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Abstract 

Penrose–Hawking singularity theorems pre-assume asymptote flat spacetime. This false flat spacetime paradigm 

produces such singularities at the Big Bang and the center of the Black Holes. The Universe is globally 

hyperbolic as we did prove mathematically in [3]. We prove that the hyperbolic time evolution equation of the 

universe ( ) 3/8 sinh 8 /3j jR t tpr pr characteristics the hyperbolic universe and traces its manifold 

dynamical geometry wouldn`t break down at the initial Big Bang moment. The Schwarzschild solution is the 

simplest possible black hole. In Einstein’s theory, gravity is described through the curvature of spacetime, and in 

the center of the black hole, the curvature goes to infinity. That infamous singularity indicates a breakdown of 

physics. We modify both Schwarzschild metric and Kerr metric in the hyperbolic spacetime, where they possess 

nonsingularity. Hence Black Holes are nonsingular. 

Keywords: Nonsingular; Big Bang; Black Holes; Schwarzschild metric; Kerr metric. 

1. Introduction  

An initial-value problem: Given the state of a system at some moment in time, what will be the state at some 

later time? Future events can be understood as consequences of initial conditions plus the laws of physics. Could 

the dynamical nature of the spacetime background break down an initial-value formulation in general relativity? 
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In general relativity, a singularity is a place that objects or light rays can reach in a finite time where the 

curvature becomes infinite, or spacetime stops being a manifold. Singularities can be found in all cosmological 

solutions which don't have scalar field energy or a cosmological constant.Curvature is associated 

with gravity and hence curvature singularities correspond to "infinitely strong gravity." There are several 

possibilities of how such infinitely strong gravity can manifest itself. For instance, it could be that 

the energy density becomes infinitely large - this is called a "Ricci singularity", As an example of a Ricci 

singularity, the evolution of energy density in a universe described by a big bang model. As you go towards the 

left - corresponding to earlier and earlier instances of cosmic time zero - the density grows beyond all bounds 

and at cosmic time zero - at the big bang - it was infinitely high. A path [1] in spacetime is a continuous chain 

of events through space and time. While there are competing definitions of spacetime singularities, the most 

central, and widely accepted, criterion rests on the possibility that some spacetimes contain incomplete paths. 

Indeed, the rival definitions (in terms of missing points or curvature pathology) still make use of the notion of 

path incompleteness.While path incompleteness seems to capture an important aspect of the intuitive picture of 

singular structure, it completely ignores another seemingly integral aspect of it: curvature pathology. If there are 

incomplete paths in a spacetime, it seems that there should be a reason that the path cannot go farther. The most 

obvious candidate explanation of this sort is something going wrong with the dynamical structure of the 

spacetime, which is to say, with the curvature of the spacetime. This suggestion is bolstered by the fact that local 

measures of curvature do in fact blow up as one approaches the singularity of a standard black hole or the big 

bang singularity. However, there is one problem with this line of thought: no species of curvature pathology we 

know how to define is either necessary or sufficient for the existence of incomplete paths. At the heart of all of 

our conceptions of a spacetime singularity is the notion of some sort of failing: a path that disappears, points that 

are torn out, spacetime curvature that becomes pathological. However, perhaps the failing lies not in the 

spacetime of the actual world, but rather in the theoretical description of the spacetime. That is, perhaps we 

shouldn't think that general relativity is accurately describing the world when it posits singular structure! Indeed, 

in most scientific arenas, singular behavior is viewed as an indication that the theory being used is deficient. It is 

therefore common to claim that general relativity, in predicting that spacetime is singular, is predicting its own 

demise, and that classical descriptions of space and time break down at black hole singularities and at the Big 

