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Abstract 

The objective of the control technique is to detect changes in traffic intensity 𝜌𝜌 of a queueing system as quickly 

as possible, then take appropriate corrective actions, and determine how much of a sample size is needed in the 

applications. Thus, the sequential probability ratio test provides a saving of up to fifty per cent in the sample size 

according to traditional methods. Furthermore, the use of SPRT is easy for observing only the number of 

customers in the system at successive departure periods 𝒬𝒬𝑛𝑛, which are embedded Markov points. This paper 

gives a method on the control of traffic intensity (𝜌𝜌)  of Hypoexponential and Coxian queueing systems. This 

method uses The Sequential Probability Ratio Test (SPRT) based on the number of arrivals 𝑋𝑋𝑛𝑛 during the 𝑛𝑛𝑡𝑡ℎ 

service period. Two theorems are given on the subject and these theorems are proved. Numerical illustrations 

for each model are graphically given by using Matlab software.  
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1. Introduction 

The theory of SPRT for a sequence of observations forming a finite Markov chain is given in [1]. After, based 

upon the theory of [1] is discussed statistical quality control and SPRT procedures for the control of traffic 

intensity in [2–9]. This method aims to detect changes in traffic intensity by observing only the number of 

customers in the system at successive departure periods 𝒬𝒬𝑛𝑛, which are embedded Markov points. Recently, a 

SPRT to regulate the traffic intensity based on the number of arrivals during the 𝑛𝑛𝑡𝑡ℎ service periods for 𝑀𝑀/𝐸𝐸𝑘𝑘/1 

queue is proposed in [10] and an autoregressive process based on the number of customers at the departure point 

and its application to the queueing model are given in [11]. A similar topic has been studied for the 

Hyperexponential and the mixed Erlang queueing systems previously at [14]. This study consists of two parts. 

In the first part, we give two theorems on obtaining the probability density function of a hypoexponential and a 

Coxian queues respectively. These theorems are proved. In the second part of the application, the queue lengths 

have been generated randomly for different arrival rates (𝜆𝜆), different service rates (𝜇𝜇) and selected system 

capacities (𝑁𝑁) by using Matlab software. Traffic intensities have also been calculated. With the obtained data 

and predetermined 𝛼𝛼 and 𝛽𝛽, a simple hypotheses has been established. Accepting or rejecting the hypothesis has 

been examined by SPRT.  After, the largest latent root 𝜆𝜆(𝑡𝑡,𝜌𝜌) of the  𝑃𝑃(𝑡𝑡) matrix has been computed by fixing 

the values for 𝑡𝑡 and 𝜌𝜌. Their graphs have been drawn. It has been found that there exists one and only one real 

𝑡𝑡0 ≠ 0 such that 𝜆𝜆0(𝑡𝑡0) = 1.  The OC and ASN have been calculated with obtained values and graphically 

shown. 

2. SPRT method in Queueing Theory 

Consider the single server queue where arrivals occur according to a Poisson process with rate 𝜆𝜆 per unit time. 

The service times of customers are independent and identically distributed random variables with the 

distribution𝐵𝐵(𝑥𝑥). For this system, the queue lenghts at service completion points form an imbedded Markov 

chain. 𝒬𝒬𝑛𝑛  will be the number of customers left behind by the nth departing customer. The capacity of the 

queueing system restricted to 𝑁𝑁. Then the transition probability matrix of the imbedded chain is given as, 
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where 

𝑘𝑘𝑛𝑛 = 𝑃𝑃{𝑛𝑛 arrivals during a service period} = � 𝑒𝑒−𝜆𝜆𝜆𝜆
(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!

∞

0
𝑑𝑑𝑑𝑑(𝑡𝑡).  

 

Consider the sequence of observations, 𝒬𝒬0,𝒬𝒬1,𝒬𝒬2, … ,𝒬𝒬𝑛𝑛. The joint probability of observing this sequence under 

𝐻𝐻0  and  𝐻𝐻1  is given by 

Pr {𝒬𝒬0,𝒬𝒬1,𝒬𝒬2, … ,𝒬𝒬𝑎𝑎;𝜌𝜌𝑖𝑖} = 𝑃𝑃(𝒬𝒬0; 𝜌𝜌𝑖𝑖)�𝑃𝑃(𝒬𝒬𝑗𝑗\𝒬𝒬𝑗𝑗−1;  𝜌𝜌𝑖𝑖),      𝑖𝑖 = 0,1
𝑛𝑛

𝑗𝑗=1

. 

Then the likelihood ratio  

𝐿𝐿 =
𝑃𝑃(𝒬𝒬0; 𝜌𝜌1)∏ 𝑃𝑃(𝒬𝒬𝑗𝑗\𝒬𝒬𝑗𝑗−1𝑛𝑛

𝑗𝑗=1 ;  𝜌𝜌1)
𝑃𝑃(𝒬𝒬0; 𝜌𝜌0)∏ 𝑃𝑃(𝒬𝒬𝑗𝑗\𝒬𝒬𝑗𝑗−1;𝑛𝑛

𝑗𝑗=1  𝜌𝜌0)
                                                                (1) 

𝑍𝑍0 = 𝑙𝑙𝑙𝑙
𝑃𝑃(𝒬𝒬0; 𝜌𝜌1)
𝑃𝑃(𝒬𝒬0;𝜌𝜌0)                                                                                                   (2) 

𝑍𝑍𝑟𝑟 = 𝑙𝑙𝑙𝑙
𝑃𝑃(𝒬𝒬𝑟𝑟\𝒬𝒬𝑟𝑟−1; 𝜌𝜌1)
𝑃𝑃(𝒬𝒬𝑟𝑟\𝒬𝒬𝑟𝑟−1;𝜌𝜌0)

,   (𝑟𝑟 ≥ 1)                                                                      (3) 

