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Abstract 

We discuss four types of convergence of sequence of functions in a Banach space. The types of convergence 

considered include pointwise, uniform, strong and weak convergence. It is shown that uniform convergence 

implies the pointwise convergence and the strong Convergence implied the weak convergence. We also show 

how basic analysis concepts are used in proving advanced concepts and also provide an alternative description 

of the exponential function  푒 . 

1. Introduction 

First, we will analyze convergence of sequences of real numbers and the convergence of series in particular 

uniform convergence of the series. 푀 − 푡푒푠푡 is used to prove uniform convergence of sequence of functions 

and end SECTION ONE by defining strong and weak convergence. 

SECTION TWO is where we treat uniform convergence of series with integration and differentiation. An 

alternate description of the exponential function  푒  is shown and it is used to prove that    1 +     converges 

uniformly to  푒 . 

Keywords: Strong; weak; uniform; pointwise convergence. 
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Finally in SECTION THREE we compare two different results: uniform convergence imply pointwise 

convergence but the reverse is not  true and also strong convergence imply weak convergence although the 

reverse is not generally true except  in the finite dimensional space. 

Section One: 

 Preliminaries 

Definition 1.1: A sequence 푎  of real numbers is said to be convergent if there exists a real number 푎 satisfying 

the condition: to every real number 휀 there corresponds a positive integer 푝 such that|푎 − 푎| < 휀 for all 푛 ≥ 푝. 

Under such circumstances we write 푎 → 푎as  푛 → ∞. 

Definition 1.2: If 푎  is a sequence and 푛 is a strictly increasing sequence  ( 푛 < 푛 < 푛 , … )  of positive 

integers then 푎  is called a subsequence of 푎 . 

Definition 1.3: If 푎  is a convergent sequence of real numbers and lim → 푎 = 푎then 푎 → 푎 as 푗 → ∞ for 

every subsequence 푎  of  푎  . 

Remark: Given a positive real number 휀 choose a positive integer 푝 such that |푎 − 푎| < 휀 for all 푛 ≥ 푝. Then 

푎 − 푎 < 휀 for all 푗 ≥ 푝. 

Let 푎  be a complex number for every nonnegative integer 푛 . Then ∑ 푎  is called a series.  For every 

positive integer 푘, let 푆 = ∑ 푎 = 푎 + 푎 + ⋯+ 푎 . Then  푆  is called the kth partial sum of  ∑ 푎  .  

The series ∑ 푎  is said to be convergent  if the sequence  푆  is convergent. When the sequence  푆  is 

convergent, let 퐴 = lim → 푆  . Then A is called the sum of  ∑ 푎 and  we usually write ∑ 푎 = 퐴.  

The series ∑ 푎  is said to be divergent if the sequence 푆  is not convergent. The series ∑ 푎  is said to be 

absolutely convergent if ∑ |푎 | is convergent. 

Theorem 1.1:These two statements are equivalent: 

(a)       ∑ 푎  is convergent 

(b)      Cauchy criterion: To every positive real number휀 there corresponds a positive integer q such that 

|∑ 푎 | < 휀 for every pair of integers 푚,푘 satisfying 푘 ≥ 푚 ≥ 푞. 

Remark: Let 푆  be  kth partial sum of  ∑ 푎  for every positive integer k. If (a) is true then  푆  is convergent 

and so  푆  is a Cauchy sequence of complex numbers. Given a positive real number 휀 choose a positive integer p 

such that |푆 − 푆 | < 휀  for every 푗 ≥ 푝  and ≥ 푝  . Let 푞 = 푝 + 1  then      |∑ 푎 | = |푆 − 푆 | < 휀   for 

every pair of integers m,k satisfying  푘 ≥ 푚 ≥ 푞.       That proves (푎) ⟹ (푏) 
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Similarly, if (b) is true then 푆  is a Cauchy sequence of complex numbers and so 푆  is convergent . That is 

equivalent to the assertion that ∑ 푎  is convergent .Thus  (푏) ⟹ (푎). 

Corollary 1.1: If   ∑ 푎  is absolutely convergent then it is convergent. 