Bang. Such a view seems to deny that singularities are real features of the actual world, and to assert that they 

are instead merely artifices of our current (flawed) physical theories. Many physicists and philosophers resist 

that singularities are real. Some argue that singularities are too repugnant to be real. Others argue that the 

singular behavior at the center of black holes and at the beginning of time points to the limit of the domain of 

applicability of general relativity. Note that the hyperbolic universe inflates exponentially produces an 

accelerated expansion of the universe without cosmological constant or scalar field. We have shown in [2] that 

general relativity doesn't break down at large cosmological scale since it predicts both the accelerated expansion 

of the universe (without invoking dark energy) and predicts the galaxy flat rotation curve   (without invoking 

dark matter). General relativity didn't break down at Planck scale as we had shown in [3].In this research we 

shall prove that the time evolution equation of the universe characteristics the hyperbolic universe and traces its 

manifold dynamical geometry shouldn`t break down even at the initial Big Bang moment. Our task is to remove 

the singularity from the mathematical model, represented by the General Relativity Theory and the hyperbolic 

http://en.wikipedia.org/wiki/General_relativity
http://en.wikipedia.org/wiki/Manifold
http://www.einstein-online.info/en/navMeta/dictionary/g/index.html#gravity
http://www.einstein-online.info/en/navMeta/dictionary/e/index.html#energy
http://www.einstein-online.info/en/navMeta/dictionary/d/index.html#density
http://www.einstein-online.info/en/navMeta/dictionary/b/index.html#big_bang
http://www.einstein-online.info/en/navMeta/dictionary/c/index.html#cosmic_time
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spacetime, underlying the Big Bang Theory and Black Holes. Our main point is to examine whether the state 

point:                                                  

   . . ., , 0, ,0B B B B B BR tr    

constitutes a singular point in the manifold? Is it really a missing point of the manifold? Does the local measure 

of curvature blow up as one approach this point? Does the density grow beyond all bounds, infinitely high as 

one approach this point? 

2. The Hyperbolic Spacetime 
 

    To derive the dynamical equation of cosmology, we should combine Einstein field equations 

1
8  

2
R g GTmn mnmn p   

with the isotropic homogeneous Robertson- Walker's line-element:      

2
2 2 2 2 2 2 2 2

2
( ) sin

1

dr
ds dt R t r d r d

kr
q q f

           

Where   
0 1 2 3, , ,x t x r x xq f     

The corresponding components of the metric tensor are: 

2
00 11 1

00 11 2

2 2 22 1
22

2 1
33 22 33

1 , ( )
1

( )

sin ( )

R
g g g g

kr

g R r g

g g gq







   


 

 
 

Now according to the affine connection: 

1

2

g gg
g

x x x

sm mnl ls an
mn m n s

              

We compute: 
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 

 

3 0
03 11 2

0 2 0 2 2
22 33

1 1 2 1 2 1
11 22 33 222

2 3 2 3
12 13 33 23

,
1

, sin

, (1 ), sin .
1

1 1
, sin 2 , cot

2

R RR

R kr

RRr RRr

kr
r kr

kr

r

q

q

q q

   


   

       


      

 

All other components of Γ either vanish or follow from the symmetry 

l l
nm mn   

A dot denotes differentiation with respect to time. Latin indices  run over the values 1, 2 and 3. Note the Ricci 

tensor: 

R
x x

l l
mn ml s l s l

mn mn sl ml snl n

 
     

 
 

We calculate the nonzero components of the Ricci tensor, the non-vanishing components of which are easily 

found to be: 

 



2

2

0
0

1
( 2 2 )

3

i i
j jR RR R k

R

R
R

R

d  


 

 

 

 

2

11 2

2 2
22

2 2 2
33

2 2

1

( 2 2 )

( 2 2 )sin

RR R k
R

kr

R r RR R k

R r RR R k q

 



  

  
 

And the Ricci scalar is then 
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 

00
00

11 22 33
11 22 33

2

2
6

g R g R

g R g R g R

R R k

R R R

mn
mn 

  

                

 

   Turning our attention now to the cosmological fluid, we assume that it is described by an ideal fluid. The fluid 

will be at rest in co-moving coordinates. The four-velocity is then    1,0,0,0Um 
.               .

