medical doctors to improve their diagnosis. In the past 

few decades, researchers have proposed many effective algorithms to perform the computer aided segmentation. 

The successful implementation of modern mathematical and physical techniques, such as Bayesian’s analysis, 

template matching and deformable models, greatly enhances the accuracy of segmentation results. Compared 

with common image segmentation algorithms, the ones used for medical images need more concrete 

backgrounds and must satisfy the complex practical requirements. A good survey about these techniques are 

discussed in [45]. In our previous work, we have UHNNC to segment different type of medical and natural color 

images [46, 47], the segmentation results have been appreciated with respect to the multi-dimensionality of the 

data type used for segmentation. This means that UHNNC gives better segmentation results as far as getting 

more information about the pixel of the scene under segmentation. Here, we adapt the UHNNC to segment the 

NIR color image, samples are shown in Figure 2, and we analyze the clusters of the segmentation results with 

respect to the case available medical information and tissues features. UHNNC architecture consists of a grid of 

NM neurons with each column representing a class and each row representing a pixel, N represents the size of 

the given image and M represents the number of clusters, the latter is given as a priori information. The network 

is designed to classify the feature space without teacher based on the compactness of each class calculated using 

a distance measure. 
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Figure 2: Images of the PC3pip tumors receiving PSMA-1-PC413 and PSMA-1-IR700 wit and without light 

irradiation. 

The segmentation problem is formulated as a partition of N pixels of P features among M clusters or regions, 

such that the assignment of the pixels minimizes the cost-term of the energy (error) function: 

𝐸 = 1
2
∑ ∑ 𝑅𝑘𝑙𝑛𝑀

𝑙=1
𝑁
𝑘=1 𝑉𝑘𝑙2    (1) 

where Rkl is a similarity distance measure between the kth pixel and the centroid of class l, and is defined as 

follows: 

𝑅𝑘𝑙 = ‖𝑋𝑘 − 𝑋𝑙� ‖     (2) 

Where Xk is the P-features vector, for color images, P=3 in the RGB color space, as intensities of the kth pixel, 

  
Figure 2. (A) PC3pip tumor; (0.5 mg/kg PSMA-1-Pc413); 
(no light irradiation)       

Figure 2. (B) PC3pip tumor; (0.5 mg/kg PSMA-1-Pc413); 
with  (150J/cm2 light irradiation)       

  
Figure 2. (C) PC3pip tumor; (0.5 mg/kg PSMA-1-IR700);  
(no light irradiation) 

Figure 2. (D) PC3pip tumor; (0.5 mg/kg PSMA-1-IR700); 
with  (50J/cm2 light irradiation)       
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and 𝑋𝑙�  is the centroid of class l, and is defined as follows: 

𝑋𝑙� = ∑ XkVkl
N
k=1

nl
          (3) 

where nl is the number of pixels in class l. In case of n=2, the energy in (1), could be considered as the sum of 

squared errors,  𝑉𝑘𝑙 is the output of the 𝑘𝑙𝑡ℎ neuron. UHNNC uses the winner-takes-all learning as the input-

output function for the 𝑘𝑡ℎ row to assign a label m to the pixel and is given by: 

 �Vkl
(t + 1) = 1, if  Ukl = Max{Ukl(t),∀ l}

Vkl(t + 1) = 0;                             otherwise   (4) 

the minimization is achieved by using UHNNC and by solving a set of motion equations satisfying: 

∂Ui
∂t

= −µ(t) ∂E
∂Vi

    (5) 

where Ui and Vi are respectively the input and the output of the ith neuron, μ(t)  is as defined in [46] a scalar 

positive function of time used to increase the convergence speed of the HNN as: 

µ(t) = t ∗ (𝑇𝑠 − 𝑡)   (6) 

by applying the relation (5) to equation (1), we get a set of neural dynamics given by: 

𝑑𝑈𝑘𝑙
𝑑𝑡

= −𝜇(𝑡)(𝑅𝑘𝑙𝑛 𝑉𝑘𝑙)   (7) 

The UHNNC segmentation algorithm could be summarized in the following steps: 

1. Initialize the input of neurons to random values. 

2. Apply the input-output relation given in (4) to obtain the new output value for each neuron, establishing the 

assignment of pixel to classes. 

3. Compute the centroid for each class with respect to the equation (3). 

4. Solve the set of differential equation in (5) to update the input of each neuron as:  

𝑈𝑘𝑙(𝑡 + 1) =  𝑈𝑘𝑙(𝑡) + 𝑑𝑈𝑘𝑙
𝑑𝑡

  (8) 

5. Repeat from step 2 until convergence (t = Ts), then terminate. 

3. Segmentation Results 

Prostate cancer has a slow rate of growth and most tumors remain organ confined for longer than other 
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malignancies. Because of these features, clinicians have been working to find a reliable way of detecting it early 

so that potentially life-saving treatments can be implemented promptly [48]. 