Remark: Given a positive real number 휀 choose a positive integer 푞 such that ∑ |푎 | < 휀 for every pair of 

integers 푚,푘 satisfying  푘 ≥ 푚 ≥ 푞 . Then |∑ 푎 | < 휀   for every pair of integers  푚, 푘  satisfying               

 푘 ≥ 푚 ≥ 푞. Thus this result follows from Cauchy criterion. 

Corollary 1.2: If ∑ 푎  is convergent then 푎 → 0  as  푛 → ∞. 

Remark: Given a positive real number 휀  choose a positive integer 푞  such that  |∑ 푎 | < 휀 .Then 

|∑ 푎 | < 휀  for every pair of integers 푚, 푘 satisfying  푘 ≥ 푚 ≥ 푞. Then in particular |푎 | < 휀 for all 푛 ≥ 푞. 

Thus 푎 → 0  as  푛 → ∞.  

Definition 1.4: Let 푆 be a nonempty set and 푎 = 푎 (푥) a sequence of real-valued functions on 푆. For every 

positive integer 푘 let 푠 = ∑ 푎 (푥) at every point 푥 ∈ 푆. We say that ∑ 푎 (푥) is uniformly convergent on 

푆 if the sequence of functions 푠  is uniformly convergent on 푆. 

The Cauchy criterion:∑ 푎 (푥) is uniformly convergent on 푆 if and only if to every positive real number 휀 

there corresponds a positive integer 푝 such that |∑ 푎 (푥)| < 휀 for all 푥 ∈ 푆 whenever  푘 ≥ 푚 ≥ 푝. 

Theorem 1.2(Weierstrass Test): Let 휏  be a sequence of nonnegative real numbers such that ∑ 휏  is 

convergent. If 푆  is a nonempty set and  푎 = 푎 (푥)  a sequence of real-valued functions on 푆  such that 

|푎 (푥)| ≤ 휏  for all 푥 ∈ 푆 and 푛 ≥ 0 then ∑ 푎 (푥) is uniformly convergent on 푆. 

Remark: Given a positive real number 휀  choose a positive integer 푝  such that  ∑ 휏 < 휀   whenever 

푘 ≥ 푚 ≥ 푝. Then  |∑ 푎 (푥)| ≤ ∑ |푎 (푥) | ≤ ∑ 휏 < 휀whenever  푘 ≥ 푚 ≥ 푝. Hence ∑ 푎 (푥) is 

uniformly convergent on 푆 by the Cauchy criterion. 

Definition 1.5: A series ∑ 푥  converges in a normed space (푋, ||, ||)  if the sequence of partial sums 

converges i.e. there exists 푥 ∈ 푋  such that ||푥 + 푥 + ⋯+ 푥 − 푥|| → 0  as   푛 → ∞.  

In that case we write ∑ 푥 = 푥. If ∑ ||푥 || < ∞ then the series is called absolutely convergent [6]. 

Theorem 1.3: A normed space is complete if and only if every absolutely convergent series converges. 

Remark: for a prove of this theorem refer to [6]. 

Hahn Banach Theorem 1.4: Let ( 푋, ||, ||) be a normed space and 푥  a nonzero element of X such that there 

exists a bounded linear functional 푓 on X such that 푓(푥 ) = ||푥 ||and ∥ 푓 ∥= 1. 
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Corollary 1.3: For every x in a normed space  ( 푋, ||, ||) we have ∥ 푥 ∥= Sup ,
| ( )|
∥ ∥

 . Hence if 푥  is such 

that 푓(푥 ) = 0 for all 푓 ∈ 푋  then 푥 = 0. 

Remarks: Sup ,
| ( )|
∥ ∥

≥
( )

∥ ∥
= 푓 =∥ 푥 ∥,     Sup ,

| |
∥ ∥

 ≥∥ 푥 ∥ ⋯ (푖) 

But |푓(푥)| ≤∥ 푓 ∥∥ 푥 ∥ ⟹ Sup ,
| |
∥ ∥

≤ ∥ 푥 ∥ ⋯ (푖푖)   Combining (i) and (ii) we have             

∥ 푥 ∥= Sup ,
| ( )|
∥ ∥

  which completes the proof. 

