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Abstract 

In this article, we investigate an event that extensively effects on profile of voltage by occurring in a distribution 

system when a wind turbine is disconnected from the network. This issue is considered as an urgent condition in 

performance of distribution network and also placing of  Pharos  Measurement Units (PMUs) in the system is 

performed using DAPSO algorithm for complete visibility and then it is performed to control voltage 

immediately by using regulation that at here this is implemented by tap changer trans and disconnect able loads. 

Finally, to test the system, kinds of experiments are performed so that influence of different parameters will be 

observed on efficiency of model. 

Keywords: Voltage Control; Wind Turbine; Locating PMU; DAPSO Algorithm. 

1. Introduction  

Shortage of electrification networks in remote regions and high cost of connection of these regions to global 

system due to unfavorable geographical situation double necessity of use of other energy resources such as 

renewable energies as independent sources from network in these regions.  
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Presence of disperse production resources can increase possibility of occurrence of instability of voltage 

according to stability scope of voltage. One of these units is wind turbines that presence of these production 

units has various positive and negative effects on power system. Although voltage instability phenomena might 

occur in any part of network, voltage instability happens just in distribution part. In analyzing voltage instability, 

a radial line is considered which is fed by network and on the other hand feeds a load. So far, many researches 

have been performed about voltage control as real time and random production of wind resources by 

researchers. According to [1], a new approach is proposed for Connectional Voltage Control (CVC) of power 

systems in presence of uncertainty of power production by wind and demand amounts. Framework of CVC is 

dealt with the conditions in which a power system is faced with instability of voltage due to consequences of 

heavy events. The uncertainty present in wind power production and demand amounts are managed using a 

method based on scenario. One of the features of the proposed method is using role-playing of resources related 

to demand as an efficient control tool which decreases costs of control. Framework of proposed control in 

system of IEEE is implemented by 118 buses so that its use and efficiency will be shown. According to [2], by 

using RTUs and their sent information, accountability of load is performed in presence and influence of wind 

turbines. In this article, a real-time voltage control method is presented that uses decrease of load as a part of 

programs of demand response to keep voltage of distribution feeders in a certain scope. Since renewable 

production and unpredictable changes in load demand and also events of distribution network usually recognize 

voltage violation in some buses, real-time voltage control proposed at here is considered assuming the point that 

there is possibility of voltage violation in buses. It is assumed that in normal conditions, voltage control is 

implemented based on a voltage control program which the day before implementing programs it is planned. A 

random planning program is presented in [3] to plan energy and its storage in a smart distribution system with 

presence and high influence of wind resources. In this reference, because of prediction errors of wind 

production, main generator and responsive loads are considered as reserve and are participated in planning. 

According to [4], a recent multi-purpose SMP-OPF model is presented to optimize the issue of designing a 

power network connected to a wind farm by a great converter of high-voltage direct current (HVDC). The wind 

turbines used in this research are of doubly-fed inductive generators (DFIGs) and to achieve exact amount of 

production power of these turbines, their DFIG curves are used. Also in this article, uncertainty resulting from 

production of wind turbines is taken into account, as well. According to [5], a random operational planning 

method was presented to plan energy and reserve it in a smart distribution system with high-influence of wind 

energy. Error in predicting wind energy and prediction of demand are considered in this approach and reserve is 

provided by two main network generators and responsive loads. Consumers participate in both sections of 

energy supply and planning storage. Demand Response Presenter (DRP) decreases total of loads in order to 

simplify participation of small and medium loads in program of responding to demand. Planning method has 

been tested on a sample 83-bus distribution network during a 24-hour period. In [6] an approach is presented 

that uses potential of smart network to increase efficiency of voltage control in distribution systems. In [7], issue 

of regulating voltage is discussed well by studying effects of DG on voltage profile and performance of Stepped 

Voltage Regulators (SVRs) and feeder parallel capacitors. In [8], a new method is proposed to improve 

efficiency of voltage regulators in multiple feeders including DGs. This model is based on RTUs of each DG 

unit and each of capacitor’s buses that correspond with each other in a certain order. Data received from RTUs 

has made possible estimating minimum and maximum voltage in feeders and subsequently voltage control of 
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feeders is made possible. 

In this article, in first section model of wind turbine is discussed and then in second section voltage instability, 

in third section DAPSO algorithm, and in forth section PNU locating using DAPSO algorithm and estimation of 

voltage based on assessment of PMUs in the studied system and finally in the last section results will be 

presented. 

2. Wind turbine 

The power produced by each wind turbine is designated based on wind velocity. Curve of output power of wind 

turbine 𝑃𝑃𝑊𝑊𝑊𝑊  ( based on wind speed 𝑉𝑉𝑊𝑊𝑊𝑊 is presented in Figure (1) which is approximated with Relation (1) [9]: 
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Where Vcutin, Vcoutout and Vrated  are low cut-in velocity, high cut-out velocity and rated velocity of turbine 

based on m/s and Pwmax is maximum output power of turbine. 