           

According to the energy momentum tensor                                                 

( ) , 1T pg p U U g U Um n
mn mn m n mnr     

Where p is the pressure and ρ is the energy density of the cosmological fluid. The energy-momentum tensor 

becomes:                                            

 

11

22

33

0 0 0

0 0 0

0 0 0

0 0 0

, , ,

3

g p
T

g p

g p

T diag p p p

T T p

mn

m
n

m
m

r

r

r

             

 

  
 

Consider the zero component of the conservation of energy equation: 

 

 






0

0 0 0

0

0

3

3 0

T

T T T

R
p

R

R
p

R

m
m

m m l l m
m ml m l

r r

r r

 

  

  

  

 

Rewrite Einstein field equations  
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1
8  

2
R g GTmn mnmn p   

The   00mn    equation is 

00 00 00

1
8  

2
1

8  
2

R g GT

R g GT

mn mn mnp

p

 

 
 

  



2

2

2 2

1
3 6 8

2

8

3

R R R k
G

R R R R

R k G R

p r

p
r

                  

 

 

There is only one distinct equation from   ijmn   , due to isotropy  

  

 

 

 

11 11 11

2 2 2 2

2

2 2

2

2 2 2 2 2 2

2 2

1
8  

2
1

8  
2

1
2 2

2

6 8

2 8

2 8

R g GT

R g GT

r RR R k R r

R R k
GpR r

R R R

RRr R r r k GpR r

RR R k GpR

mn mn mnp

p

p

p

p

 

 

   

               

   

   

 

We get the following two dynamical equations of cosmology (Friedmann`s equations):                                                                            

. 



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2016) Volume 29, No  1, pp 64-89 

70 
 



 

2 2

2

(8 /3) (1)

2 8 (2)

R k R

RR R k p

p r

p

 

  
 

Where p is the pressure and ρ is the energy density of the cosmological fluid and  k  is the curvature. Now we 

shall solve the differential equation (1) by separating the variables. We assume the Big Bang Model as an initial 

condition (i.e. R=0 when t=0).                                                         .  







2 2

2 2

28
3

28
3

2 83
8 3

(8 /3)

(8 /3)

( )

/ ( )

/ k

R k R

R R k

R R k

dR R k dt

dR R dt

pr

pr

pr
pr

p r

p r

 

 

 

 

 

 

Differential equation (1) allows one to deal with ρj as a parameter  since  it's  not an explicit  function of  t , so  

Eq. (1) can be solved for  any chosen fixed value, ρj from the stream of the various values of  the parameter  ρ :                                                              

1 2, ,..., ,..., ,...,planck j nowr r r r r  

By means of the mean value theorem, we assume approximately that ρj evolves to the fixed physical value ρj 

exactly simultaneously associated to the state (tj
 , Rj ) since ρj is not defined and not continuous at the point of 

singularity t = 0, put                                 

  jc  :0<c tr r 
 

2
j j

0 0

/ 3 /8 8 /3
R t

dr r k dpr pr t    

 1 1
j jcosh ( / 3 /8 ) cosh 0 8 /3 3R k tpr pr                                              

Now we use complex analysis as follows: 
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

1 2

1 1

1 1

1

1

cosh ln( 1)

cosh 0 ln 1 ln 1, ,cosh 0 ln 1

cosh 0 (1 2)ln( 1), ,cosh 0 ln( 1) (1 2)ln( 1)

1

ln( 1)

cosh 0 2 ,

cosh 0 3 2

i

x x x

or

or

e

i

i or

i

p

p

p

p



 

 





  

       

     



  

 



 

Substitute the first value 
1cosh 0 2ip  in equation (3), we get: 

j j

j j j

j j j

j j

( ) 3 /8 .cosh( 8 /3 /2)