Riesz’s Representation Theorem 1.5: Every bounded linear functional 푓  on a Hilbert space H can be 

represented in terms of inner product namely 푓(푥) =< 푥, 푧 > where 푧 depends on 푓 and 푓 has norm∥ 푧 ∥=∥ 푓 ∥

. 

Remark:  For a proof of Theorem 1.5 refer to [2]. 

Theorem 1.6: In a Hilbert space a sequence 푥  converges weakly 푥 →푥  if and only if                                  

< 푥 ,푥 >→< 푥, 푧 > for all 푧 in the space as 푛 → ∞. Similarly, < 푥 − 푥, 푧 >→ 0 as  푛 → ∞ for all 푧  in the 

space. This follows immediately from the Riesz’s representation theorem. 

Theorem 1.7(Pythagoras): If ( 푉, <. >)  is an inner product space, 푥,푦 ∈ 푉  and < 푥,푦 > = 0  then                     

∥ 푥 + 푦 ∥ =∥ 푥 − 푦 ∥ =∥ 푥 ∥ +∥ 푦 ∥ . 

Lemma 1.1: If A is an orthonormal set in an inner product space 푉, 푓 ∈ 푉 and 푎 , 푎 , … , 푎  are finitely many 

elements of 퐴, then ∑ | < 푓, 푎 > | ≤∥ 푓 ∥ . 

Remark:                  let 푥 = ∑ < 푓, 푎 > 푎 , 푦 = 푓 − 푥 . 

Then      < 푥, 푦 >  =  < ∑ < 푓,푎 > 푎 , 푓 − ∑ < 푓, 푎 > 푎 > 

                                      = < 푓, 푎 >< 푎 ,푓 > − < 푓, 푎 >< 푓,푎 > 

                        = | < 푓, 푎 > | − | < 푓, 푎 > | = 0 

Hence ∑ | < 푓, 푎 > | =∥ 푥 ∥≤∥ 푥 ∥ +∥ 푦 ∥ =∥ 푓 ∥  (by Pythagoras theorem). 

Theorem 1.7(Bessel inequality): If {푎 |푛 = 1,2, … } is a denumerable set in an inner product space  푉 and 

푓 ∈ 푉then  ∑ | < 푓,푎 > | ≤∥ 푓 ∥ .  



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2017) Volume 32, No  2, pp 43-53 

 

47 
 

Remark: The proof follows from the lemma above by letting 푘 → ∞. 

Definition1.6 (Pointwise Convergence): Let 푆  be a nonempty set. Suppose 푓  is sequence of real-valued 

functions on 푋. Given 푎 ∈ 푆 we say that 푓 (푎) is convergent if there exists a real-valued function 푓 such that 

these conditions are satisfied: to every positive real number 휀 there corresponds a positive integer 푡 such that 

|푓 (푎) − 푓(푎)| < 휀  for all 푛 ≥ 푡. 

Definition 1.7 (Uniform Convergence): Let 푋 be a nonempty set and 푓  a sequence of functions on 푋. We say 

that  푓  is uniformly convergent on 푋 if there exists a function 푓 on 푋 satisfying the condition: to every positive 

real number 휀 there corresponds a positive integer 푝 such that  |푓 (푥) −푓(푥)| < 휀  for all 푥 ∈ 푋 and for all 

푛 ≥ 푝. 

Remark: According to the above definition we have to try to get 푝, independent of 푥, which is not easy in 

practice. This method can be replaced by an easy method given in the following theorem. 

Theorem 1.8 [ 푴풏 -Test]:Let 푓  be a sequence of functions defined on an interval 푆  such that            

lim → 푓 = 푓(푥) for all 푥 ∈ [훼,훽]  and also let 푀 = 푠푢푝{|푓 (푥) −푓(푥)|}  for all 푥 ∈ [훼,훽] . Then 푓   

converges uniformly on [훼,훽] if and only if 푀 → 0  as   푛 → ∞. 

Example 1.1: Prove that the sequence 푓 =
( )

 converges uniformly on any closed interval 푆. 