Let  𝐴𝐴 = (1 − 𝛽𝛽) 𝛼𝛼⁄    and   𝐵𝐵 = 𝛽𝛽 (1 − 𝛼𝛼),⁄   where 𝛼𝛼 and  𝛽𝛽 are the probabilities of the errors of the first and 

second type.  Then, Wald’s SPRT [13] to test  𝐻𝐻0 : 𝜌𝜌 = 𝜌𝜌0  aganist  𝐻𝐻1 :𝜌𝜌 = 𝜌𝜌1  becomes: Observe {𝒬𝒬𝑖𝑖}  (𝑖𝑖 =

0,1,2, … ) successively and at stage 𝑛𝑛 ≥ 1,  

1) accept  𝐻𝐻0   if   ∑ 𝑍𝑍𝑟𝑟 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙,𝑛𝑛
0     

2) accept  𝐻𝐻1   if  ∑ 𝑍𝑍𝑟𝑟  ≥ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛
0 , 

3) continue by observing 𝒬𝒬𝑛𝑛+1  if   ln𝐵𝐵 < ∑ 𝑍𝑍𝑟𝑟𝑛𝑛
0 < ln𝐴𝐴.  

If we assume 𝒬𝒬0 = 𝑖𝑖0 is specified and denote by 𝑛𝑛𝑖𝑖𝑖𝑖 the number of transitions 𝑖𝑖 → 𝑗𝑗  up to and including  the 𝑛𝑛𝑡𝑡ℎ 

transition, then the likelihood ratio given in (1) reduces to: 

𝐿𝐿 = �𝑃𝑃𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑗𝑗(𝜌𝜌1)

𝑖𝑖,𝑗𝑗

/�𝑃𝑃𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖(𝜌𝜌0)

𝑖𝑖,𝑗𝑗

                                                                         (4) 

and 

𝑙𝑙𝑙𝑙 𝐿𝐿 = �𝑛𝑛𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌1)
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌0)

𝑖𝑖,𝑗𝑗

                                                                                        (5) 

Then the SPRT for testing the hypothesis  𝐻𝐻0 : 𝜌𝜌 = 𝜌𝜌0  against  𝐻𝐻1 : 𝜌𝜌 = 𝜌𝜌1, will have its continuation region  



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 30, No  4, pp 122-137 

125 
 

𝑙𝑙𝑙𝑙 𝐵𝐵 <�𝑛𝑛𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌1)
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌0)

𝑖𝑖,𝑗𝑗

< 𝑙𝑙𝑙𝑙 𝐴𝐴                                                                           (6) 

we will show in the sequel that the logarithm of the likelihood ratio can be written in the form, 

𝑙𝑙𝑙𝑙 𝐿𝐿 = 𝑎𝑎𝑎𝑎 + �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

                                                                                           (7) 

where 𝑎𝑎 and 𝑐𝑐𝑖𝑖𝑖𝑖 , and 𝑃𝑃𝑖𝑖𝑖𝑖   are constants depending upon the parameters 𝜌𝜌1, 𝜌𝜌0 and the transition probabilities 𝑃𝑃𝑖𝑖𝑖𝑖 .  

Thus (6) reduces to:   

𝑙𝑙𝑙𝑙 𝐵𝐵 − 𝑎𝑎𝑎𝑎 < �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 < 𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑎𝑎𝑎𝑎
𝑖𝑖,𝑗𝑗

                                                                  (8) 

3.  Operating Characteristic and Average Sample Number  

Approximate formulas for the OC and ASN functions are given in [1]. A numerical search technique is 

employed to find OC and ASN by [6]. When the stated space of {𝒬𝒬𝑛𝑛} is finite, the OC function for the SPRT 

can be obtained as: 

𝐿𝐿(𝜌𝜌) ≅
𝐴𝐴𝑡𝑡0(𝜌𝜌) − 1

𝐴𝐴𝑡𝑡0(𝜌𝜌) − 𝐵𝐵𝑡𝑡0(𝜌𝜌) , if  𝑡𝑡0(𝜌𝜌) ≠ 0                                                        (9) 

≅
ln𝐴𝐴

𝑙𝑙𝑙𝑙 𝐴𝐴 − 𝑙𝑙𝑙𝑙𝑙𝑙
, if  𝑡𝑡0(𝜌𝜌) = 0                                                                       (10) 

where 𝑡𝑡0(𝜌𝜌) is the non-zero real root of the equation 𝜆𝜆0(𝑡𝑡,𝜌𝜌) = 1. The ASN can then be obtained as:   

𝐸𝐸(𝑛𝑛; 𝜌𝜌) ≅
𝐿𝐿(𝜌𝜌)𝑙𝑙𝑙𝑙𝑙𝑙 + {1 − 𝐿𝐿(𝜌𝜌)}𝑙𝑙𝑙𝑙𝑙𝑙

𝜆𝜆0′ (0) , if  𝜆𝜆0′ ≠ 0                                 (11) 

≅
𝐿𝐿(𝜌𝜌){𝑙𝑙𝑙𝑙𝑙𝑙}2 + {1 − 𝐿𝐿(𝜌𝜌)}{𝑙𝑙𝑙𝑙𝑙𝑙}2

𝜆𝜆0′′
, if  𝜆𝜆0′ = 0                                     (12) 

where, 

𝜆𝜆0′ (𝑡𝑡,𝜌𝜌) ≅
1
12ℎ

{𝜆𝜆−2 − 8𝜆𝜆−1 + 8𝜆𝜆1 − 𝜆𝜆2}                                                      (13) 

𝜆𝜆0′′(𝑡𝑡,𝜌𝜌) ≅
1

12ℎ2
{−𝜆𝜆−2 + 16𝜆𝜆−1 − 30𝜆𝜆0 + 16ℎ1 − 𝜆𝜆2}                            (14) 

4.   SPRT for Phase Type Distribution  

The exponential distribution is very widely used in performance modelling. The reason, of course, is that 
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mathematical tractability flows from the memoryless property of this distribution. But sometimes mathematical 

tractability is not sufficient to overcome the need for a model process in which the exponential distribution is 

simply not adequate. This leads us to explore ways in which we can develop more general distributions while 

maintaining some of the tractability of the exponential. This is precisely what phase-type distributions permit us 

to do [12]. 