( ) 3 /8 .(cosh 8 /3.cosh( /2) sinh( /2).sinh 8 /3)

( ) 3 /8 .(cosh 8 /3.cos( /2) sin( /2).sinh 8 /3)

( ) 3 /8 .sinh 8 /3

R t k t i

R t k t i i t

R t k t i t

R t i k t

pr pr p

pr pr p p pr

pr pr p p pr

pr pr

 

 

 



 

Since the function  tr is always positive, so is any chosen fixed value jr .  A simple analysis shows that the 

R(t) scale solution represented in the last equation  is  complex  if    k  is  positive ,  negative  if  k  is  negative  

and vanishes  if  k  is  zero. So the first value  
1cosh 0 2ip  is rejected. Substitute the other value  

1cosh 0 3 2ip  in equation (3) , we  get:      

j j

j j j

j j j

j j

( ) 3 /8 .cosh( 8 /3 3 /2)

( ) 3 /8 (cosh 8 /3.cosh(3 /2) sinh(3 /2)sinh 8 /3)

( ) 3 /8 (cosh 8 /3.cos(3 /2) sin(3 /2)sinh 8 /3)

( ) 3 /8 sinh 8 /3

R t k t i

R t k t i i t

R t k t i t

R t i k t

pr pr p

pr pr p p pr

pr pr p p pr

pr pr

 

 

 



 

The R(t) scale solution in the last equation is real, positive and non-vanishing if and only if k is negative. Since k 

is normalized, substitute k=-1, in the last equation, we get:                                                 .                                  
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 

j j

j j

j j

j j

( ) 3 /8 sinh 8 /3

( ) 3/8 sinh 8 /3

( ) . 3/8 sinh 8 /3

( ) 3/8 sinh 8 /3 4

R t i k t

R t i t

R t i i t

R t t

pr pr

pr pr

pr pr

pr pr



 





                                          

Which mean that  ( )R t   either vanishes if k = 0 or complex  if k =1 .   Thus, the curvature k must be negative 

and consequently the universe must be hyperbolic and open. Note that the solution represented by Eq. (4) is 

evaluated only for the values simultaneously associated with jr  , namely  ,j jR t  

 3/8 sinh 8 /3 5j j j jR tpr pr  

Our hyperbolic universe is a manifold weaved by the time evolution equation of the universe since the Big Bang                                               

3/8 sinh 8 /3j j j jR tpr pr      

Which reflects the structure of the manifold whether it possesses a singular point or not?                                                    

3. Verification of the time evolution equation of the universe  

(i) Planck scale[4] 

 It is well known that the time evolution equation of the universe successfully predicts the Planck length at 

micro-cosmos scale as well as it predicts the current observed large structure at macro-cosmos scale.                                                                                   

.  

1 sec = 2.997×1010cm 

Planck length= 
3 33/ 1.6 10pL Gh c cm    

Planck time =
5 44/ / 5.4 10p pt L c Gh c s     

Planck density= =3.8789×1062cm 

Substitute the above data in the time evolution equation of the universe at Planck scale 
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3 /8 sinh 8 /3p p p pR tpr pr  

62 62 44 103/8 3.8789 10 sinh 8 3.8789 10 /3 5.4 10 2.997 10pR p p            

0.175423 × 10-31 × sinh0.092255888 

= 0.175423×10-31 × 0.092386811 

= 1.62 × 10-33 cm = Lp = Planck length. Hence 

33 /8 sinh 8 /3 Gh
p p p p p c
R t Lpr pr    

(ii) current scale  

The energy density now nowr =10-31 g/cm3 =7.425×10-60cm-2 

The age of the Universe (approximately) 9 28=13.7×10  yr=1.2974585 10nowt cm  

Substitute the above data in the hyperbolic time evolution equation of the Universe, yields 

3/8 sinh 8 /3

3/8 sinh 8 /3

j j j j

now now now now

R t

R t

pr pr

pr pr

    
    

 

 60

28 60

29

28

3/ 8 7.425 10

sinh 1.2974585 10 8 7.425 10 /3

1.6 10 sinh0.08287

1.3 10

now

now

now

R

R

R cm

p

p





   

      
  

 

 

4. Nonsingular Big Bang                                                                         . 

If we assume the density jr  and the time jt runs independently from each other, we may evaluate the limit at 

the Big Bang:         

     , , ,0j j BB BBt tr r    
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   

   
 

       
 

. .

