

# **Extraction and Analysis of Volatile Oil of Foeniulum Vulgare Mill**

Hind abderhman elmusharaf<sup>a\*</sup>, Dafaala Mohamed Hag Ali<sup>b</sup>

<sup>a,b</sup> Chemistry Department, College of Science, Sudan Unversity of Science and Technology, Khartoum,

Sudan.

<sup>a</sup> Email: hind.abderhman.elmusharaf1970@gmail.com

### Abstract

The volatile oil from dry seeds of Foeniculum vulgare Mill. known in sudan as Elshamar, was bought from local market in Buree, Khartoum state, the plant was grown in Elmanaseer region in the north of the sudan, extracted by hydrodistillation, the volatile oil yield was found to be 6%(v/w), the extracted volatile oil was analyzed by gas chromatography (GC) and gas chromatography- mass spectrometry (GC-MS) to determine the chemical constituents, the retention indices of the major components were calculated from GC analysis and from GC-MS analysis 28 compounds were identified, the main constituents of volatile oil were found to be: Anethole 31.1%, Phenyl-2-methyl-3-propanol 21.25%, d-Limonene 12.13% , β-Pinene 9.63% , γ-Terpinene8.03% and 2- Carenal 8.71% and their retention indices are 1237.04, 129-.74, 1021.11, 976.98, 1060 and 1283.33 respectively.

Keywords: Foeniculum vulgareMill; Fennel oil.

\* Corresponding author.

#### 1. Introduction

The plant Foeniculum vulgare Mill., family Umbelleferae, genus foeniculum , species Vulgare, synonyms are Fenkel, sweet fennel and wild fennel, part used are seeds, leaves and roots, the odour of fennel seed is fragrant, its taste, warm, sweet and agreeably aromatic, it yields its virtues to hot water, but more freely to alcohol, the essential oil separated by distillation with water[1], the important constituent in fennel oil in Foeniculum vulgare are Anethole (60%) and fenchone (20%) [2], monoterpenes such as  $\alpha$ -phellandrene,  $\alpha$ -pinene estragole, anthole and fenchone are detected in fennel oil [3], 21 compounds (12 hydrocarbons and 9 oxygenated) are obtained by steam distillation from fennel oil these 21 compounds are  $\alpha$ -pinene, camphene, sabinene,  $\beta$ -pinene, myrcene,  $\alpha$ -phellandrene, 3- carene, P- cymene, limonene, cis-ocimene, trans-ocimene,  $\gamma$ -terpinene, fenchone, camphor, terpnen-4-ol, methyl-carveol, trans-carveol, carvone, anisaldehyde, hexyl acetate and anethole [4].

Chromatography technique is used for the separation, isolation and identification of component of a mixture, the individual components are detect by the property of thermal conductivity this property change are recorded by a resistance thermometer, the result is a plot of signal intensity against time [5]. The retention time, the minute between the time the sample is injected and the time the chromatographic peak is recorded, agreement of retention times of two compound does not quranatee the compounds are identical, the area under the peak is proportional to the concentration and so the amount of the component can be determined. The Kovats retention index is used for identifying a compound from its retention time relative to those of similar compounds in homologous series, those that differ in the number of carbon atoms in a similar structure as in alkane chains [6].

#### 2. Material and Methods

Dry seeds of Foeniculum vulgare Mill. (250gm) were extracted for volatile oil by hydrodistillation method using Clevenger apparatus, extraction was carried out at boiling point temperature of the water for about 4hours, the separated volatile oil was dried over anhydrous sodium sulphate, and subjected to analysis by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The GC model Varian CP 3800, the analysis condition were as follow: column wall-coated open tubular fused silica, dimethyl poly siloxane 50 m length 0.12 mm inside diameter 0.39 mm out side diameter and 0.50 µm film thickness, injection temperature: 270°C, oven temperature program: 35°C for 10 min to 280°C at 12 min, pressure : 64Psi, carrier gas Helium, injection sample : 1 ul neat oil. The GC-MS model Shimadzu QP2010, column: DB-5MS, dimethyl poly siloxane, 30 m length, 0.25mm diameter and 0.25 µm film thickness, injection temperature:250°C, oven temperature programm : 40°C for 1 min to 275°C at 11 min, hold time 1 to 11 min and rate 5c/m, pressure : 100Pa, total flow: 50 ml/min, column flow 1.78 ml/min, purge flow 3ml/min, linear velocity 48.1cm/sec, carrier gas Helium with 99.9% purity, ion source temperature: 200°C, detecter temperature 250°C, solvent cut time: 2.5min and the injection sample is 1µl from 10 µl of fennel oil dilute in 1ml ethyl

alcohol.

