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Abstract 

Modelling dependence structure between variables is commonly investigated in literature. A large variety of 

methods have been improved in recent times. One of the methods is the copula which models accurately 

dependency regardless of marginal distributions. In this paper Value-at-Risk (VaR) is computed using the 

copulas. It is assumed that the dependency does not vary through time since small time interval is used. The 

study composes of two steps. In the first step the best fitted copula is determined by ML (Maximum likelihood). 

In the second step equal-weighted portfolio analysis is performed by joint distribution function obtained from 

the copula and maximum possible losses of the portfolio are evaluated. The main challenge in portfolio analysis 

is that joint distribution function for stocks cannot be correctly constructed by considering dependence structure 

among them. We obtain joint distribution function for stocks using the copula approach that has been commonly 

used in recent times. After the best fitted copula is determined using the criterions such as AIC (Akaike 

information criterion) and SBC (Schwarz’s Bayesian Criterion), next-day maximum possible losses for the 

portfolio are evaluated by means of equal weighted portfolio technique. 
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1. Introduction  

Copula, which means linking or relating, was first revealed statistically and mathematically by Sklar [1]. 

Copulas construct a link between multivariate distribution function and its marginals. Using the copulas 

provides a significant flexibly when dependence is considered. Multivariate distribution function composes of 

both marginals and dependence structure referring to random variables.  

In modelling multivariate distributions, the copula approach provides a method to decompose dependence 

structure from marginal distributions. In general sense, copula is a function that redefine joint distribution 

function 𝐼𝐼2 → 𝐼𝐼 by means of marginal distribution functions when random variables are dependent. Copulas 

have played crucial role in statistics field including probability and Markov process, nonparametric distributions 

and multivariate distribution theory. Besides, copulas have theoretically a crucial position in statistics since it is 

an important tool in constructing bivariate or multivariate distribution families when marginal distributions are 

given. The authors in [2] suggest an estimator for distribution parameter based on Kendall distribution in 

Archimedean copulas. Eventually they compare their results with the authors in [3] estimation method on 

simulated data. The authors in [4] show that random variable vector having an Archimedean copula can be 

written as a product of simplex vector and radial variable. Taylor [5] compiles axioms that require to proving 

multivariate concordance measures. The authors in [3] suggest new estimators based on order statistics for 

multivariate Archimedean copulas. Berger [6] characterizes the effect of the basis copula on the risk analysis 

with special attention to Value-at-Risk (VaR) estimates. The authors in [7] suggest an Empirical Mode 

Decomposition Copula for evaluating the portfolio risk and forecasting Value-at-Risk (VaR). The authors in [8] 

utilize a serial dependence structure of financial assets to forecast flexibly risk values by means of pair-copula-

construction (PCC). The copula approach constructs accurately a new joint distribution by considering 

dependence structure between variables. In this paper Value-at-Risk (VaR) is evaluated using the copula. This 

overcomes to difficulty of constructing joint distribution function for the portfolio. Five stocks in Istanbul Stock 

Exchange are taken to evaluate the Value-at-Risk. Uniform inputs are needed since the copula is defined in 

interval [0, 1]. For this purpose marginals are transformed into uniform by means of ECDF (Empirical 

Cumulative Distribution Function). Next the best fitted copula is determined by information criterion such as 

AIC and SBC. Finally, next-day maximum possible losses for the portfolio are evaluated using the joint 

distribution function constructed by means of the copula.   

2. Theory of Copulas 

2.1. Definition of Copula 

Let 𝑢𝑢 = (𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑛𝑛) with 𝑢𝑢𝑖𝑖ϵ [0,1] be a vector of n-variables. A function 𝐶𝐶(𝑢𝑢): [0,1]𝑛𝑛 → [0,1] is called as an 

n-dimensional copula if and only if it holds conditions as follows: 

• 𝐶𝐶(𝑢𝑢) = 𝑢𝑢𝑘𝑘 if all coordinates of u are 1, except 𝑢𝑢𝑘𝑘 ; 

• 𝐶𝐶(𝑢𝑢) = 0 if at least one of the coordinates of u is zero; 

• 𝐶𝐶 is increasing in each coordinate of u. 
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2.2. Sklar’s Theorem 

According to Sklar’s theorem, a joint cumulative distribution function H of random variables X1, X2, … , Xn, with 

continuous marginal distributions 𝐹𝐹1, 𝐹𝐹2, … , 𝐹𝐹𝑛𝑛  respectively can be qualified by a single n-dimensional 

dependency function or copula C, such that for all vectors 𝑥𝑥𝑥𝑥𝑅𝑅𝑛𝑛����:  