Remark:  the Pointwise limit 푓(푥) = lim → 푓 (푥) = 0, for all 푥 ∈ 푆. 

Therefore |푓 (푥) − 푓(푥)| = | ( ) − 0 | = | ( )  | , if we let 푦 = ( )  then = ( )  .                

Now for maximum and minimum value of 푦 , we have = 0  which implies that 푥 =
√
∈ 푆 .                      

= ( )
( ) , substituting 푥 =

√
 we get  = − √ < 0.  This shows that 푦 has maximum 

when 푥 =
√

  with value 푦 =
√

.  

Therefore 푀 = 푠푢푝{|푓 (푥) − 푓(푥)|} = 푠푢푝{|푦|} =  
√

 for all ∈ [훼,훽]  . Since  푀 → 0  as 푛 → ∞  the 

sequence  푓 =
( )

 converges uniformly on any closed interval. 

Definition 1.8 ( Weak convergence): A sequence 푥  in a normed space (푋, ∥, ∥)  is said to be weakly 

convergent if there is an 푥 ∈ 푋 such that for every 푓 ∈ 푋 , the dual space of X, lim → 푓(푥 ) = 푓(푥) and it is 

denoted by  푥 →푥  and 푥 is called weak limit of the sequence 푥 . 

Remark: Sequence  푥  is the points in 푋so a vector quantity and 푓 is a bounded linear functional defined on 푋. 

When we say  푥  converges to 푥 means the corresponding sequence of scalars. Scalars are obtained by taking 

the images of  푥  under  푓. So 푓(푥 ) is a sequence of scalars. When such a sequence converges then we say it is 

weakly convergent.  
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Lemma 1.2: Let  푥  be a weakly convergent sequence in a normed space  (푋, ∥, ∥) and 푥 →푥  then : 

(a) the weak limit 푥 of 푥  is unique, 

(b) every subsequence of 푥  converges weakly to 푥. 

Remark: Given  푥 →푥 means 푓(푥 ) → 푓(푥) for all 푓 ∈ 푋 . 

Suppose that the weak limit is not unique, then there exist a 푦  such that 푥 →푦  i.e. 푓(푥 ) → 푓(푦) for all   

푓 ∈ 푋 .Then  푓(푥) −푓(푦) = 푓(푥 − 푦)  since 푓  is linear. That implies 푓(푥) − 푓(푦) = 0  because 푓(푥 )  is a 

sequence of scalars and such sequence has its limit being unique. Therefore 푓(푥) = 푓(푦). Now that also 

implies푓(푥 − 푦) = 0 for all 푓 ∈ 푋 . Hence 푥 − 푦 = 0 by the corollary of the Hahn Banach Theorem. 

(b). Given 푥 →푥 then 푓(푥 ) → 푓(푥)  for all 푓 ∈ 푋 . But 푓(푥 ) is a convergent sequence of scalars and   so all 

of its subsequences will converge to the same limit point. 

Definition 1.9 (Strong convergence): A sequence 푥  in a normed space  (푋, ∥, ∥) is strongly convergent if there 

exists an 푥 ∈ 푋 such that lim → ∥ 푥 − 푥 ∥= 0 or 푥
∥,∥
→푥     as   푛 → ∞. 

Section Two: uniform convergence with integration and differentiation 

Theorem 2.1: Let 푓  be a real-valued function on a closed interval[푎, 푏]  and 푓 a sequence of real-valued 

functions on [푎, 푏] such that 푓 → 푓 uniformly as 푛 → ∞. If 푓  is integrable over [푎,푏] in the Riemann sense for 

all 푛 ≥ 푡 then 푓 is integrable over [푎, 푏] in the Riemann sense and ∫ 푓 (푥) →∫ 푓(푥)푑푥   as   푛 → ∞.  

Example 2.1: Euler number: Historically Euler’s constant 훾  is defined as 훾 = lim → ∑ − 퐼푛 푛 .        