#### 3. Result and Discussion

The yield % of fennel oil was calculated as follow:

Yield 
$$\% = 15/250 \times 100 = 6\%$$

The result (GC) chromatogram in figure: 1shown that the oil is a complex mixture of 28 compounds, by using retention indices, the relation used to calculate the Kovats retention index (I) is:



Figure 1: (GC) chromatogram of the volatile oil of foeniculum vulgare Mll.

I = 100 
$$\left( n + \log t_{R(unk)} - \log t_{R(ns)}' \right)$$
Log  $t_{R(nl)} - \log t_{R(ns)}$ 

n is the number of carbon atoms of the smaller hydrocarbon than the unknown log  $t'_{R(unk)}$  is the adjusted retention time of the unknown compound, which is calculated from the

retention time of the unknown (t  $_{R(unk)}$ ) by the following relation :  $t_{R(unk)} - t_M$ , where  $t_M$  is the time required for the mobile phase to traverse the column and is the time it would take unretained solute to appear, in this chromatogram  $t_M$  is equal to 1.779 minutes, log  $t'_{R(ns)}$  is the adjusted retention time of the hydrocarbon which is smaller than the unknown log  $t'_{R(nl)}$  is the adjusted retention time of the hydrocarbon which is larger than unknown.

| Peak number | t <sub>R</sub> | t' <sub>R</sub> | Ι       |
|-------------|----------------|-----------------|---------|
| 1           | 21.767         | 19.988          | 912.70  |
| 2           | 22.633         | 20.597          | 923.02  |
| 3           | 22.968         | 21.189          | 932.54  |
| 4           | 25.878         | 24.099          | 976.98  |
| 5           | 26.683         | 24.904          | 988.10  |
| 6           | 28.712         | 26.933          | 1021.11 |
| 7           | 29.018         | 27.239          | 1026.67 |
| 8           | 29.552         | 27.773          | 1036.67 |
| 9           | 30.937         | 29.158          | 1060.00 |
| 10          | 31.293         | 29.514          | 1065.56 |
| 11          | 32.981         | 31.202          | 1092.22 |
| 12          | 34.367         | 32.688          | 1119.12 |
| 13          | 35.305         | 33.526          | 1135.29 |
| 14          | 36.559         | 34.880          | 1161.76 |
| 15          | 37.623         | 35.844          | 1177.94 |
| 16          | 40.600         | 38.821          | 1237.04 |
| 17          | 41.859         | 40.180          | 1264.81 |
| 18          | 42.935         | 41.156          | 1283.33 |
| 19          | 43.262         | 41.483          | 1290.74 |
| 20          | 43.787         | 42.008          | 1300.00 |
| 21          | 44.063         | 42.284          | 1300.00 |
| 22          | 44.818         | 43.039          | 1317.39 |
| 23          | 45.608         | 43.829          | 1334.78 |
| 24          | 46.983         | 45.204          | 1363.04 |
| 25          | 50.391         | 48.612          | 1446.15 |
| 26          | 51.677         | 48.898          | 1451.28 |
| 27          | 52.792         | 51.013          | 1500.00 |
| 28          | 55.366         | 53.587          | 1563.64 |

| <b>Table 1:</b> is retention time $(t_R)$ and the calculated adjusted retention time $(t'_R)$ and | retention indices |
|---------------------------------------------------------------------------------------------------|-------------------|
| (I) of the volatile oil components                                                                |                   |

| Peak number | t <sub>R</sub> | t' <sub>R</sub> |
|-------------|----------------|-----------------|
| C9          | 21.071         | 19.292          |
| C10         | 27.564         | 25.785          |
| C11         | 33.456         | 31.677          |
| C12         | 38.809         | 37.030          |
| C13         | 43.765         | 41.986          |
| C14         | 48.426         | 46.647          |
| C15         | 52.830         | 51.051          |
| C16         | 56.893         | 55.114          |

Table 2: is retention time  $(t_R)$  and adjusted retention time  $(t_R)$  of standard hydrocarbons



Figure 2: (GC-MS) total ion chromatogram of the volatile oil of foeniculum vulgare Mll.