𝐻𝐻(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝐶𝐶�𝐹𝐹1(𝑥𝑥1), 𝐹𝐹2(𝑥𝑥2), … , 𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)� 

= 𝑃𝑃{𝑋𝑋1 ≤ 𝑥𝑥1, 𝑋𝑋2 ≤ 𝑥𝑥2, … , 𝑋𝑋𝑛𝑛 ≤ 𝑥𝑥𝑛𝑛}                                                                                         (1) 

Copula function 𝐶𝐶 is uniquely defined if 𝐹𝐹1, 𝐹𝐹2, … , 𝐹𝐹𝑛𝑛 are continuous. In this case univariate marginals can be 

separated from the multivariate dependence structure represented by a copula. However it is not possible to 

assume that copula of Eq(1) is unique if 𝐹𝐹1, 𝐹𝐹2, … , 𝐹𝐹𝑛𝑛 are discrete. As an alternative representation, Eq(1) can be 

written in the inverted form. For any vector 𝑢𝑢 𝜖𝜖 [0,1]𝑛𝑛:  

𝐶𝐶(𝑢𝑢1, 𝑢𝑢2, …,𝑢𝑢𝑛𝑛) = 𝐻𝐻�𝐹𝐹1−1(𝑢𝑢1), 𝐹𝐹2−1(𝑢𝑢2), … , 𝐹𝐹𝑛𝑛−1(𝑢𝑢𝑛𝑛)�                                                                                       (2) 

Where 𝐶𝐶  denotes the copula associated with 𝐻𝐻  and 𝐻𝐻−1(𝑢𝑢) = inf {𝑥𝑥𝑥𝑥ℝ|𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖) ≥ 𝑢𝑢} , 

 𝑖𝑖 = 1, … , 𝑛𝑛 , constitutes generalized inverse function of 𝐹𝐹 . Then 𝑥𝑥1 = 𝐹𝐹1−1(𝑢𝑢1)~𝐹𝐹1 ,…, 𝑥𝑥𝑛𝑛 = 𝐹𝐹𝑛𝑛−1(𝑢𝑢𝑛𝑛)~𝐹𝐹𝑛𝑛 . I 

follows that an n-copula is a multivariate distribution with all n univariate margins distributed as uniform [9]. 

2.3. Definition 

Under Eq.(1), h  joint probability density function can be described as n-th order derivative of a copula: 

ℎ(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 𝜕𝜕𝑛𝑛𝐶𝐶(𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2),…,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛))
𝜕𝜕𝐹𝐹1(𝑥𝑥1)…𝜕𝜕𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)

∏ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1                           

= 𝑐𝑐�𝐹𝐹1(𝑥𝑥1), 𝐹𝐹2(𝑥𝑥2), … , 𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)��𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

                                                                                        (3) 

Where 𝐹𝐹𝑖𝑖, 𝑓𝑓𝑖𝑖 are marginal distribution and marginal density function, respectively. There are a large variety of 

copulas in literature. In this section crucial properties of elliptical copulas and Archimedean copula families are 

introduced. 

2.4. Elliptical Copulas 

In this subsection two elliptical copulas are outlined with important properties. 

2.4.1. Normal Copula 

Let 𝑢𝑢(𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑘𝑘) ~ U(0,1)  where U(0,1) is known as uniform distribution. Let Σ be correlation matrix with 

k(k-1)/2 parameters holding the positive semi-definiteness restriction. The normal copula is written as follows: 
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𝐶𝐶𝛴𝛴(𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑘𝑘) = 𝜑𝜑𝛴𝛴�𝜑𝜑−1(𝑢𝑢1), … , 𝜑𝜑−1(𝑢𝑢𝑘𝑘)�                                                                                                   (4) 

where 𝜑𝜑  is called as distribution function of a standard normal random variable and 𝜑𝜑𝛴𝛴  is  

k-variate standard normal distribution such that its mean vector is 0 and its covariance matrix is Σ. In other 

words, the distribution 𝜑𝜑𝛴𝛴 is 𝑁𝑁𝑘𝑘(0, Σ). 