 

Figure 1: Power production based on velocity in wind turbine 

3. Voltage instability  

Instability is divided into two small and big disturbance categories [10]. In analyzing small disturbance, linear 

model is used and in big disturbance non-linear model is used. A power system in a certain quiescent point is 

called voltage-stable of small disturbance if after a small voltage disturbance it is returned to the past amount 

and or it is mitigated in its neighborhood. A power system in a certain quiescent point is called stable of big 

disturbance if after a big disturbance voltage of the system is placed in a balanced point after error. Main factors 
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of voltage instability in initial seconds are inductive motors. If in a part of power network such as great 

industrial units there are many inductive motors, it is more possible that such a phenomenon occurs. Therefore, 

short voltage instability sometimes is called “instability of inductive motors”. 

4. DAPSO algorithm 

According to Equations (2) and (3), for an algorithm that each particle follows two best amounts, the best 

response that the particle itself has obtained and the best response that other particles have obtained is that 

velocity of particles reaches to zero after beginning of searching and it causes their tapping in local optimums. 

To prevent such an issue, inertia weight coefficient in the proposed algorithm changes as following which itself 

is a function of other parameters. 
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In this algorithm, inertia weight coefficient is influenced by evolutionary position and is expressed by 

evolutionary velocity coefficient and particle swarm coefficient in Relations (4), (5), and (6): 
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Amount of Wini is the initial amount of inertia weight coefficient and based on experiences it is considered 1. 

At here, α and β  are considered 0.4 and 0.8, respectively. 

5. PMU location allocating using DAPSO algorithm     

In this article, DAPSO algorithm is used to optimally locate PMU. In this method, the network is completely 

visible by utilizing minimum number of PMUs. Position vector of each particle indicates potentially solving 

PMU locating problem. To determine the best particles in each repetition and using them in next repetitions in 

order to solve optimization problem, a fitness function is needed and vector of the best particle (a particle with 

the best position) in each repetition (pbest), and also vector of the best particle between different repetitions is 

determined by (gbest) of this fitness function.  Purpose of optimal PMU locating in this article is calculating 

minimum number of needed PMUs for completely visibility of the network and maximizing number of 

alternative elements of measuring in the system. Therefore, fitness function should be in a way that the 
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following points will be considered in it: (1) visibility of system, (2) minimization of number of PMUs, (3) 

maximization of number of alternative measuring elements. Alternative measuring element is defined in [11]. 

Fitness function considered in this article for DAPSO is expressed as Equation (7): 

)7( 
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Where 
bN

i
i

få  indicates number of visible buses; PMUN  is number of PMUs and  1J is alternative measuring 

element. Weights,  1w  2w  ،and
 3w   are used to select a suitable domain for each section of fitness function. 

Also, bN  is number of buses of network. 1J  and PMUN  are expressed as Equation (8): 
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Product of AX in Equation (7) indicates number of times which each bus of network is visible by alternation of 

PMU. Vector X which was defined previously shows PMU locating. Vector M is selected based on a favorable 

level of measurement in system. 

6. Voltage estimation according to assessment of PMUs 

Maximum and minimum voltages are calculated by each of PMUs and output results to PMU are sent as input 

data. To clarify the issue, assume PMUn is a PMU which is connected to a certain DG and PMUn-1  is defined as 

upstream PMU, that is, a PMU which is connected to upstream DG. Also, PMUn+1 is defined as downstream 

PMU [12]. According to Figure (2), the algorithm can be explained as following: PMUn by implementing local 

assessments, estimates and expresses the voltage between PMUn+1  and its node by using Equation (9): 
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Where 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛,𝑛𝑛+1  is an estimation of the voltage between buses related to 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛  and  𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+1 which is 

calculated by 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛  . 𝑉𝑉𝑛𝑛  is nth bus of DG which  𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 is connected to it. Delivery of active and reactive 

power from the bus related to  𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛  to the bus related to 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+1  are indicated as 𝑃𝑃𝑛𝑛,𝑛𝑛+1  and 𝑄𝑄𝑛𝑛,𝑛𝑛+1 , 

respectively. Also,  𝑟𝑟𝑛𝑛,𝑛𝑛+1and  𝑥𝑥𝑛𝑛,𝑛𝑛+1are resistance and reactance of the lines between buses related to 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 

and𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+1 , respectively. Final amount to estimate voltage for the distances between the buses related to 

𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+1 are calculated by the above estimated voltage and the similar estimated voltage by 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+1  
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for this distance is calculated by using Equation (10): 

                      (10) 

  

Where 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛,𝑛𝑛+1
𝐹𝐹 is the final estimated voltage for the lines between the buses related to 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+1. At 

the next step, the voltage between 𝑃𝑃𝑀𝑀𝑈𝑈𝑛𝑛  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛+1  is estimated by Equation (11): 
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Finally, the voltages, 𝑉𝑉𝑛𝑛  ،𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛,𝑛𝑛+1
𝐹𝐹   and 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛,𝑛𝑛−1  are sent to upstream PMU 𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛−1 . Since some of the 

calculations are performed by PMU, the transferred data and time of calculations are decreased compared to 

common SCADA; therefore, the proposed model reacts to the voltage changes rapidly. 