We proceed to use uniform convergence to give in depth description of  훾. 
( )

≤    for all 푥 ∈ [0,1] and for 

every positive integer 푘. Also ∑  is convergent. Hence ∑
( )

  is uniformly convergent on [0,1] by 

Weierstrass test. It follows that ∫ ∑
( )

→∫ ∑
( )

   as  푛 → ∞. On the other hand 

∫ ∑
( )

푑푥 = ∫ ∑ − 푑푥 = ∑ − 퐼푛 (푛 + 1) for every positive integer 푛. 

 Hence ∑ − 퐼푛 (푛 + 1)  is convergent and ∑ − 퐼푛 (푛 + 1) → ∫ ∑
( )

푑푥  as 푛 → ∞ . Finally 

lim → ∑ − 퐼푛 푛 = lim → ∑ − 퐼푛 (푛 + 1) =∫ ∑
( )

푑푥  because 퐼푛 → 0 as  푛 → ∞. 

Theorem2.2: Let 퐺 be an open set in the Euclidean line 푅 such that [푎, 푏] ⊂ 퐺 and 퐹  a sequence of class 퐶  

real-valued functions on 퐺. If 퐹 and 푓 are real-valued functions on [푎,푏] such that 퐹 (푥) → 퐹(푥)  as  푛 → ∞ at 

all points 푥 ∈ [푎,푏] and 퐹 → 푓 uniformly on [푎,푏] as 푛 → ∞, then 퐹 is differentiable at all points of ]푎, 푏[ and 

the derivative 퐹 (푥) = 푓(푥) for all 푥 ∈]푎, 푏[.  
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Example 2.2: Suppose that 0 < 푟 ≤ ∞ and 푟 is the radius of convergence of the power series ∑ 푎 푥 . Then 

푟  is the radius of convergence of ∑ 푛푎 푥 . If 퐹(푥) = ∑ 푎 푥  for all 푥 ∈]− 푟, 푟[  then 퐹  is 

differentiable at all points of   ]− 푟, 푟[  and   퐹 (푥) = ∑ 푛푎 푥   for all   푥 ∈]− 푟, 푟[. 

Remark: Given푥 ∈]− 푟, 푟[ choose real numbers 푎, 푏 such that 푎 < 푏,   [푎, 푏] ⊂]− 푟, 푟[  and   푥 ∈]푎, 푏[. Let 

푠 (푥) = ∑ 푎 푥    for all  푥 ∈]− 푟, 푟[  and every positive integer 푘. Then 푠  is differentiable at all points of 

푅 and the derivative 푠 (푥) = ∑ 푛푎 푥  for all 푥 ∈ 푅. Furthermore     ∑ 푎 푥 → ∑ 푎 푥  uniformly 

on [푎,푏] and ∑ 푎 푥 → ∑ 푛푎 푥  uniformly on [푎,푏]   as  푘 → ∞ . Hence 퐹  is differentiable at all 

points of   ] − 푟, 푟[  and  퐹 (푥) = ∑ 푛푎 푥   for all  푥 ∈] − 푟, 푟[.  

Remark: In the lemma below we present an alternative description of the exponential function  푒 , defined by 

the formula  푒 = ∑
!
 and the radius of convergence of the power series is ∞. 

Lemma 2.1:If 푘 is a positive integer and 푢 , … , 푢 ∈ [0,1] then 1 − (1 − 푢 ) … (1 −푢 ) ≤ 푢 + ⋯+ 푢  

Remark: We proof by mean value Theorem: If 푘 = 1 then the result is 1− (1 −푢 ) = 푢 .                           

 If 푘 ≥ 2 define 푓(푥 , … , 푥 ) = 푥 +⋯+ 푥 − {1− (1 − 푥 ), … , (1− 푥 )} on Euclidean space 푅 .     

 Let 퐷 = {(푥 , … , 푥 ) ∈ 푅 | 0 ≤ 푥 ≤ 1, … ,0 ≤ 푥 ≤ 1}.Then 푓 of class 퐶  on 푅  and 

= 1− ( ),…,( ) ≥ 0 for every 푗 ∈ {1, … , 푘} and all points (푥 , … , 푥 ) ∈ 퐷. Also 푓(0, … ,0) = 0.  