. .

. .

. . . .

. . . .
, ,0

. .

. .
, ,0

. .

. .

. .
0

.

3/8 sinh 8 /3

lim 3/8 sinh 8 /3

sinh 8 /3
lim

8 /3

sinh 8 /3
lim lim

8

B B B B

B B B B

B B B B

B B B B B B B B

B B B B B B B B
t

B B B B

B B B B
t

B B B B

B B B B

B B B B
t

B B

R t

R t

t
R t

t

t
R t

t

r

r

r

pr pr

pr pr

pr

pr

pr

p

 

 

  

    
    

 
  

 
  

. /3B Br

 
 
 
 
 

 

   
 

       
 

   
 

.

. .

.

.

. .

. .
0

. .

.
0

lim 0 1 0

sinh 8 /3
lim lim

8 /3

lim

B B

B B B B

B B

B B

B B B B

B B B B
t

B B B B

B B
t

R

t
R t

t

R

r

r

pr

pr

 

  



  

  
     
 
 

  

 

The limit does not exist since it is not unique. Let us treat the limit from a different point of view, namely the 

dependent evolution for both the density jr  and the time jt .                                                                            

Now we are interesting to explore how both the density jr  and the time jt   are dependently evolved? 

Consider the factor j jt r  appears in the time evolution equation of the Universe. Calculate the value of 

j jt r  at the given two well known sets of data, namely the Planck scale and the current scale:                                                                                                  

44 10 62

28 60

5.4 10 2.997 10 3.8789 10 0.032

1.2974585 10 7.425 10 0.034

p p

now now

t

t

r

r





     

    
 

   The two values are approximately equal no matter how large the difference between the two states, which is of 

order
6110 . Hence it is very reasonable that j jt r  remains approximately constant through the whole 

evolution of the cosmos, even at the Big Bang. The infinitely large density is struggled by the infinitesimally 

small time and vice versa, in our mathematical model. This process prevents the scale factor from blows up by 
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the infinitely large density. Since the data at Planck scale is accurate, we assume 0.032j jt r  . Hence,
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     
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     
 
 
    

 

The limit exists. The manifold consists of its limiting point and hence it is a complete space.  Thus there exists a 

continuous path governs the time evolution of the Universe since the Big Bang. Hence the Big Bang is 

nonsingular.                                                                                                   

5. Black Holes 

The black hole is an object whose escape velocity exceeds the speed of light c. The idea goes back to natural 

scientist and Anglican rector John Michell, who in 1783 observed that an object with the density of the Sun but 

500 times its radius would be a black hole. The nonrelativistic Newtonian equations he used give the correct 

relativistic formula for the black hole radius. His argument can be summarized beginning with the formula for 

the energy E of a particle of mass m moving in the gravitational potential of a spherical mass M 

21

2

GmM
E mv

r
   

where v is velocity, r is radial distance, and G is Newton constant. A particle just barely escapes to infinity if 

E=0; if it has an initial velocity v = c, the condition of marginal escape determines an initial radius R(M) = 

2GM/c2, now called the Schwarzschild radius for mass M. For an Earth- sized mass, R is approximately 1 cm; 

for a solar mass, it is about 3 km31. Our current classical understanding of gravity is via general relativity and 