 

Figure 2: Delivery of PMU information 

After the calculations related to voltage in each part of feeder, controller of the voltage regulator calculated the 

maximum and minimum amount of the network’s voltage. For voltage regulator in all of the buses in an 

acceptable scope, the difference between feeders should be lower than the scope defined through minimum and 

maximum amount of the network’s voltage. 

7. The studied system 

The proposed method was implemented on a real experimental system (a 20 kW radial distribution network that 

is shown in Figure (3). Information was presented in Table (1) over and over. This network has 27 buses and 

also in four points of which wind turbines were installed that has rated power of 8/1 kW. Bus 7 has 1093 kW 

capacity, Bus 15 has 639 kW, Bus 17 has 1740 kW and Bus 18 has 1200 kW. Changes of wind power in this 

area are indicated in Figure (4). 
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Figure 3: A typical distribution system for experiment 

 

Figure 4: Output power of a wind turbine 

In Figure (5), a 24-hour profile is presented for intended load which shows changes rate of each of kinds of 

loads during 24 hours. 

 

Figure 5: A 24-hour profile for the intended load 
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Table 1: Information of loads of a 27-bus network 

Power factor Type load Q(KW) P(KW) Bus  

0.85 2 - - (slack) 

0.9 3 460 840 2 

0.85 2 340 980 3 

0.8 1 446 790 4 

0.85 2 184 598 5 

0.85 2 600 610 6 

0.85 2 110 1780 7 

0.85 2 60 650 8 

0.85 2 130 980 9 

0.8 1 200 640 10 

0.85 2 100 750 11 

0.85 2 120 780 12 

0.85 2 105 1360 13 

0.85 2 180 1115 14 

0.9 3 210 900 15 

0.9 3 225 1200 16 

0.8 1 300 600 17 

0.85 2 180 840 18 

0.85 2 95 720 19 

0.85 2 120 750 20 

0.85 2 365 730 21 

0.85 2 320 1100 22 

0.85 2 250 900 23 

0.8 1 400 800 24 

0.85 2 175 540 25 

0.85 2 90 1000 26 

0.85 2 280 280 27 
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8. Simulation results   

In this section, two experiments were performed. In first experiment, locating PMU was done without 

considering load measuring units and in second case, this issue was performed with considering load measuring 

units.  

Results are presented and compared in Table (2). 

Table 2: Results obtained for locating PMU using DAPSO algorithm 

 Without a current measurer With a current measurer 

Number of PMU units 10 8 

Installation place of PMU units 2, 3, 7, 8, 11, 15, 16, 23, 24, 25 2, 6, 7, 15, 17, 23, 24, 25 

Number of current measurer units 2 0 

Installation measurer of current 

measurer units 

10, 15 - 

Visibility amount 44 34 

 

system is visible which it is because of main condition of the system’s design in which the issue is planned with 

the purpose of complete visibility. 

Also, in a simple comparison in Table (3), it is observed that for the second case, DAPSO algorithm has better 

results than IPSO algorithm and also has higher convergence velocity that this algorithm is indicated in Figure 

(6). 

Table 3: Results obtained for PMU locating using DAPSO and PSO algorithms (With presence of current 

measuring units) 

 DAPSO algorithm IPSO algorithm PSO algorithm 

Number of OMU units 8 8 8 

Installation place of PMU 

units 

2, 6, 7, 15, 17, 23, 24, 25 4, 7, 8, 11, 15, 16, 19, 23 3, 7, 8, 16, 17, 20, 26, 27 

Number of current 

measuring units 

2 2 2 

Installation place of 

current measuring units 

10, 15 1 and 26 18 and 1 

Visibility rate 38 38 44 
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Figure 6: Convergence path of the system for different optimization algorithms 

Now, if wind turbines work abruptly, as a result, it will experience an extensive loss. Voltage profile in all nodes 

for hours from 7 to 12 is shown in images of Figure (7). During this period, voltage loss in some buses is lower 

than 0.95 per unit. Although decrease of load at the end and middle buses on the voltage profile has higher 

impact but at peak hour, responsibility of load is not able to regulate voltage again; therefore, in these hours tap 

trances are used, as well. 

