- IJSBAR

“3‘_’-—/ Basic and Applied Rese g

 IJEEAR

International Journal of Sciences: ...
Basic and Applied Research Sclences:

Basic and Applied
(|J SBAR) Research
ISSN 2307-4531
[Print & Online)
ISSN 2307-4531 e
(Print & Online)

http://gssrr.org/index.php?journal=Journal OfBasicAndApplied

Some Eight - Step Implicit Linear Multistep Methods of

Order Ten

Abdulrahman Ndanusa®*, Fatima Umar Tafida”

8Department of Mathematics, Federal University of Technology, Minna, Nigeria

®Department of Mathematics, Federal University of Technology, Minna, Nigeria

Abstract

®Email: as.ndanusa@futminna.edu.ng

PEmail: fatimiumartafida@yahoo.com

In this paper we analyze the Taylor series method of deriving linear multistep methods through expansion of the

linear difference operator L[y(x);h] = ?zo[ajy(x +jh) — hfB;y'(x + jh)] where y(x) is an arbitrary

function continuously differentiable on [a, b]. The resulting constant expressions D; (i = 0(1)11) are expanded

and solved accordingly. By a careful and judicious assignment of appropriate values to the free parameters, we

obtain two eight — step implicit linear multistep schemes of optimal order (in this case order ten). The schemes

are shown to be consistent and zero — stable; thereby establishing their convergence. In order to affirm their

efficacy and reliability, the schemes are applied to sample initial value problems and the results compared to

exact solutions. The negligibility of the exhibited errors further confirmed their usefulness.
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1. Introduction

A linear multistep method of step number k (or a linear k — step method) for solving the initial value problem

y'=fxy),  y) =0 M
has the general form

k

k
Zann+j = hZﬁjfrwj (2)
j=0

j=0

where o, # 0. Also |ay| + |By| # 0. More so, if 8, = 0 the method is explicit, if 8, # 0 it is called implicit
[1]. A great many numerical methods for solving ordinary differential equations abound in literature, and yet
many more are still being produced. One common feature of all improvements on such methods is the desire to
increase the order of exactness of a numerical approximation. According to [2], a numerical method is r*"* order
exact if the expression in A" in the Taylor expansion of the unknown is exactly replicated. This is determined
by O(h™). The order r permits us to tell by how much the findings are enhanced when the step is lessened.
Generally, methods with a big r are preferable since a diminution of h results in a large gain in accuracy.
Obviously a high step linear multistep method (LMM) translates to high order, even though it comes at a cost;
there is the twin problem of starting values and computational complexity often associated with such methods,
which makes them less attractive. A number of authors have derived some high order LMMs in the past, these
include [3,4,5,6]. This paper seeks to derive two eight — step implicit LMMs of order ten. Being implicit
methods, a nine — step tenth - order Adams — Bashforth method is co-opted to serve as a predictor for the
methods. In order to generate the starting values needed for the methods to kick off, a tenth order Runge — Kutta
(RK) method used to do just that.

2. Materials and methods
2.1. Derivation of eight — step implicit linear multistep method

Since we seek to derive eight-step tenth-order implicit linear multistep, all the roots of the first
characteristics polynomial p(¢) must be on the unit circle. Also, p(¢)is a polynomial of degree 8, and
hence, by consistency, it has one real root at +1 and one more real root at —1. The remaining six

roots must be complex. Consequently, the roots of p(&) are computed as follows.

ay=-1, a; =2(x+y+2), a, = —2(1+ 2xy + 2xz + 2yz)
as; =2(x+y+z+4xyz), a, =0, as =—-2(x+y+z+4xyz) 3
ag = 2(1 + 2xy + 2xz + 2yz), a; =-2x+y+2), ag =+1

And the order conditions for a tenth — order implicit linear multistep method are expressed in terms of the
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D4, q =0,1,2,-++,11 as follows.

D0=a0+a1+a2+a3+a4+a5+a6+a7+a8 (4’)

Dy=[-rag+ (11— +2—-r)a,+-+(7—1r)a; + (8 —r)ag]

—[Bo + B1+ B2+ Bs + Ba+ Bs + Bs + B7 + Bs] 5)
D, = %[(—r)zao + (1A -=rPa;+@2—-r)ay+-+ (7 —1r)a; + (8 —1r)ag]
—[=rBo+ (A1 =71+ (2 =1y + -+ (7 = 1)B7 + (8 = )] (6)
D; = %[(—rﬁao +A-rPa+Q2-riay+-+ (7 —-1r)a;+ (8 —1)ag]
_%[_rzﬁo +(L=1)?Br+ Q2 =1)"Bp 4+ (7 =727 + (8= 1)"Be] 7)