Einstein’s equations. 1916, mere weeks after their final formulation, Karl Schwarzschild presented a solution 

giving the gravitational field of a spherically symmetric mass. That Schwarzschild solution is the simplest 

possible black hole. In Einstein’s theory, gravity is described through the curvature of spacetime, and in the 

center of the black hole, the curvature goes to infinity. That infamous singularity indicates a breakdown of 

physics, but one far removed from scrutiny. In particular, since in classical physics nothing escapes the region 

within the so-called event horizon located at R, the singularity has no effect outside the black hole. The need for 

physics to smooth out the singularity is nonetheless one of the motivators for pursuing a quantum theory of 

gravity. Many feel that a correct quantum description will resolve such singularities. One of the most 

remarkable features of relativistic black holes is that they are purely gravitational entities. A pure black hole 

spacetime contains no matter whatsoever. It is a “vacuum” solution to the Einstein field equations, which just 

means that it is a solution of Einstein's gravitational field equations in which the matter density is everywhere 

zero. (Of course, one can also consider a black hole with matter present.) In pre-relativistic physics we think of 
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gravity as a force produced by the mass contained in some matter. In the context of general relativity, however, 

we do away with gravitational force, and instead postulate a curved spacetime geometry that produces all the 

effects we standardly attribute to gravity. Thus a black hole is not a “thing” in spacetime; it is instead a feature 

of spacetime itself. 

6. The Schwarzschild metric 

In General Relativity, the unique spherically symmetric vacuum solution is the Schwarzschild metric. In 

spherical coordinates , , ,t r q f , the metric is given by:        

1

2 2 2 2 2

2 2 2 2

2 2
1 1

sin

GM GM
ds dt dr r d

r r

where

d d dq q f

                 

  

 

We are interested in the solution outside a spherical body, Einstein`s equation in vacuum   

0Rmn   

The Minkowski metric (flat spacetime metric) in polar coordinates 

2 2 2 2 2ds dt dr r d     

The Schwarzschild metric in the spherically symmetric 
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Relabeling 

     
2

2 2 21 r r r

r r

d
r e e
dr

b l bl 




     
 

We get 

   2 22 2 2 2 2r rds e dt e dr r da b     

Let us now use Einstein`s equation to solve for the functions  

   r and ra b  

The Christoffel symbols are given by  
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From these we get the following components of the Riemann tensor [5] 
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Taking the contraction yields the Ricci tensor: 
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We would like to set the Ricci tensor equal to zero 
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We can set this constant equal to zero by rescaling our time coordinate 
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This is equivalent to  
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sR is called Schwarzschild radius. In the weak field limit its found that 
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7. Schwarzschild metric in the hyperbolic spacetime 

We modify the Schwarzschild metric in the hyperbolic spacetime. The required modified Schwarzschild 

spherically symmetric metric will be,                                                          

     
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For which the Schwarzschild metric is just an approximation 
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The Ricci tensor  
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We have now the complete solution  
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For radial motion, 
2 0d  .The modified Schwarzschild metric in the hyperbolic spacetime, will be 

 
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d e dt e dr r d

d k r dt e dr r d
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t m
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8. Equation of motion in the hyperbolic spacetime 

   Assuming flat space and circular orbit, the Virial theorem 2M V R G fails to account for the observed 

flat rotation curve of the Galaxy. To develop an equation describes the speed up motion in the hyperbolic 

spacetime and predicts the flat rotation curve, we seek for an equation whose limit is the Newtonian hyperbolic 

trajectory – in flat space- as Vallado theorem:  2 1V r am  ,where  a is the negative semi-major 

axis of orbit's hyperbola, with constant excess velocity V am   . 