4.1. Hypoexponential Queue 

In probability theory the hypoexponential distribution is a continuous distribution, that has found use in the 

same fields as Erlang distribution, such as queueing theory, teletraffic engineering and more generally in 

stochastic processes. The Erlang distribution is a series of 𝑘𝑘  exponential distributions all with rate 𝜇𝜇 . The 

hypoexponential is a series of k exponential distributions each with their own rate 𝜇𝜇𝑖𝑖 , the rate of the 

𝑖𝑖𝑡𝑡ℎ exponential distribution. Once again, only one customer can be in the process of receiving service at any one 

time, i.e., both phases cannot be active at the same time [12]. 

Theorem 1. The density function of the service time is given by:  

 
𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

=
𝜇𝜇1𝜇𝜇2
𝜇𝜇1 − 𝜇𝜇2

(𝑒𝑒−𝜇𝜇2𝑥𝑥 − 𝑒𝑒−𝜇𝜇1𝑥𝑥), (𝑥𝑥 > 0) 

where 𝑘𝑘 = 2  is an integer. In this case, we have  

𝑘𝑘𝑛𝑛 =
1

𝜇𝜇1 − 𝜇𝜇2
�𝜇𝜇1 �

𝜌𝜌2
𝜌𝜌2 + 1

�
𝑛𝑛
�

1
𝜌𝜌2 + 1

� − 𝜇𝜇2 �
𝜌𝜌1

𝜌𝜌1 + 1
�
𝑛𝑛
�

1
𝜌𝜌1 + 1

��                     (15) 

where  𝑘𝑘𝑛𝑛 = 𝑃𝑃{n arrivals during a service period}  

= � 𝑒𝑒−𝜆𝜆𝜆𝜆
(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!

∞

0
𝑑𝑑𝑑𝑑(𝑡𝑡)                                   

Proof. 

𝑘𝑘𝑛𝑛 = �
𝑒𝑒−𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝑛𝑛

𝑛𝑛!

∞

0

𝜇𝜇1𝜇𝜇2
𝜇𝜇1 − 𝜇𝜇2

(𝑒𝑒−𝜇𝜇2𝑡𝑡 − 𝑒𝑒−𝜇𝜇1𝑡𝑡)𝑑𝑑𝑑𝑑 

                  =
𝜇𝜇1𝜇𝜇2
𝜇𝜇1 − 𝜇𝜇2

𝜆𝜆𝑛𝑛

𝑛𝑛!
�� 𝑒𝑒−𝑡𝑡(𝜆𝜆+𝜇𝜇2)𝑡𝑡𝑛𝑛𝑑𝑑𝑑𝑑

∞

0
− 𝑒𝑒−𝑡𝑡(𝜆𝜆+𝜇𝜇1)𝑡𝑡𝑛𝑛𝑑𝑑𝑑𝑑� 

          =
𝜇𝜇1𝜇𝜇2
𝜇𝜇1 − 𝜇𝜇2

𝜆𝜆𝑛𝑛𝑛𝑛!
𝑛𝑛!

��
1

𝜆𝜆 + 𝜇𝜇2
�
𝑛𝑛+1

− �
1

𝜆𝜆 + 𝜇𝜇1
�
𝑛𝑛+1

� 

                                     =
1

𝜇𝜇1 − 𝜇𝜇2
�𝜇𝜇1 �

𝜌𝜌2
𝜌𝜌2 + 1

�
𝑛𝑛
�

1
𝜌𝜌2 + 1

� − 𝜇𝜇2 �
𝜌𝜌1

𝜌𝜌1 + 1
�
𝑛𝑛
�

1
𝜌𝜌1 + 1

�� 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Continuous_distribution
http://en.wikipedia.org/wiki/Queueing_theory
http://en.wikipedia.org/wiki/Teletraffic_engineering
http://en.wikipedia.org/wiki/Stochastic_processes


International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 30, No  4, pp 122-137 

127 
 

in which,  

                          𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌) = 𝑘𝑘𝑗𝑗−𝑖𝑖+1,     𝑖𝑖 = 1,2, … ,𝑁𝑁;  𝑗𝑗 = 0,1, … ,𝑁𝑁 − 1;  𝑗𝑗 ≥ 𝑖𝑖 − 1 

𝑃𝑃0𝑗𝑗(𝜌𝜌) = 𝑘𝑘𝑗𝑗 ,       𝑗𝑗 = 0,1, … ,𝑁𝑁 − 1                          

𝑃𝑃0𝑁𝑁(𝜌𝜌) = 1 −� 𝑘𝑘𝑛𝑛
𝑁𝑁−1

0
                                                    

and 

𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌) = 1 −� 𝑘𝑘𝑛𝑛,
𝑁𝑁−𝑖𝑖

0
        𝑖𝑖 = 1,2, … ,𝑁𝑁                                                                           

𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌) = 1 − ��
1

𝜇𝜇1 − 𝜇𝜇2
�𝜇𝜇1 �

𝜌𝜌2
𝜌𝜌2 + 1

�
𝑟𝑟
�

1
𝜌𝜌2 + 1

� − 𝜇𝜇2 �
𝜌𝜌1

𝜌𝜌1 + 1
�
𝑟𝑟
�

1
𝜌𝜌1 + 1

��
𝑁𝑁−𝑖𝑖

𝑟𝑟=0
� 

With these values of  𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌),  the logarithm of the likelihood ratio will be   