From (GC-MS) 28 compounds were identified by compared the MS fragmentation pattern of these unknown compounds with those of standards compounds from the library of the machine

| Peak   | t <sub>R</sub> | % area | Name                                                 |
|--------|----------------|--------|------------------------------------------------------|
| number |                |        |                                                      |
| 1      | 7.050          | 0.13   | Cyclohexane,(1-methylethyldiene)                     |
| 2      | 7.158          | 0.44   | Pinenea-                                             |
| 3      | 8.350          | 0.26   | Phellandreneβ-                                       |
| 4      | 8.492          | 9.63   | -Pineneß                                             |
| 5      | 8.892          | 0.34   | -Myrceneβ                                            |
| 6      | 10.100         | 12.13  | d-Limonene                                           |
| 7      | 10.433         | 0.17   | O-Xylene,3-ethyl                                     |
| 8      | 10.208         | 0.15   | Cineole                                              |
| 9      | 11.017         | 8.03   | Terpineney                                           |
| 10     | 13.875         | 1.28   | Cyclohexane,3-butyl                                  |
| 11     | 14.300         | 0.24   | 2,6-Dimethyl-3,5,7-octatriene                        |
| 12     | 14.417         | 0.50   | Limonene epoxide                                     |
| 13     | 15.000         | 0.14   | 1-Phenylpropane1,3-diol                              |
| 14     | 15.300         | 0.95   | Acetaldehyde,(3,3-dimethylcyclohexaylidene)          |
| 15     | 16.167         | 0.92   | 1-(Ethyl-2,3-dimethyl-cyclopent-2-enyl)ethanone      |
| 16     | 16.708         | 31.10  | Anethole                                             |
| 17     | 17.742         | 0.19   | Phellandral                                          |
| 18     | 18.000         | 8.71   | 2-Caren-10-al                                        |
| 19     | 18.525         | 21.25  | Propanal,2-methyl-3-phenyl                           |
| 20     | 19.275         | 0.51   | Cyclopentane propanol,2-methylene                    |
| 21     | 19.475         | 0.16   | Benzene,1-(1-hydroxyethyl)-4-isobutyl                |
| 22     | 20.125         | 0.38   | Nerolidol                                            |
| 23     | 20.275         | 0.48   | Bicyclo[2.2.1]heptan-2-ol,7,7-dimethyl,acetate       |
| 24     | 20.675         | 0.32   | Bicyclo[3,1,0]hex-2-ene,4-methylene-1-(1-methyethyl) |
| 25     | 20.967         | 0.34   | Butanoic acid,4-formylphenylester                    |
| 26     | 21.467         | 0.76   | 4-Hydromethylene-2,6-dimethyl-oct-6-en-3-one         |
| 27     | 22.592         | 0.23   | 3-Methylene-2-fenchone                               |
| 28     | 26.458         | 0.26   | Carotol                                              |
|        |                | 100%   |                                                      |

Table 3: Is retention time (t<sub>R</sub>) and % area under peak of the compounds which identified by (GC-MS).

For further confirm the result of analysis of oil the Kovats retention indices (I) obtained from the (GC)

is combine with the result of (GC-MS), the total number of identified compounds is twenty eight eleven of them are hydrocarbons while seventeen are oxygenated compounds, the main constituent of volatile oil found to be Anethole 31.1%, Phenyl-2-methyl-3-propanol 21.25%, d-Limonene 12.13%,  $\beta$ -Pinene 9.63%,  $\gamma$ -Terpinene8.03% and 2- Carenal 8.71% and their retention indices are 1237.04, 129-.74, 1021.11, 976.98, 1060 and 1283.33 respectively.