To date, prostate specific antigen (PSA) testing has provided a relatively simple means of population screening 

for prostate cancer. Unfortunately, however, PSA does not diagnose prostate cancer with certainty as its serum 

value can be elevated in both benign and malignant conditions of the prostate and not all men with prostate 

cancer will have high PSA levels. In addition, where prostate cancer is detected early, clinically indolent cancers 

may be over diagnosed, resulting in overtreatment, and men may experience side effects from untoward 

treatment that reduce their quality of life. There may also be unnecessary costs and burdens to our health care 

system. However, as active surveillance is increasingly being adopted as a first-line treatment for men with 

‘very low’ and ‘low’ risk disease, the risks of overtreatment have been substantially reduced; some studies 

report up to 40 percent of newly diagnosed men enter this treatment pathway [48-49].   

A good review of conventional histological practice in cancer diagnosis can be found in [50], where it is 

mentioned that few research efforts have been dedicated to the development of quantitative techniques in order 

to achieve accurate, robust, and reproducible diagnosis and grading in histological images. Diamond et al. [50, 

51] used morphometric and texture features to identify stroma, normal, and   the remaining tissue is classified 

into cancerous regions based on a texture feature as shown in Figure 3. [50]. 

 

Figure 3: Samples of H&E-stained prostateTMA cores showing varying degrees of differentiation: (a) normal, 

(b) grade 2 (well-differentiated) cancer, and (c) grade 5 (poorly differentiated) cancer [50]. 
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In this study, we use the population ratio between the different classes of the segmentation result to show the 

effect of the PSA testing as mentioned earlier with PSMA-1-Pc413 and PSMA-1-IR700. Figure 4.1 represents 

the control of PC3pip tumor receiving PSMA-1-PC413. Mice received 0.5 mg/kg of PSMA-1-PC413 and 

tumors were taken out at 48 hours post injection without light irradiation. Figure 4.2 shows the segmentation 

result of the raw image shown in Figure 4.1 obtained using UHNNC with 4 classes as predefined number of 

classes.  The population ration of class1 and class2 is equal to 0.964, and the same ratio between class3 and 

class4 is 0.813, the most populated class is taken as a denominator of the ratio. These ration indicates also the 

similarity between the classes in term of density of their populations. However, these ratios are global, with 

respect to the image under study, their values will more significant for a Local Region of Interest (ROI) of the 

scene.   

 

Figure 4: Segmentation result of the raw image shown in Figure 2. A. represents PC3pip tumor; (0.5 
mg/kg PSMA-1-Pc413); (no light irradiation) obtained using UHNN with 4 classes as predefined 

number of classes. 

  
Figure 4.1: Figure2. (A) PC3pip tumor; (0.5 mg/kg 
PSMA-1-Pc413); (no light irradiation)       

Figure 4.2: Segmentation results of the image in Figure 
4.1 using the above described UHNNC. into 4 classes 

 
 

Figure 4.3 Classes Color Keys Table of the segmentation 
result shown in Figure 4. 2 

Figure 4.4 Classes Statistics Table of the segmentation 
result shown in Figure 4. 2 

  
Figure 4. 5 Display of Class 1 and Class 2 extracted from 
the segmentation result shown in Figure 4. 2 

Figure 4. 6 Display of Class 3 and Class 4 extracted from 
the segmentation result shown in Figure 4. 2 
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Figure 5.1 represents the control of PC3pip tumors receiving PSMA-1-Pc413 and treated with 150J/cm2 light. 

Mice received 0.5 mg/kg of PSMA-1-PC413, irradiated with 150J/cm2 light at 24 hours post injection. Tumors 

were taken out at 24 hours post PDT treatment. Figure 4.2 shows the segmentation result of the raw image 

shown in Figure 5.1 obtained using UHNNC with 4 classes as predefined number of classes. The population 

ration of class1 and class2 is equal to 0.621, and the same ratio between class3 and class4 is 0.788, the most 

populated class is taken as a denominator of the ratio. The ration of class1 and class2 indicates a considerable 

global change in the population of one of the two classes, and a little variation in the population of class3 and 

class4, as compared to the results shown in Figure 4.  The results in Figure 4 and Figure 5 indicate the effect of 

the theranostic PSMA-1-PDT agent PSMA-1-Pc413 on the prostate cancer cells, which needs more explanation 

and analysis as cells interaction with the agent. 

 

Figure 5: Segmentation result of the raw image shown in Figure 2. B. represents PC3pip tumor (0.5 

mg/kg PSMA-1-Pc413) with (150J/cm2 light irradiation) obtained using UHNNC with 4 classes as 

predefined number of cluster. 