! [(—r)*ao+ (1 —1r)*ay + 2 —1r)*ay + -+ +(7 —1r)*a; + (8 — r)*ag]

D4=E

1o s 3 3 3 3
5B+ A=+ (2 1) By At H(T 1)y + (8 1) Be] ®)

Dy = %[(—1‘)9&0 + (-1 +2-1)a+ -+ (7—1)°a; + (8 —1)°as]
1
~al [-7%B0 + (1 —1)°B1 + (2= 1)%B + -+ (7T —1)°B; + (8 — 1)°P4] (9

L ()P + (1 =)+ -+ (7 —1)Pa; + (8 — 1) 0aq]

D10 =101

1 9 9 9 9 9
_a[_r Bo+ (A —=1)B+Q2—=1)By+ -+ (7 —1)p; +(8—71)°f%] (10)

1
bu =13 [()ag+ A —r)May + -+ (7 —r)a; + (8 — ) ag]

i T+ (L= Py + 2= 1B 4 (7 =), + (B )] (1)

The free parameter r in Equations (5) to (11) for the D, = 0,q = 2,3, -~ 10, is chosen to be 4. On further

simplification the resulting expressions for the 8;,i = 0 to 8 are expressed thus.
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.23 ,. 52 . 5 . 5 188
Bo = Ta175* * 1175 T 14175 ¥ Y 1417577 T 1arrs”

, 188 188 3982 0
141757 T1ar75 2 T1arzs - Pe (12)
334 128 128 128 9844
Br= 14175 % ~ 3025 T 2025 ~ 202577 T 14175 "
9844 9844 23104 s
Ta17s) Yt Tt P (13)
_ 2804 21976 21976 21976 37936
Be = 75 F 1175 T et ¥ Y a5 Y% T 1arrs”
37936 37936 7276 _ 9y
14175 "1a175° T1ars - P (14
__46378 70528 70528 70528 27268
b=~ 75 Y 2175 Y a5 T a5 Yt T Tans
27268 27268 77248 s
~Ta175” "1ar7s’ Y 1ars - B (15)
34 = _[ﬁo +ﬁ1 +32 +33 +35 +:36 +ﬁ7 +ﬁ8] +8
122(x+y+2)+ 81+ 2xy+2xz+2yz) +4(x+y +2) (16)
The expression for the error constant D, is therefore
2
Dy = _[ 411“ - 311“ - 211“2 —az] — _[410ﬁ0 31031 + Zloﬁz + B3] (17)

11! 10!

After assigning the values —12/17,3/4 and 2/3 to the free parameters x, y and z respectively, in Equations
(12) to (16) the following eight — step implicit linear multistep method of order ten is obtained.

145 143 143 145 208157 (p)
Yn+s 102 Yn+7 + 102 Yn+s 102 Vn+3 + 102 Vn+1 Yn = [722925f

+850319 1614964 +1987523 243554 +1987523
722925’21+7 722925 fuve 722925 fuss 144585 frva 722925

1614964 850319 208157

722925 fura + 722925f"+1 + 722925f"] (18)
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424814429

and the corresponding error constant is calculated from Equation (17) as — —————.
72142131600

Similarly, substituting x = % y=0, z= —% in Equations (12 to (16) the values of the «;'s and B;'s are

obtained for the resultant eight - step implicit linear multistep method of order ten

7
Yn+g T VYnte — Yn+2 —Yn = h[ﬁf(p) 175 fn+7 175 fn+6 + 175 fn+5
18 7
ﬁfnw} 175fn+3 175fn+2 175fn+1 f] (19)
whose error constant is calculated to be —3;—5.
2.2. Convergence analysis
For a linear multistep method, consistency demands that
@ p(1)=0 }
(i) p'(D) = o(1) (20)
Thus for the LMM (18)
p&) = 58——€7+—§5——€3+—§—1 (21)

102 102 102 102

145 143 145 145

Del-mgp——_ 22,2 1) 22
p(1) 102 " 10z 102 T 102 (22)

116
p'(1) = 8(1)_W(1) m(l)—m( )+m(1)_ (23)

8 7 6 5 4

722025° T 722025° T 722925 ° T 722925 ° T 144585

. 208157 850319 1614964 1987523 243554
o(§) = Zﬁ,é -

1987523 , 1614964 , 850319 208157

T 922925 ¢ " 722925 ¢ T 722018° T 722028 (24)
W - 116 .

And from Equations (22), (23) and (25) the the consistency of LMM (18) is established.