| Peak   | Name                                                 | Ι       | % area |
|--------|------------------------------------------------------|---------|--------|
| number |                                                      |         |        |
| 1      | Cyclohexane,(1-methylethyldiene)                     | 912.70  | 0.13   |
| 2      | Pinenea-                                             | 923.02  | 0.44   |
| 3      | Phellandrene <sub>β</sub> -                          | 932.54  | 0.26   |
| 4      | β-Pinene                                             | 976.98  | 9.63   |
| 5      | -Myrceneß                                            | 988.10  | 0.34   |
| 6      | d-Limonene                                           | 1021.11 | 12.13  |
| 7      | O-Xylene,3-ethyl                                     | 1026.67 | 0.17   |
| 8      | Cineole                                              | 1036.67 | 0.15   |
| 9      | -Terpineneγ                                          | 1060.00 | 8.03   |
| 10     | Cyclohexane,3-butyl                                  | 1065.56 | 1.28   |
| 11     | 2,6-Dimethyl-3,5,7-octatriene                        | 1092.22 | 0.24   |
| 12     | Limonene epoxide                                     | 1119.12 | 0.50   |
| 13     | 1-Phenylpropane1,3-diol                              | 1135.29 | 0.14   |
| 14     | Acetaldehyde,(3,3-dimethylcyclohexaylidene)          | 1161.76 | 0.95   |
| 15     | 1-(Ethyl-2,3-dimethyl-cyclopent-2-enyl)ethanone      | 1177.94 | 0.92   |
| 16     | Anethole                                             | 1237.04 | 31.10  |
| 17     | Phellandral                                          | 1264.81 | 0.19   |
| 18     | 2-Caren-10-al                                        | 1283.33 | 8.71   |
| 19     | Propanal,2-methyl-3-phenyl                           | 1290.74 | 21.25  |
| 20     | Cyclopentane propanol,2-methylene                    | 1300.00 | 0.51   |
| 21     | Benzene,1-(1-hydroxyethyl)-4-isobutyl                | 1300.00 | 0.16   |
| 22     | Nerolidol                                            | 1317.39 | 0.38   |
| 23     | Bicyclo[2.2.1]heptan-2-ol,7,7-dimethyl,acetate       | 1334.78 | 0.48   |
| 24     | Bicyclo[3,1,0]hex-2-ene,4-methylene-1-(1-methyethyl) | 1363.04 | 0.32   |
| 25     | Butanoic acid,4-formylphenylester                    | 1446.15 | 0.34   |
| 26     | 4-Hydromethylene-2,6-dimethyl-oct-6-en-3-one         | 1451.28 | 0.76   |
| 27     | 3-Methylene-2-fenchone                               | 1500.00 | 0.23   |
| 28     | Carotol                                              | 1563.64 | 0.26   |
|        |                                                      |         | 100%   |

Table 4: Is compounds identified in the volatile oil of Foeniculum vulgare Mill by GC and GC-MS

## 4. Conclusion

Fennel oil use for medicinal purposes and in the cosmetic and perfume industry stems from the presence of Limonene and Anethole in their constituents.

### References

- Maude. Grieve & Hilda Leyel "A Modern Herbal" Hafiner Press, Adivision of Macmillan Publishing Co ,Inc, New York. (1931), P-292-295.
- [2] Harbone. J. B. "Phytochemical Method A Guide to Modern Techniques of Plant Analysis"3 t bed., Chapman & Hall,London. (1973). P. 107-113.
- [3] Miura, Y., Ogawa, K., Fukui, H. & Tabata, M. "Change in the essential oil component during the development of fennel plants from Somatic Embryoid" Planta Medica 53(1) P.95-96. (1987).
- [4] Piccaglia, R. & Marotti, M. "Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.). Journal of Agricultural and Food Chemistry. 49(1) P.239-244. (2001).
- [5] Finar, l. l. "Organic Chemistry: Stereochemistry and the chemistry of natural product "5<sup>th</sup> ed. Vol 2. Longman group, Ltd, North London. (1956). P. 354-459.
- [6] Christain, G.D. "Analytical Chemistry" 6<sup>th</sup> ed. John Wiley& Sons, Inc, United state of America. (2004). P.562-588.