2.4.2. Student’s T Copula 

Let 𝜔𝜔 = {(𝑣𝑣, 𝛴𝛴): 𝑣𝑣 ∈ (1,∞), Σ ∈ R𝑘𝑘𝑘𝑘𝑘𝑘} and let 𝑡𝑡𝑣𝑣 be a univariate t distribution. Where 𝑣𝑣 represents the degress 

of freedom that is parameter of t distribution. The Student’s t copula can be expressed as follows:  

𝐶𝐶𝜔𝜔(𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑘𝑘) = 𝑡𝑡𝑣𝑣,𝛴𝛴�𝑡𝑡𝑣𝑣−1(𝑢𝑢1), 𝑡𝑡𝑣𝑣−1(𝑢𝑢2), … , 𝑡𝑡𝑣𝑣−1(𝑢𝑢𝑘𝑘)�                                                                                   (5) 

Where 𝑡𝑡𝑣𝑣,𝛴𝛴  is the multivariate Student’s t distribution. Σ that is correlation matrix and 𝑣𝑣  being degrees of 

freedom are the parameters of the distributions. 

2.5. Archimedean Copulas 

Archimedean copulas are the most important class in copulas. “Archimedean” term was first used in 1965. Most 

of copulas are Archimedean and Archimedean copulas have a large variety and different dependence structure. 

In contrast to most of copula functions, these copulas are not constructed by using Sklar’s Theorem. 

Archimedean copulas have a great numbers of application fields due to easily constructing, existing many 

copula families and having a broad range of features pertaining to the class. For detailed information on 

Archimedean copulas, Joe [10] and Nelsen [11] can be viewed. Archimedean copulas that are private class of 

copula family represent a variety of family. Some of these are shown below. 

Table 1: Clayton copula family and features 

Copula 𝑪𝑪𝜽𝜽(𝒖𝒖, 𝒗𝒗) = 𝒎𝒎𝒎𝒎𝒎𝒎 ([𝒖𝒖−𝜽𝜽 + 𝒗𝒗−𝜽𝜽 − 𝟏𝟏]
−𝟏𝟏
𝜽𝜽 , 𝟎𝟎) 

 

𝜽𝜽 ∈ [−𝟏𝟏,∞) − {𝟎𝟎} 
Generator Function 𝜑𝜑(𝑡𝑡) =

1
𝜃𝜃

(𝑡𝑡−𝜃𝜃 − 1) 

Feature It is an asymmetric copula family. Lower tail exhibits larger dependence than upper tail. 

Table 2: Frank copula family and features 

Copula 𝑪𝑪𝜽𝜽(𝒖𝒖, 𝒗𝒗) = −
𝟏𝟏
𝜽𝜽
𝒍𝒍𝒍𝒍 �𝟏𝟏 +

(𝒆𝒆−𝜽𝜽𝜽𝜽 − 𝟏𝟏)(𝒆𝒆−𝜽𝜽𝜽𝜽 − 𝟏𝟏)
(𝒆𝒆−𝜽𝜽 − 𝟏𝟏) � 

𝜽𝜽 ∈ (−∞,∞) − {𝟎𝟎} 

Generator Function 𝜑𝜑(𝑡𝑡) = − ln
e−θt − 1
e−θ − 1

 

Feature It is a symmetric Archimedean copula. It doesn’t exhibit tail dependence.  
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Table 3: Gumbel copula family and features 

Copula 𝑪𝑪𝜽𝜽(𝒖𝒖, 𝒗𝒗) = 𝒆𝒆𝒆𝒆𝒆𝒆 �−[(−𝒍𝒍𝒍𝒍𝒍𝒍)𝜽𝜽 + (−𝒍𝒍𝒍𝒍𝒍𝒍)𝜽𝜽]
𝟏𝟏
𝜽𝜽� 

𝜽𝜽 ∈ [𝟏𝟏,∞) 
Generator 

Function 
𝜑𝜑(𝑡𝑡) = (−𝑙𝑙𝑙𝑙𝑙𝑙)𝜃𝜃 

Feature 
It is an asymmetric Archimedean copula. Upper tail exhibits larger dependence than 

lower tail. 