𝑙𝑙𝑙𝑙 𝐿𝐿 = �𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

𝑙𝑙𝑙𝑙
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌1)
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌0) = 𝑎𝑎𝑎𝑎 + �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖

𝑖𝑖,𝑗𝑗

                  

where 

𝑙𝑙𝑙𝑙 𝐿𝐿 = �𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

𝑙𝑙𝑙𝑙

⎣
⎢
⎢
⎢
⎡ 1
𝜇𝜇1(1) − 𝜇𝜇2(1)

�𝜇𝜇1(1) �
𝜌𝜌2(1)

𝜌𝜌2(1) + 1�
𝑛𝑛
� 1
𝜌𝜌2(1) + 1� − 𝜇𝜇2(1) �

𝜌𝜌1(1)
𝜌𝜌1(1) + 1�

𝑛𝑛
� 1
𝜌𝜌1(1) + 1��

1
𝜇𝜇1(0) − 𝜇𝜇2(0)

�𝜇𝜇1(0) �
𝜌𝜌2(0)

𝜌𝜌2(0) + 1�
𝑛𝑛
� 1
𝜌𝜌2(0) + 1� − 𝜇𝜇2(1) �

𝜌𝜌1(0)
𝜌𝜌1(0) + 1�

𝑛𝑛
� 1
𝜌𝜌1(0) + 1��⎦

⎥
⎥
⎥
⎤
 

= �
𝜇𝜇1(0) − 𝜇𝜇2(0)

𝜇𝜇1(1) − 𝜇𝜇2(1)
� + �𝑛𝑛𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙

⎣
⎢
⎢
⎢
⎡�𝜇𝜇1(1) �

𝜌𝜌2(1)
𝜌𝜌2(1) + 1�

𝑛𝑛
� 1
𝜌𝜌2(1) + 1� − 𝜇𝜇2(1) �

𝜌𝜌1(1)
𝜌𝜌1(1) + 1�

𝑛𝑛
� 1
𝜌𝜌1(1) + 1��

�𝜇𝜇1(0) �
𝜌𝜌2(0)

𝜌𝜌2(0) + 1�
𝑛𝑛
� 1
𝜌𝜌2(0) + 1� − 𝜇𝜇2(0) �

𝜌𝜌1(0)
𝜌𝜌1(0) + 1�

𝑛𝑛
� 1
𝜌𝜌1(0) + 1��⎦

⎥
⎥
⎥
⎤

𝑖𝑖,𝑗𝑗

         (16) 

and 

𝑐𝑐𝑖𝑖𝑖𝑖

= 𝑙𝑙𝑙𝑙

⎣
⎢
⎢
⎢
⎢
⎡�𝜇𝜇1(1) �

𝜌𝜌2(1)
𝜌𝜌2(1) + 1�

𝑗𝑗−𝑖𝑖+1
� 1
𝜌𝜌2(1) + 1� − 𝜇𝜇2(1) �

𝜌𝜌1(1)
𝜌𝜌1(1) + 1�

𝑗𝑗−𝑖𝑖+1
� 1
𝜌𝜌1(1) + 1��

�𝜇𝜇1(0) �
𝜌𝜌2(0)

𝜌𝜌2(0) + 1�
𝑗𝑗−𝑖𝑖+1

� 1
𝜌𝜌2(0) + 1� − 𝜇𝜇2(0) �

𝜌𝜌1(0)
𝜌𝜌1(0) + 1�

𝑗𝑗−𝑖𝑖+1
� 1
𝜌𝜌1(0) + 1��⎦

⎥
⎥
⎥
⎥
⎤

                                         (17) 

𝑖𝑖 = 1,2, … ,𝑁𝑁;  𝑗𝑗 = 0,1, … ,𝑁𝑁 − 1;  𝑗𝑗 ≥ 𝑖𝑖 − 1 
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𝑐𝑐0𝑗𝑗

= 𝑙𝑙𝑙𝑙

⎣
⎢
⎢
⎢
⎢
⎡�𝜇𝜇1(1) �

𝜌𝜌2(1)
𝜌𝜌2(1) + 1�

𝑗𝑗
� 1
𝜌𝜌2(1) + 1� − 𝜇𝜇2(1) �

𝜌𝜌1(1)
𝜌𝜌1(1) + 1�

𝑗𝑗
� 1
𝜌𝜌1(1) + 1��

�𝜇𝜇1(0) �
𝜌𝜌2(0)

𝜌𝜌2(0) + 1�
𝑗𝑗
� 1
𝜌𝜌2(0) + 1� − 𝜇𝜇2(0) �

𝜌𝜌1(0)
𝜌𝜌1(0) + 1�

𝑗𝑗
� 1
𝜌𝜌1(0) + 1��⎦

⎥
⎥
⎥
⎥
⎤

                                                        (18) 

𝑗𝑗 = 0,1, … ,𝑁𝑁 − 1 

𝑐𝑐0𝑗𝑗

= 𝑙𝑙𝑙𝑙

⎣
⎢
⎢
⎡1 − �∑ 𝜇𝜇1(1) �

𝜌𝜌2(1)
𝜌𝜌2(1) + 1�

𝑟𝑟
� 1
𝜌𝜌2(1) + 1� − 𝜇𝜇2(1) �

𝜌𝜌1(1)
𝜌𝜌1(1) + 1�

𝑟𝑟
� 1
𝜌𝜌1(1) + 1�

𝑁𝑁−𝑖𝑖
𝑟𝑟=0 �

1 − �∑ 𝜇𝜇1(0) �
𝜌𝜌2(0)

𝜌𝜌2(0) + 1�
𝑟𝑟
� 1
𝜌𝜌2(0) + 1� − 𝜇𝜇2(0) �

𝜌𝜌1(0)
𝜌𝜌1(0) + 1�

𝑟𝑟
� 1
𝜌𝜌1(0) + 1�

𝑁𝑁−𝑖𝑖
𝑟𝑟=0 �⎦

⎥
⎥
⎤
                                       (19) 

𝑖𝑖 = 1,2, … ,𝑁𝑁   

and 

𝑐𝑐0𝑁𝑁 = 𝑐𝑐1𝑁𝑁 

4.2. Coxian Queue 

Coxian distributions imagine prominently in the theory of networks of queues. Their importance is in large part 

due to their universality: any distribution function can be The Coxian distribution is a generalization of  

hypoexponential distribution. Instead of only being able to enter the absorbing state from state 𝑘𝑘 it can be 

reached from any phase. 