If (푢 , … ,푢 ) ∈ 퐷 then by the mean value theorem there exists 휃 ∈ [0,1] such that           

푓(푢 , … ,푢 ) = 푓(푢 , … ,푢 ) −푓(0, … ,0) = ∑ 푢 (휃푢 , … , 휃푢 ) ≥ 0.                                               

 Thus   푢 + ⋯+ 푢 ≥ 1− (1 −푢 ) … (1− 푢 ). 

Remark: The proof can also be done by induction which will require elementary calculations. 

Theorem 2.3: If 푥 is a positive real number then 1 + → 푒   as  푛 → ∞. 

Remark: By the binomial theorem: 

1 +
푥
푛 =

푛
푘 푥 = 1 + 푥 + 1 −

1
푛 … 1−

푘 − 1
푛

푥
푘!  

                                                          ≤ 1 + 푥 + ∑ 1 − … 1 −
!
   for all 푛 ≥ 2.  



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2017) Volume 32, No  2, pp 43-53 

 

50 
 

It follows that  1 +  is a monotonic non-decreasing sequence and  1 + ≤ 푒  for every positive 

integer  푛. Thus  1 +  is convergent. 

Furthermore 1 + − ∑
!

= ∑ 1 − 1 − … 1 −
!
   for all  푛 ≥ 2. 

For each fixed positive integer 푛 > 푘 the preceding lemma shows that  

 1 − 1 − … 1 − ≤ ⋯ ( )         and so     1 − 1 − … 1 − → 0   as  푛 → ∞.                                                                                                       

 The conclusion is that lim → 1 + = ∑
!

= 푒  

Remark: Indeed if 훿 is a positive real number then 1 +  converges uniformly on [−훿, 훿] to  푒 . 

Section Three:  

comparison  

Pointwise and Uniform convergence: Every Pointwise convergent sequence is uniformly convergent. 

Remark: The conditions of Pointwise convergence and uniform convergence are quite different although every 

sequence 푓  that converges uniformly to a function 푓 will certainly converge Pointwise to 푓. The Pointwise limit 

is the same as the uniform limit, so when we are asked to show uniform convergence we have to first show that 

it converges Pointwise and then go on to show uniform convergence. The only difference between them is that 

in the definition of Pointwise convergence we are concerned only with one value of 푥 at a time, the 푁  we 

choose is thus allowed to depend not only 휀  but also on the point 푥  itself. In the definition of uniform 

convergence, there must exist a single 푁  which makes |푓 (푥) − 푓(푥)| < 휀   for all 푥 ∈ 푋 . Thus uniform 

convergence is a stronger condition than Pointwise convergence. 

Example 3.1: The sequence 푓 (푥) = 푥 + 푥  ,푓표푟 푎푙푙 푥 ∈]0,1[     then  

(a) 푓 (푥) → 푥  as   푛 → ∞ Pointwise at each point 푥 ∈]0,1[ . 

(b)  We however note that 푓  is not uniformly convergent on ]0,1[. 

Remark: Assume that 푓  is uniformly convergent on ]0,1[ . Let  퐼(푥) = 푥  for all 푥 ∈]0,1[ .                            

Then 푓 → 퐼uniformly on ]0,1[ as  푛 → ∞. Choose a positive integer 푝 such that  |푓 (푥) − 퐼(푥)| <  for all 

푥 ∈]0,1[ and all 푛 ≥ 푝. Let 푤 = . Then 푤 ∈]0,1[, and so there is a contradiction  = |푓 (푤) − 퐼(푤)| < . 

The assumption is false. Hence 푓  is not uniformly convergent on ]0,1[. 

Finally if 0 < 휏 < 1 then 푓 is uniformly convergent on ]0,1[. 
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Remark: τ → 0  as 푛 → ∞. Given a positive real number 휀 choose a positive integer 푞 such that 휏 < 휀 for all 

푛 ≥ 푞. Then |푓 (푥) − 퐼(푥)| = 푥 ≤ 휏 < 휀  for all 푥 ∈]0, 휏] and all  푛 ≥ 푞. 

Theorem 3.1: A strongly convergent sequence is weakly convergent but the reverse in not generally true. 

Remark: Given that 푥
∥,∥
→ 푥 i.e. lim → ∥ 푥 − 푥 ∥= 0  as   푛 → ∞.  