Zero —stability entails that no root of the first characteristic polynomial, Equation (21), has modulus greater than

1, and every root with modulus 1 is simple. The roots of Equation (21) are computed to be
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3 1 3 1 12 1 \

€1=1,€2=—1,E3=Z—Zﬁi,g‘4=2+z\/7i,55=—ﬁ—ﬁ 145 i
_ 121 e _2 1, _2,1 e (26)

¢e="17717 Lo & =373V5h G=gHaVel J

All the roots &;,i = 1,2, --- 8, of Equations (26) are calculated to have a modulus of 1 each, thereby establishing

the zero — stability of the scheme (18).

In the same vein, for the LMM (18)

p(&) = p) =&+ -8 -1 (27)
p(H)=1+1-1-1=0 (28)
p'(1) = 8(1)+6(1)—2(1) =12 (29)
= zﬁs T BBy T T B 1 2,
NP (30
175 175
o(1) =12 (31)

And from Equations (28), (29) and (31) the the consistency of LMM (19) is established.

Zero —stability entails that no root of the first characteristic polynomial, Equation (27), has modulus greater than

1, and every root with modulus 1 is simple. The roots Equation (27) are computed to be

G=LG="14G=104= _i’&:%\/—Z—iZ\/_Si l(BZ)

All the roots &;,i = 1,2, -+ 8, of Equation (32) are calculated to have a modulus of 1 each, thereby establishing

the zero — stability of the scheme (19).
Therefore, it is established that the eight — step implicit linear multistep methods (18) and (19) are convergent.
2.3. Numerical experiments

Two sample problems are solved with the derived methods (18) and (19) to further demonstrate their efficiency

and effectiveness.
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Problem1: y' =7x%—10x*+9x%2+2, y(0)=1, h=01, 0<x<?2
Exact solution: yg(x) = x7 —2x5 + 3x3 +2x + 1
Problem2:y' = -y, y(0) =1, h=01 0<x<2

Exact solution: y;(x) = e™*

In order to generate the necessary starting values for the eight — step LMMSs of order ten, a tenth — order Runge —
Kutta method introduced by Hairer [7] is used, while a nine — step Adams — Bashforth method of order ten due

to [6] is provided to serve as a predictor to the implicit LMMSs thus.

Yn+1 =

Y + o [49537553f, — 259077637f,_ + 805221248,

—1533238912f,_5 + 1886585258f,_, — 1523349298f,_s + 791906792f,_¢
—248389768f,_, + 401445117f,_g — 2082753 f,_o] (33)

The computations are done using Maple software package and the results presented in Tables 1 to 4.

3. Results

A Table 1: Results of Problem 1 with Scheme (18)

x  Exactsolution Approximate  Error
0.0 1.0000000000  1.0000000000  0.0000000000E+00
0.1 1.2029801000  1.2029801000  0.0000000000E+00
0.2 1.4233728000  1.4233728000  0.0000000000E+00
0.3 1.6763587000 1.6763587000  0.0000000000E+00
0.4 1.9731584000  1.9731584000  0.0000000000E+00
0.5 2.3203125000  2.3203125000  0.0000000000E+00
0.6 2.7204736000  2.7204736000  0.0000000000E+00
0.7 3.1752143000  3.1752143000  0.0000000000E+00
0.8 3.6903552000  3.6903552000  0.0000000000E+00
0.9 4.2843169000  4.2843169000  0.0000000000E+00
1.0 5.0000000000 5.0000000000  0.0000000000E+00
1.1 5.9206971000  5.9206971000  0.0000000000E+00
1.2 7.1905408000  7.1905408000  0.0000000000E+00
1.3 9.0399917000  9.0399917000  0.0000000000E+00
1.4 11.8168704000 11.8168704000 0.0000000000E+00
1.5 16.0234375000 16.0234375000 0.0000000000E+00

186



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 26, No 3, pp 180-190

1.6
1.7
1.8
1.9
2.0

22.3600256000
31.7757273000
45.5266432000
65.2421939000
93.0000000000

22.3600256000
31.7757273000
45.5266432000
65.2421939000
93.0000000000

0.0000000000E+00
0.0000000000E+00
0.0000000000E+00
0.0000000000E+00
0.0000000000E+00

The results of Tables 1 and 2 revealed that the two LMMs solved the differential equation exactly; this is as
expected, since the exact solution of Problem 1 is a polynomial of degree 6, which is less than the step number
of the LMMs, i.e., 8.

In Tables 3 and 4 the two LMMs exhibited high levels of accuracy, by solving the differential equation with

very minimal errors as revealed in the solutions.