Theorem 2. The density function of the service time in a Coxian queue is given as:   

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

= 𝜎𝜎𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆0,     (𝑥𝑥 > 0)                                                    

where 𝜎𝜎𝑛𝑛𝑛𝑛1  is a row vector, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛  is a square matrix and  𝑆𝑆1𝑥𝑥𝑥𝑥0   is a column vector. In this case, we have: 

𝑘𝑘𝑛𝑛 = 𝜎𝜎 �
𝜌𝜌

𝜌𝜌𝜌𝜌 − 𝑆𝑆
𝜇𝜇
�

𝑛𝑛

�
1

𝜆𝜆𝜆𝜆 − 𝑆𝑆
�𝑆𝑆0                                                                                       (20) 

where  𝑘𝑘𝑛𝑛 = 𝑃𝑃{n arrivals during a service period}  

= �
𝑒𝑒−𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!

∞

0
𝑑𝑑𝑑𝑑(𝑡𝑡).                                                

Proof. 
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𝑘𝑘𝑛𝑛 = �
𝑒𝑒−𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝑛𝑛

𝑛𝑛!
𝜎𝜎𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆0

∞

0
𝑑𝑑(𝑡𝑡) 

      = �
𝜆𝜆𝑛𝑛𝑡𝑡𝑛𝑛

𝑛𝑛!

∞

0
𝜎𝜎𝑒𝑒−𝑡𝑡(𝜆𝜆𝜆𝜆−𝑆𝑆)𝑆𝑆0𝑑𝑑(𝑡𝑡) 

     =
𝜆𝜆𝑛𝑛

𝑛𝑛!
𝜎𝜎 �� 𝑒𝑒−𝑡𝑡(𝜆𝜆𝜆𝜆−𝑆𝑆)𝑡𝑡𝑛𝑛

∞

0
𝑑𝑑(𝑡𝑡)� 𝑆𝑆0 

     =
𝜆𝜆𝑛𝑛

𝑛𝑛!
𝜎𝜎

1
(𝜆𝜆𝜆𝜆 − 𝑆𝑆)𝑛𝑛+1

𝑛𝑛! 𝑆𝑆0 

     = 𝜆𝜆𝑛𝑛𝜎𝜎
1

(𝜆𝜆𝜆𝜆 − 𝑆𝑆)𝑛𝑛+1 𝑆𝑆
0 

     = 𝜎𝜎 �
𝜆𝜆

𝜆𝜆𝜆𝜆 − 𝑆𝑆
�
𝑛𝑛

�
1

𝜆𝜆𝜆𝜆 − 𝑆𝑆
�𝑆𝑆0 

If we take  𝐷𝐷 = 𝑆𝑆/𝜇𝜇  in the last equation above, then it is  rewritten as following: 

= 𝜎𝜎 �
𝜌𝜌

𝜌𝜌𝜌𝜌 − 𝐷𝐷
�
𝑛𝑛
�

1
𝜆𝜆𝜆𝜆 − 𝑆𝑆

� 𝑆𝑆0 

where, 

𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌) = 𝑘𝑘𝑗𝑗−𝑖𝑖+1,     𝑖𝑖 = 1,2, … ,𝑁𝑁;  𝑗𝑗 = 0,1, … ,𝑁𝑁 − 1;  𝑗𝑗 ≥ 𝑖𝑖 − 1 

𝑃𝑃0𝑁𝑁(𝜌𝜌) = 1 −� 𝑘𝑘𝑛𝑛
𝑁𝑁−1

0
 

and 

𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌) = 1 −∑ 𝑘𝑘𝑛𝑛,𝑁𝑁−𝑖𝑖
0        𝑖𝑖 = 1,2, … ,𝑁𝑁      

𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌) = 1 −�𝜎𝜎(𝜌𝜌(𝜌𝜌𝜌𝜌 − 𝐷𝐷)−1)𝑟𝑟(𝜆𝜆𝜆𝜆 − 𝑆𝑆)−1𝑆𝑆0
𝑁𝑁−𝑖𝑖

𝑟𝑟=0

.  

With these values for  𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌),  the logarithm of the likelihood ratio will be as following:   

𝑙𝑙𝑙𝑙 𝐿𝐿 = �𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

𝑙𝑙𝑙𝑙
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌1)
𝑃𝑃𝑖𝑖𝑖𝑖(𝜌𝜌0) = 𝑎𝑎𝑎𝑎 + �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 .

𝑖𝑖,𝑗𝑗

 

Where, 
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𝑙𝑙𝑙𝑙 𝐿𝐿 =�𝑛𝑛𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛 �
𝜎𝜎1 �

𝜌𝜌1
𝜌𝜌1𝐼𝐼 − 𝐷𝐷�

𝑛𝑛
� 1
𝜆𝜆1𝐼𝐼 − 𝑆𝑆� 𝑆𝑆1

0

𝜎𝜎0 �
𝜌𝜌0

𝜌𝜌0𝐼𝐼 − 𝐷𝐷�
𝑛𝑛
� 1
𝜆𝜆0𝐼𝐼 − 𝑆𝑆� 𝑆𝑆0

0
�

𝑖𝑖,𝑗𝑗

                         