To do this, I will follow the following strategy  
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3- I guess the required equation , that fits the data, should be  
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4- The final step in the mathematical problem solving method is to prove the conjecture  
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To find such an equation of the radial motion in the galaxy`s hyperbolic space-time, we proceed as follows, The 

free fall from rest of a star (of mass m and energy E) far from the center possesses [6]                                 . 
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http://en.wikipedia.org/wiki/Semi-major_axis
http://en.wikipedia.org/wiki/Semi-major_axis
http://en.wikipedia.org/wiki/Orbit
http://en.wikipedia.org/wiki/Hyperbola
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To our purpose for the hyperbolic space- time, the velocity far away from  the center would be

V am   and consequently  1k am 
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Example 

A typical galaxy of ordinary enclosed mass (Milky Way or Andromeda) [7] 
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The curve of the above equation is plot by visual mathematics program 

 

FIG. 1. The curve describes the motion of a star in the Milky way (or Andromeda) galaxy. The vertical axis 

represents the velocity, while the horizontal axis represents the distance from the center of the galaxy. 

A typical cluster of galaxies of ordinary enclosed mass  
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The curve of 

the above equation is plot by visual mathematics program 

 

FIG. 2. The curve describes the motion of a cluster of galaxies. The vertical axis represents the velocity, while 

the horizontal axis represents the distance from the center of the cluster. 

The dark matter halo is nothing but instead of it we have a cell of hyperbolic negative curvature. Virial theorem 

 2M V R G  does no longer hold for Non-Euclidian space. We developed the equation of motion in the 

hyperbolic space-time :  2 1rV e r am m  , that describes the speed up motion 

in the hyperbolic space-time and predicts the flat curve. Farther away from the center the exponential factor 

1 re  drops to one. Galaxies furthest away from the center are moving fastest until they reached large distance 

from the center the space-time turns flat and they possessed hyperbolic trajectory:  2 1V r am   , 

according to Vallado [8] theorem, with constant speed called hyperbolic excess velocity: V am     

that can explain the galaxy flat rotation curve problem, a is the negative semi-major axis of orbit's hyperbola. 

 9. Nonsingular Schwarzschild metric in the hyperbolic spacetime 

The modified Schwarzschild metric in the hyperbolic spacetime for radial null trajectory is 

http://en.wikipedia.org/wiki/Semi-major_axis
http://en.wikipedia.org/wiki/Orbit
http://en.wikipedia.org/wiki/Hyperbola
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Note that Schwarzschild metric in the flat spacetime possesses singularity at 0r , since 
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10. Nonsingular Kerr Black Hole in the hyperbolic spacetime 

Kerr metric of a rotating black hole is given by [9]. 
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The singularity arises when 
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Kerr metric reduces to Schwarzschild metric when 0a    . 

By analogy we can rewrite Kerr metric in the hyperbolic spacetime that can be reduced to the modified 

Schwarzschild metric in the hyperbolic spacetime, as follows:                                         
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The Hyperbolic spacetime Kerr metric can be rewritten as 
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whichreduces to our modified Schwarzschild metric in the Hyperbolic spacetime when 0a  
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The Kerr metric in the hyperbolic spacetime for radial null trajectory doesn`t possess singularity at 0r , 

since 
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The limit is taken by L`Hospital`s rule where θ = π/2. 

11. Conclusion 

The singularities are not real features of the actual world, they are instead merely artifices of our current 

(flawed) physical theories based on flat spacetime.The failing lies not in the spacetime of the actual world, but 

rather in the theoretical description of the flat spacetime. Penrose [10]–Hawking [11] singularity theorems pre-

assume asymptote flat spacetime. This false  flat spacetime paradigm produces such singularities at the Big 

Bang and the center of the Black Holes. The Universe is globally hyperbolic as we did prove mathematically. 

We prove that the hyperbolic time evolution equation of the universe ( ) 3/8 sinh 8 /3j jR t tpr pr  

,traces its manifold ,didn`t break down at the initial Big Bang moment. General Relativity possesses nonsingular 

Big Bang Hyperbolic Universe. We modify both Schwarzschild metric and Kerr metric in the hyperbolic 

spacetime. Neither Schwarzschild Black Holes nor Kerr Black Holes possess singularity in the hyperbolic 

spacetime. 
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