Table 2: Results of Problem 1 with Scheme (19)

x  Exactsolution Approximate  Error
0.0 1.0000000000  1.0000000000  0.0000000000E+00
0.1 1.2029801000  1.2029801000  0.0000000000E+00
0.2 1.4233728000  1.4233728000  0.0000000000E+00
0.3 1.6763587000 1.6763587000  0.0000000000E+00
0.4 1.9731584000  1.9731584000  0.0000000000E+00
0.5 2.3203125000  2.3203125000  0.0000000000E+00
0.6 2.7204736000  2.7204736000  0.0000000000E+00
0.7 3.1752143000  3.1752143000  0.0000000000E+00
0.8 3.6903552000  3.6903552000  0.0000000000E+00
0.9 4.2843169000  4.2843169000  0.0000000000E+00
1.0 5.0000000000 5.0000000000  0.0000000000E+00
1.1 5.9206971000  5.9206971000  0.0000000000E+00
1.2 7.1905408000  7.1905408000  0.0000000000E+00
1.3 9.0399917000  9.0399917000  0.0000000000E+00
1.4 11.8168704000 11.8168704000 0.0000000000E+00
1.5 16.0234375000 16.0234375000 0.0000000000E+00
1.6 22.3600256000 22.3600256000 0.0000000000E+00
1.7 31.7757273000 31.7757273000 0.0000000000E+00
1.8 45.5266432000 45.5266432000 0.0000000000E+00
1.9 65.2421939000 65.2421939000 0.0000000000E+00
2.0 93.0000000000 93.0000000000 0.0000000000E+00
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Table 3: Results of Problem 2 with Scheme (18)

x  Exactsolution Approximate Error
0.0 1.0000000000  1.0000000000 0.0000000000E+00
0.1 0.9048374180  0.9048374180 3.6010083804E-11
0.2 0.8187307531  0.8187307531 2.1927015759E-11
0.3 0.7408182207  0.7408182207 1.8158030635E-11
0.4 0.6703200460  0.6703200460 3.5789038400E-11
0.5 0.6065306597  0.6065306597 1.2801981697E-11
0.6 0.5488116361  0.5488116361 5.7900351180E-12
0.7 0.4965853038  0.4965853038 8.3970053133E-12
0.8 0.4493289641  0.4493289641 1.7422008280E-11
0.9 0.4065696597  0.4065696597 4.0803027623E-11
1.0 0.3678794412  0.3678794412 0.0000000000E+00
1.1 0.3328710837  0.3328710838 1.0000000827E-10
1.2 03011942119  0.3011942121 2.0000001655E-10
1.3 0.2725317930  0.2725317932 1.9999996104E-10
1.4 0.2465969639  0.2465969641 2.0000001655E-10
1.5 0.2231301601  0.2231301602 1.0000000827E-10
1.6 0.2018965180  0.2018965179 1.0000000827E-10
1.7 0.1826835241  0.1826835239 1.9999998879E-10
1.8 0.1652988882  0.1652988882 0.0000000000E+00
1.9 0.1495686192  0.1495686193 1.0000000827E-10
2.0 0.1353352832  0.1353352835 2.9999999707E-10
Table 4: Results of Problem 2 with Scheme (19)
x  Exactsolution Approximate Error
0.0 1.0000000000  1.0000000000 0.0000000000E+00
0.1 0.9048374180  0.9048374180 3.6010083804E-11
0.2 0.8187307531  0.8187307531 2.1927015759E-11
0.3 0.7408182207  0.7408182207 1.8158030635E-11
0.4 0.6703200460  0.6703200460 3.5789038400E-11
0.5 0.6065306597  0.6065306597 1.2801981697E-11
0.6 0.5488116361  0.5488116361 5.7900351180E-12
0.7 0.4965853038  0.4965853038 8.3970053133E-12
0.8 0.4493289641  0.4493289641 1.7422008280E-11
0.9 0.4065696597  0.4065696597 4.0803027623E-11
1.0 0.3678794412  0.3678794412 0.0000000000E+00
1.1 0.3328710837  0.3328710837 0.0000000000E+00
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1.2 03011942119  0.3011942119 0.0000000000E+00
1.3 0.2725317930  0.2725317930 0.0000000000E+00
1.4 0.2465969639  0.2465969640 1.0000000827E-10
1.5 0.2231301601  0.2231301602 1.0000000827E-10
1.6 0.2018965180  0.2018965180 0.0000000000E+00
1.7 0.1826835241  0.1826835241 0.0000000000E+00
1.8 0.1652988882  0.1652988882 0.0000000000E+00
1.9 0.1495686192  0.1495686193 1.0000000827E-10
2.0 0.1353352832  0.1353352832 0.0000000000E+00

4. Conclusion

By the foregoing, it is instructive that the two eight — step implicit linear multistep methods of order ten are

convergent, effective and efficient in the solution of initial value problems.

5. Recommendation

The authors recommend further research be carried out towards development of low step methods that achieve
high order accuracy in order to reduce the computational rigours involved in generating the starting values

needed for high step methods.
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