𝑙𝑙𝑙𝑙 𝐿𝐿 =�𝑛𝑛𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 �
𝜎𝜎1(𝜌𝜌1(𝜌𝜌1𝐼𝐼 − 𝐷𝐷1)−1)𝑛𝑛(𝜆𝜆1𝐼𝐼 − 𝑆𝑆1)−1𝑆𝑆10

𝜎𝜎0(𝜌𝜌0(𝜌𝜌0𝐼𝐼 − 𝐷𝐷0)−1)𝑛𝑛(𝜆𝜆0𝐼𝐼 − 𝑆𝑆0)−1𝑆𝑆00
�

𝑖𝑖,𝑗𝑗

                                                                                      (21) 

and 

𝑐𝑐𝑖𝑖𝑖𝑖=𝑙𝑙𝑙𝑙 �
𝜎𝜎1(𝜌𝜌1(𝜌𝜌1𝐼𝐼 − 𝐷𝐷1)−1)𝑗𝑗−𝑖𝑖+1(𝜆𝜆1𝐼𝐼 − 𝑆𝑆1)−1𝑆𝑆10

𝜎𝜎0(𝜌𝜌0(𝜌𝜌0𝐼𝐼 − 𝐷𝐷0)−1)𝑗𝑗−𝑖𝑖+1(𝜆𝜆0𝐼𝐼 − 𝑆𝑆0)−1𝑆𝑆00
�                                                                                                  (22) 

𝑖𝑖 = 1,2, … ,𝑁𝑁;  𝑗𝑗 = 0,1, … ,𝑁𝑁 − 1;  𝑗𝑗 ≥ 𝑖𝑖 − 1  

𝑐𝑐0𝑗𝑗 = 𝑙𝑙𝑙𝑙 �
𝜎𝜎1(𝜌𝜌1(𝜌𝜌1𝐼𝐼 − 𝐷𝐷1)−1)𝑗𝑗(𝜆𝜆1𝐼𝐼 − 𝑆𝑆1)−1𝑆𝑆10

𝜎𝜎0(𝜌𝜌0(𝜌𝜌0𝐼𝐼 − 𝐷𝐷0)−1)𝑗𝑗(𝜆𝜆0𝐼𝐼 − 𝑆𝑆0)−1𝑆𝑆00
�                                                                                                     (23) 

𝑗𝑗 = 0,1, … ,𝑁𝑁 − 1 

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙 �
1 −∑ 𝜎𝜎1(𝜌𝜌1(𝜌𝜌1𝐼𝐼 − 𝐷𝐷1)−1)𝑟𝑟(𝜆𝜆1𝐼𝐼 − 𝑆𝑆1)−1𝑆𝑆10𝑁𝑁−𝑖𝑖

𝑟𝑟=0

1 − ∑ 𝜎𝜎0(𝜌𝜌0(𝜌𝜌0𝐼𝐼 − 𝐷𝐷0)−1)𝑟𝑟(𝜆𝜆0𝐼𝐼 − 𝑆𝑆0)−1𝑆𝑆00𝑁𝑁−𝑖𝑖
𝑟𝑟=0

�                                                                                   (24) 

𝑖𝑖 = 1,2, … ,𝑁𝑁    

𝑐𝑐0𝑁𝑁 = 𝑐𝑐1𝑁𝑁. 

5. Illustrative Examples 

In the application part, the queue lengths are generated randomly for different arrival rates (𝜆𝜆), different service 

rates (𝜇𝜇)  and selected system capacities (𝑁𝑁 ) by using MATLAB 7.10.0 (R2010a) programming. Traffic 

intensities are also calculated. With the obtained data and predetermined 𝛼𝛼 and 𝛽𝛽, a simple hypotheses are 

established. Accepting or rejecting the hypothesis are decided by SPRT.  After, the largest latent root 𝜆𝜆(𝑡𝑡,𝜌𝜌) of 

the  𝑃𝑃(𝑡𝑡) matrix is computed by fixing the values for 𝑡𝑡 and 𝜌𝜌. Their graphs are drawn. It is found that there 

exists one and only one real 𝑡𝑡0 ≠ 0 such that 𝜆𝜆0(𝑡𝑡0) = 1.  The OC and ASN calculated with obtained values and 

their graphs are drawn by Microsoft Office Excel 2007 programming.  

Example 1: Consider a  𝑀𝑀/𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻2/1 queue (with poisson arrivals, two phase-type hypoexponential service, 

fixed 𝑁𝑁). Let  𝛼𝛼1 = 0.4  and  𝛼𝛼2 = 0.6  be the probability for the upper phase and the probability for the lower 

phase, and  𝛼𝛼 = 0.05  and  𝛽𝛽 = 0.10 be the first and second type of errors, respectively. Let 𝑁𝑁 = 7 be the 

capacity of the queuing system. The mean value of 𝜌𝜌 is calculated using the following formula, 

𝜌𝜌 =
𝜆𝜆(𝜇𝜇1 + 𝜇𝜇2)

𝜇𝜇1𝜇𝜇2
                                                                                                        (25) 
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Suppose we wish to maintain  𝜌𝜌 at level 0.1 and wish to detect whether its value has increased. Then, the 

hypothesis test is 𝐻𝐻0: 𝜌𝜌0 = 0.1  against alternative 𝐻𝐻1: 𝜌𝜌1 = 0.04. 