Then |푓(푥 )− 푓(푥)| = |푓(푥 − 푥)| since 푓 is linear 

                                        ≤∥ 푓 ∥∥ 푥 − 푥 ∥  since  푓   is bounded for every 푓 ∈ 푋  

                                   → 0  as  푛 → ∞ . 

Therefore  푥 →푥  and completes the first part of the theorem. 

Let 푋 = 퐻, Hilbert space, 푒  be an orthonormal sequence in a Hilbert space H. Let 푓 ∈ 퐻  i.e. 푓 is a bounded 

linear functional in 퐻. By Riesz’s representation theorem a bounded linear functional 푓 can be represented by 

푓(푥) =< 푥, 푧 >, 푧 is uniquely determined by 푓 with ∥ 푓 ∥=∥ 푧 ∥. So 푓(푒 ) =< 푒 , 푧 >. 

Using Bessel’s inequality we have  ∑ | < 푒 , 푧 > | ≤∥ 푧 ∥ .     ∥ 푧 ∥ is finite and so the series by    

corollary 1.1 is convergent. Thus ∑ | < 푒 , 푧 > | < ∞ . Hence by corollary 1.2 we have                                

< 푒 , 푧 >→ 0 as 푛 → ∞ for all 푧 ∈ 퐻. Also < 0, 푧 > = 0 for all 푧 ∈ 퐻.  

Hence < 푒 , 푧 >→< 0, 푧 >i.e. < 푒 − 0, 푧 > = 0 Therefore 푒  is weakly convergent. 

The orthonormal sequence is not strongly convergent since ∥ 푒 ∥= 1  such that                                               

∥ 푒 − 푒 ∥ =< 푒 − 푒 , 푒 − 푒 > = 2   and  ∥ 푒 푒 ∥= √2 

Also lim , → ∥ 푒 푒 ∥  = √2 ≠ 0  and so its not Cauchy and hence does not converge strongly. This 

completes the proof.  

Example: Let푓 ∈ 퐿 (0,2휋). Then we know that the Fourier series of 푓 converges in 퐿 (0,2휋). Therefore the 

Fourier coefficients converge to zero, and in particular ∫ 푓(푥) sin(푛푥)푑푥 → 0   ∀푓 ∈ 퐿 (0,2휋).  

This result is known as the Riemann-Lebesgue lemma. Thus the sequence {sin(푛푥)|푛 ≥ 1} converges weakly to 

0 in퐿 (0,2휋). But certainly the sequence does not converge strongly to 0in 퐿 (0,2휋). 

Theorem 3.2: In finite dimensional space weakly convergent sequence implies strong convergence. 

Remark: Let 푑푖푚푋 = 푛 and 푒 , 푒 , … , 푒  be the basis elements of 푋. Let 푥  ,푥 ∈ 푋 and so 

푥 = 훼 푒 + 훼 푒 +⋯+ 훼 푒  and 푥 = 훼 푒 + 훼 푒 + ⋯+ 훼 푒  . 
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Given 푥
∥,∥
→ 푥 implies that 푥 →푥 by the theorem proved above. 

Let 푥 →푥 i.e. 푓(푥 ) → 푓(푥) for all 푓 ∈ 푋 . In particular 푓 ,푓 , … , 푓 ∈ 푋  where 

푓 (푒 ) = 훿 = {1, 푖 = 푘
0, 푖 ≠ 푘 

푓 , 푓 , … , 푓 will form a dual basis. So 푓 (푥 ) = 훼  and 푓 (푥) = 훼  . 

Now  푓 (푥 ) → 푓 (푥)   ⟹ 훼 → 훼  as  푚 → ∞. 

Therefore  ∥ 푥 푥 ∥=∥ ∑ (훼 − 훼 ) 푒 ∥ 

≤ ∑ |훼 − 훼 | ∥ 푒 ∥ → 0 as  푚 → ∞ i.e. the series approaches zero as 푚 → ∞ 

⟹∥ 푥 푥 ∥= 0 as  푚 →∞. Thus  푥 → 푥 strongly. 
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