 

  
Figure 5.1: Figure2. (B) PC3pip tumor (0.5 mg/kg 
PSMA-1-Pc413) with  (150J/cm2 light irradiation)       

Figure 5.2: Segmentation results of the image in Figure 5.1 
using the above described UHNNC. into 4 classes 

 
 

Figure 5.3 Classes Color Keys Table of the segmentation 
result shown in Figure 5. 2 

Figure 5.4 Classes Statistics Table of the segmentation 
result shown in Figure 5. 2 

  
Figure 5.5 Display of Class 1 and Class 2 extracted from 
the segmentation result shown in Figure 5. 2 

Figure 5.6 Display of Class 3 and Class 4 extracted from 
the segmentation result shown in Figure 5.2 
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Figure 6.1 represents the control of PC3pip tumor receiving 0.5 mg/kg PSMA-1-IR700 and tumors were taken 

out at 48 hours post injection without light irradiation. Figure 6.2 shows the segmentation result of the raw 

image shown in Figure 6.1 obtained using UHNNC with 4 classes as predefined number of classes.  The 

population ration of class1 and class2 is equal to 0.897, and the same ratio between class3 and class4 is 0.886, 

the most populated class is taken as a denominator of the ratio. These ration indicates also the similarity between 

the classes in term of density of their populations.  

 

Figure 6: Segmentation result of the raw image shown in Figure 2. (C) PC3pip tumor (0.5 mg/kg 

PSMA-1-IR700) (no light irradiation) obtained using UHNNC with 4 classes as predefined number of 

cluster. 

  
Figure 6.1: Figure2. (C) PC3pip tumor (0.5 mg/kg 
PSMA-1-IR700) (no light irradiation) 

Figure 6.2: Segmentation results of the image in Figure 
6.1 using the above described UHNNC. into 4 classes 

 
 

Figure 6.3 Classes Color Keys Table of the segmentation 
result shown in Figure 6. 2 

Figure 6.4 Classes Statistics Table of the segmentation 
result shown in Figure 6. 2 

  
Figure 6. 5 Display of Class 1 and Class 2 extracted from 
the segmentation result shown in Figure 6. 2 

Figure 6. 6 Display of Class 3 and Class 4 extracted from 
the segmentation result shown in Figure 6. 2 
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Figure 7.1 represents the control of PC3pip tumors receiving 0.5 mg/kg PSMA-1-IR700 and treated with 

150J/cm2 light. Mice received 0.5 mg/kg of PSMA-1-IR700, irradiated with 50J/cm2 light at 24 hours post 

injection. Figure 7.2 shows the segmentation result of the raw image shown in Figure 1.1 obtained using 

UHNNC with 4 classes as predefined number of classes. The population ratio of class1 and class2 is equal to 

0.806, and the same ratio between class3 and class4 is 0.874, the most populated class is taken as a denominator 

of the ratio. The ratio of class1 and class2 indicates an inconsiderable global change in the population of one of 

the two classes, and a little variation in the population of class3 and class4, as compared to the ratios shown with 

Figure 6. The results in Figure 6 and Figure 7 indicate the effect of the theranostic PSMA-1-IR700 agent on the 

prostate cancer cells, which needs more explanation and analysis as cells interaction with the agent.  

 

Figure 7: Segmentation result of the raw image shown in Figure. (D) PC3pip tumor (0.5 mg/kg 

PSMA-1-IR700) with (50J/cm2 light irradiation) obtained using UHNNC with 4 classes as predefined 

number of cluster. 

  
Figure 7.1: Figure2. (D) PC3pip tumor; (0.5 mg/kg 
PSMA-1-IR700) With (50J/cm2 light irradiation)       

Figure 7.2: Segmentation results of the image in Figure 
7.1 using the above described UHNNC. into 4 classes 

 
 

Figure 7.3 Classes Color Keys Table of the segmentation 
result shown in Figure 7. 2 

Figure 7.4 Classes Statistics Table of the segmentation 
result shown in Figure 7. 2 

  
Figure 7. 5 Display of Class 1 and Class 2 extracted from 
the segmentation result shown in Figure 7. 2 

Figure 7. 6 Display of Class 3 and Class 4 extracted from 
the segmentation result shown in Figure 7. 2 
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4. Conclusion 

 In this paper we have presented the use of a designed dual-functional PSMA-1-PDT conjugates to serve as anti-

cancer agents. The segmentation of the in vivo imaging results showed that both PSMA-1-Pc413 and PSMA-1-

IR700 can selectively accumulate in PSMA-positive PC3pip tumor. The analysis of these results with more 

affinity to small ROIs would help to achieve more accurate diagnosis.  
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