Let  𝑡𝑡0 = 0, 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, … … ..  be a discrete set of the number of customers remaining at points of departure in the 

𝑀𝑀/𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻2/1 queue. The number of customers remaining at the 100 points departure is given as the following: 

3  2  1  0  4  4  4  3  3  2  1  0  0  0  0  0  0  0  0  0  0  1  1  1  2  2  1  0  0  0  0  0  1  0  0  0  0  0  0  0  1  0  0  1  1  

0  0  0  2  1  0  1  1  1  1  0  4  3  2  1  4  3  2  1  2  1  1  0  0  0  1  0  0  0  0  0  1  2  2  2  1  1  0  1  0  0  0  0  0  0  

0  0  0  0  0  1  0  0  0  0 

The state space is 𝐸𝐸 =  {0,1,2,3,4,5,6,7 }. Table 1 shows 𝑛𝑛𝑖𝑖𝑖𝑖 that the number of transitions   𝑖𝑖 → 𝑗𝑗 

Table 1: The number of transitions   𝑖𝑖 → 𝑗𝑗 

     j 

i 

0 1 2 3 4 5 6  

0 41 9 1 0 2 0 0 53 

1 13 8 3 0 1 0 0 25 

2 0 8 3 0 0 0 0 11 

3 0 0 4 1 0 0 0 5 

4 0 0 0 3 2 0 0 5 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

       𝑛𝑛 = 99 

and Table 2 shows the values of 𝑐𝑐𝑖𝑖𝑖𝑖  calculating for SPRT. 

Table 2: The values of 𝑐𝑐𝑖𝑖𝑖𝑖  

    j 

i 

0 1 2 3 4 5 6 

0  0.76   0.24   -0.26   -0.75   -1.23   -1.70   -0.06 

1 0.76   0.24   -0.26   -0.75   -1.23   -1.70   -0.06 

2     0   0.76    0.24   -0.26   -0.75   -1.23   -0.09 

3     0      0    0.76     0.24   -0.26   -0.75   -0.12 

4     0      0       0     0.76     0.24   -0.26   -0.15 

5     0      0       0        0     0.76     0.24   -0.16 

6     0      0       0        0         0     0.76   -0.12 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 30, No  4, pp 122-137 

132 
 

𝑙𝑙𝑙𝑙 𝐿𝐿 = �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

= 53.13  

𝑙𝑙𝑙𝑙 𝐵𝐵 < �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 < 𝑙𝑙𝑙𝑙𝑙𝑙
𝑖𝑖,𝑗𝑗

 

−2.25 < �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 < 2.89
𝑖𝑖,𝑗𝑗

 

From 𝑙𝑙𝑙𝑙 𝐵𝐵 < ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 < 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑗𝑗 , the decision region , ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 ,  is small 𝑙𝑙𝑙𝑙𝑙𝑙 (53.13 > 2.89.) Therefore, the 

hypothesis  𝐻𝐻0 is rejected. 

For the computation of the OC and ASN of the SPRT, the largest latent root  𝜆𝜆0(𝑡𝑡,𝜌𝜌) of the 𝑃𝑃(𝑡𝑡) matrix is 

computed by fixing the values for 𝑡𝑡 and 𝜌𝜌.  Figure 3 shows the graphs of  𝜆𝜆0(𝑡𝑡,𝜌𝜌) which are plotted for the 

values of 𝑡𝑡 for different values of 𝜌𝜌. 

𝝀𝝀(
𝒕𝒕,
𝝆𝝆)

 

 
 𝒕𝒕 

 

 

Figure 3:  Graph of 𝜆𝜆(𝑡𝑡,𝜌𝜌)  aganist 𝑡𝑡 for testing 𝐻𝐻0: 𝜌𝜌0 = 0.5, 𝐻𝐻1: 𝜌𝜌1 = 0.8   

 

As can be seen in Figure 3, there exists one and only one real 𝑡𝑡0 ≠ 0 such that 𝜆𝜆0(𝑡𝑡0) = 1. The derivative of 

𝜆𝜆(𝑡𝑡,𝜌𝜌) at 𝑡𝑡 = 0  is computed.  The OC and ASN functions are then evaluated using the expressions between (9) 

and (14). The results of the OC and ASN functions for testing  𝐻𝐻0: 𝜌𝜌0 = 0.04  aganist  𝐻𝐻1:𝜌𝜌1 = 0.09  are given  

in Table 4 . 

Red   𝜌𝜌 = 0.5   Blue    𝜌𝜌 = 0.7 

Green   𝜌𝜌 = 0.6    Purple    𝜌𝜌 = 0.8 
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Table 3 shows the computation of the OC and ASN values. 

Table 3: The OC and ASN values 

𝝆𝝆 𝒕𝒕(𝝆𝝆) 𝝀𝝀𝟎𝟎′ (𝟎𝟎,𝝆𝝆) 𝑳𝑳(𝝆𝝆) 𝑬𝑬(𝒏𝒏,𝝆𝝆) 

             0.1 1 -0.0299 0.95 66.73 

  0.09 0.75 -0.0213 0.90 82.34 

  0.08 0.45 -0.0127 0.82 102.37 

  0.07 0.18 0.0041 0.67 136.10 

  0.06 0.20 0.0045 0.44 144.10 

  0.05 0.57 0.0131 0.24 127.18 

  0.04 -1 0.0217 0.10 109.76 

 

Example 2: Consider  a  𝑀𝑀/𝐶𝐶2/1 queue (with poisson arrivals, two phase-type Coxian service, fixed 𝑁𝑁). Let  

𝛼𝛼1 = 0.3 and  𝛼𝛼2 = 0.7  be the probability for the upper phase and the probability for the lower phase, and  

𝛼𝛼 = 0.1  and  𝛽𝛽 = 0.05 be the first and second type of errors, respectively. Let 𝑁𝑁 = 3 be the capacity of the 

queuing system. The mean value of ρ is calculated using the following formula, 

𝜌𝜌 =
𝜆𝜆(𝜇𝜇2 + 𝜇𝜇1𝛼𝛼1)

𝜇𝜇1𝜇𝜇2
                                                                                                        (26) 

Suppose we wish to maintain  𝜌𝜌 at the level 0.04 and we wish to detect whether its value is increased. Then, the 

hypothesis test is 𝐻𝐻0: 𝜌𝜌0 = 0.04  aganist alternative 𝐻𝐻1: 𝜌𝜌1 = 0.09. 