 

Figure 7: Voltages of different buses for three cases (without tap, regulator and at the same time with regulator) 

from 7 to 12 

Voltage profile in the network before and after regulation, by considering only action of tap changer and 

condition of tap changer and disconnect able loads, is indicated in Figures (8) and (9) for 10 and 11 o’clock and 

in the other for 20 and 21. As it is indicated, at 10 and 11 there is voltage shortage in some points of the 
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network; especially in buses 16 and 21 this voltage loss is out of allowed domain. In this case, it is observed that 

by using only a tap changer in this case, voltage of the whole system increases while in the third case by using a 

few loading disconnect able loads one can return this system to the allowed limit. While at 20 and 21 this 

operation was performed for Buses 16 and 21 as well, but in this case demand response is not enough for 

resolving the problem. Therefore, tap changer should be operated, as well. 

 

Figure 8: Voltage of different buses for three cases from 10 and 11, respectively 

 

Figure 9: Voltage of different buses for three cases from 20 and 21, respectively 

9. Conclusion  

In this article, role of wind turbine in the power system was considered significant if it is disconnected to the 

network. Voltage profile in network before and after regulation, by considering only tap changer and condition 

of tap changer and disconnect able loads in different hours were presented. In other words, regulation of voltage 

which is performed only by response of demand to disconnect able loads as a voltage regulator device is not 

able to compensate loss of voltage in all buses and in peak hours it must use tap changer. Although in peak 
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hours of consuming, level of tap is placed in the highest amount but still about voltage loss of some buses, there 

are some problems. Therefore, according to the proposed control method, some buses are selected to decrease 

their load demands. The proposed method has used measured data at the present time which has been collected 

by PMU units and determines conditions of tap changer and need to load decrease in order to keep voltage 

profile .In order to investigate efficiency of the proposed plan, this plan has been tested in an automotive 

distribution network that simulation results indicate that suitable selection of load decrease can improve voltage 

profile and in urgent conditions response of demand is an efficient method to keep voltage in an allowed scope. 

References 

[1] Rabiee A, Soroudi A, Mohammadi B, Parniani M. “Corrective voltage control scheme considering 

demand response and stochastic wind power”. IEEE Transactions on Power Systems, 2014, vol. 29, 

no.6, pp.2965–2973. 

[2] Zakariazadeh A, Homaee O, Jadid SH, Siano P. “A new approach for real time voltage control using 

demand response in an automated distribution system”.Applied Energy, 2014, vol.117, pp.157-166. 

[3] Soroudi A. “Possibilistic-scenario model for DG impact assessment on distribution networks in an 

uncertain environment”. IEEE Transactions on Power Systems, 2012, vol.27, no.3, pp.1283–1293. 

[4] Rabiee A, Soroudi A, “Stochastic multiperiod OPF model of power systems with HVDC-connected 

intermittent wind power generation”. IEEE Transactions on Power Delivery, 2014, vol.29, no.1, 

pp.336–344. 

[5] Zakariazadeh A, et al. “Stochastic operational scheduling of smart distribution system considering wind 

generation and demand response programs,”International Journal of Electrical Power & Energy 

Systems, 2014, vol.63, pp.218-225. 

[6] Pereira P, et al. “Optimization of voltage regulators settings and transformer tap zones in distribution 

systems with great load variation using distribution automation and the smart grids initiatives”. 8th 

International Conference on the European, Energy Market, May 2011. 

[7] Farag HE, El-Saadany EF. “Voltage regulation in distribution feeders with high DG penetration: from 

traditional to smart”. IEEE Power and Energy Society General Meeting, July 2011. 

[8] Elkhatib ME, El-Shatshat R, Salama MA. “Novel coordinated voltage control for smart distribution 

networks with DG”. IEEE Trans smart grid, 2011, vol.2, pp.598–605. 

[9] Jones, D.I., Lorenz, M.H.; ―An Application of a Markov Chain Noise Model to Wind Generator 

Simulation‖, Math.coput. Simulation, PP.391-402, 1986. 

[10] A. Ghafouri, “Fuzzy Controlled STATCOM for Improving the Power System Transient Stability,” 



 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 30, No  2, pp 217-229  

229 
 

39th North America Power Symposium, 2007, Las Cruces, NM, pp. 212-216, 2007. 

[11] Siano P, Cecati C, Yu H, Kolbusz J. “Real time operation of smart grids via FCN networks and 

optimal power flow”. IEEE Transactions on Industrial Informatics, 2012, vol.8, pp.944–952. 

[12] M. Pignati, L. Zanni, P. Romano, R. Cherkaoui, M. Paolone. (2016). Fault Detection and Faulted Line 

Identification in Active Distribution Networks usin  Synchrophasors-based Real-Time State 

Estimation, IEEE Transactions on Power Delivery, Vol: PP, Issue: 99 Pages: 1 - 1, 2016. 