For 𝜌𝜌0 = 0.04; 

𝜎𝜎2𝑥𝑥1 = [1 0] 

    

𝑆𝑆2𝑥𝑥2 = �0.1 0.2
0.5 0.6� 

    

𝑆𝑆1𝑥𝑥20 = [ 0.3  0.6] 

   

𝐼𝐼2𝑥𝑥2 = �1 0
0 1� 

  

For 𝜌𝜌1 = 0.09; 
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𝜎𝜎2𝑥𝑥1 = [1 0] 

   𝑆𝑆2𝑥𝑥2 = �−1 0.3
0 −2� 

   𝑆𝑆1𝑥𝑥20 = [ 0.7  0.6] 

 𝐼𝐼2𝑥𝑥2 = �1 0
0 1� 

Let  𝑡𝑡0 = 0, 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, …  be a discrete set of the number of customers remaining at points of departure in the 

𝑀𝑀/𝐶𝐶2/1 queue. The number of customers remaining at the 20 points departure is given as the following, 

1  0  1  0  0  0  0  2  2  1  0  2  1  2  1  0  2  1  1  0     

State space is 𝐸𝐸 =  {0,1,2,3 }. Table 4 shows 𝑛𝑛𝑖𝑖𝑖𝑖 that the number of transitions   𝑖𝑖 → 𝑗𝑗   

Table 4: The number of transitions   𝑖𝑖 → 𝑗𝑗 

     j    

i 

0 1 2  

0 3 1 3 7 

1 5 1 1 7 

2 0 4 1 5 

   𝑛𝑛 19 

 

and Table 5  shows the values of 𝑐𝑐𝑖𝑖𝑖𝑖  calculating for SPRT. 

Table 5: The values of 𝑐𝑐𝑖𝑖𝑖𝑖  

     j 

i 

0 1 2 

0  0.87    -1.88     -0.14 

1  0.87    -1.88     -0.14 

2     0      0.87     -0.90 

 

𝑙𝑙𝑙𝑙 𝐿𝐿 = �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖,𝑗𝑗

=  5.19 
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−2.25 < �𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 < 2.89
𝑖𝑖,𝑗𝑗

 

From 𝑙𝑙𝑙𝑙 𝐵𝐵 < ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 < 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑗𝑗 , the decision region , ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 ,  is smaller than 𝑙𝑙𝑙𝑙𝑙𝑙 (5.19 > 2.89) Therefore, 

the hypothesis  𝐻𝐻0 is rejected. 

For the computation of the OC and ASN of the SPRT, the largest latent root  𝜆𝜆0(𝑡𝑡,𝜌𝜌) of the 𝑃𝑃(𝑡𝑡) matrix is 

computed by fixing the values for 𝑡𝑡 and 𝜌𝜌.  Figure 3 shows the graphs of  𝜆𝜆0(𝑡𝑡,𝜌𝜌) which are plotted aganist the 

values of 𝑡𝑡 for different values of 𝜌𝜌.   

𝝀𝝀(
𝒕𝒕,
𝝆𝝆)

 

 

Figure 3: Graph of    𝜆𝜆(𝑡𝑡,𝜌𝜌)  aganist 𝑡𝑡 for testing 𝐻𝐻0: 𝜌𝜌0 = 0.5, 𝐻𝐻1: 𝜌𝜌1 = 0.8 

 

As can be seen in Figure 3, there exists one and only one real 𝑡𝑡0 ≠ 0 such that 𝜆𝜆0(𝑡𝑡0) = 1. The derivative of 

𝜆𝜆(𝑡𝑡,𝜌𝜌) at 𝑡𝑡 = 0  is computed.  The OC and ASN functions are then evaluated using the expressions between (9) 

and (14). The results of the OC and ASN functions for testing  𝐻𝐻0: 𝜌𝜌0 = 0.04  aganist  𝐻𝐻1:𝜌𝜌1 = 0.09  are given  

in Table 6. 

Red   𝜌𝜌 = 0.5   Blue    𝜌𝜌 = 0.7 

Green   𝜌𝜌 = 0.6    Purple    𝜌𝜌 = 0.8 
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Table 6: The OC and ASN values 

𝝆𝝆  𝒕𝒕(𝝆𝝆) 𝝀𝝀𝟎𝟎′ (𝟎𝟎,𝝆𝝆) 𝑳𝑳(𝝆𝝆) 𝑬𝑬(𝒏𝒏,𝝆𝝆) 

0.04 1 -0.0164 0.90 145.43 

0.05 0.50 -0.0087 0.73 173.99 

0.06 0.11 -0.0011 0.52 314.76 

0.07 -0.34 0.0065 0.40 156.05 

0.08 -0.67 0.0141 0.11 119.16 

0.09 -1 0.0216 0.05 92.34 

 

6.  Conclusion 

The objective of the control technique is to detect changes in the traffic intensity 𝜌𝜌 as quickly as possible, then 

take appropriate corrective action and  determine how much of a sample size is needed in the applications.  

Here, the value of 𝜇𝜇 needed  to calculate the traffic intensity is taken from the mean 𝜇𝜇 (25). If you recall, the 

purpose of a control technique is to detect changes in the traffic intensity𝜌𝜌. When 𝜌𝜌  shifted to 𝜌𝜌1 from the 

design level 𝜌𝜌0 (𝜌𝜌1 < 𝜌𝜌0) , is taken appropriate action to bring 𝜌𝜌1  back to the design level 𝜌𝜌0. In the same way, 

when 𝜌𝜌  shifted to 𝜌𝜌1 from the design level 𝜌𝜌0 (𝜌𝜌1 > 𝜌𝜌0) , is taken appropriate action to bring 𝜌𝜌1  back to the 

design level 𝜌𝜌0 [9]. Consequently, the control action could be to increase mean 𝜇𝜇  or decrease  mean 𝜇𝜇 for the 

phase-type queueing systems. 
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