 

2.6. Estimation 

Portfolio analysis based on the copula composes of two steps. In the first step to calculate maximum loses of 

portfolio, the marginals of each stock are determined. For this purpose ECDF (empirical cumulative distribution 

function) can be used. In the second step, joint distribution function can be estimated via the copula. Copulas are 

functions that are defined in interval[𝟎𝟎, 𝟏𝟏]. Before estimating the parameter of copulas, uniform inputs are 

needed to obtain. To this end, observations are transformed into uniform distribution by implementing ECDF 

(empirical cumulative distribution function). In this paper, copulas with one parameter are examined. Copulas 

used for this aim are elliptical copulas e.g. Gaussian, Student’s t and Archimedean copulas e.g. Clayton, Frank, 

Gumbel. After uniform inputs are obtained, parameter estimation is implemented by ML (Maximum 

Likelihood). The marginal distributions of vector elements 𝒖𝒖𝒊𝒊 = (𝒖𝒖𝒊𝒊𝒊𝒊, 𝒖𝒖𝒊𝒊𝒊𝒊, … , 𝒖𝒖𝒊𝒊𝒊𝒊)  𝒊𝒊 = 𝟏𝟏, … , 𝒏𝒏  are uniform 

inputs. Then the parameter 𝜽𝜽 is estimated by maximum likelihood: 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝜃𝜃𝜃𝜃

�𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐(𝑢𝑢𝑖𝑖1, 𝑢𝑢𝑖𝑖2, … , 𝑢𝑢𝑖𝑖𝑖𝑖; 𝜃𝜃)                                                                                                  (6)
𝑛𝑛

𝑖𝑖=1

 

In the next step new samples for each daily returns are simulated by means of the fitted joint distribution. After 

these assets are unified with a portfolio and its daily returns are evaluated. In the final step quantiles of 

simulated portfolio returns are investigated. 

3. The Data and Empirical Results 

3.1. The Data Description 

The data set is composed of five stocks that increased values in İstanbul stock exchange: Goodyear tire & rubber 

company (GOODY), Doğuş automotive service and trade joint stock company (DOAS), Pegasus  airlines 

company (PGSUS), TAV airports holding (TAVHL), Turkish airlines corporation (THYAO). The sample 

begins in 06/05/2014 to 11/10/2016 giving us 611 observations. Asset portfolio is created from this five stock 

obtained from İstanbul stock exchange. In this paper, Value-at-risk (VaR) of the portfolio including five stocks: 

GOODY, DOAS, PGSUS, TAVHL and THYAO are examined via the copula approach. Value-at-Risk (VaR) is 

a computation used in financial risk evaluation. The goal of this computation is to present some numerical 
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perception to the risk level of an asset portfolio. This computation gives the maximum potential losses at a 

certain confidence level. The target of this study is to estimate the one-day later maximum potential losses for 

the portfolio of stocks constructed with the copula approach. In this sense one of approaches used for the 

estimation is to assume that the joint distribution of asset returns does not vary during time. In this case results 

are so close to truth if and only if a small time interval is utilized. Stocks interested in this study have increased 

in recent times. So, the main result expected is how many maximum loses of investors can be when they buy 

these stocks for the portfolio.  

Table 4: Descriptive statistics of the return series 

 Goody Doas Pgsus Tavhl Thyao 

Mean 0,000796 0,00031 -0,001446 -0,000333 -0,000376 

SD 0,023914 0,02109 0,016776 0,016975 0,016826 

Skewness 1,336 -1,0833 -0,3403 -0,6057 -0,7531 

Kurtosis 16,1955 7,8681 6,5055 8,2171 10,4639 

Min -0,1204 -0,1124 -0,0939 -0,1186 -0,1237 

5% -0,032 -0,0316 -0,0284 -0,0269 -0,0274 

25% -0,0107 -0,009 -0,01 -0,0092 -0,0096 

Median 0 0,0012854 -0,0009804 0 0,0008754 

75% 0,009 0,0119 0,0085 0,0089 0,009 

95% 0,0345 0,0302 0,0249 0,0259 0,0233 

Observations 610 610 610 610 610 

 

Table 4 gives descriptive statistics of the series. Non-normality of the data series is clear from the values for 

skewness and kurtosis.  

In this case, the copula approach provides an efficient method to model the dependency among variables. Thus, 

joint distribution function obtained by means of copulas gives more robust results concerning the portfolio. 

Gaussian copula model is ignored due to non-normality of the data.  

3.2. Empirical Results 

In this section, only four copulas are investigated due to nonlinearity of the data. These copulas are Student’s T 

from elliptical copula, Frank, Clayton and Gumbel from Archimedean copulas. Estimated results for these 

copulas are demonstrated in Table 5.  

The choice of the best fitted copula model is based on Akaike information criterion (AIC) and Schwarz’s 

Bayesian Criterion (SBC). The results obtained show that the best fitted copulas for the returns of five stocks is 

Student’s T copula. AIC and SBC values of the copula are -976.4080 and -927.8780, respectively.  
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Table 5: The estimated results for copulas 

Copulas Parameter SE AIC SBC 

Student’s T 10,5546 1,9961 -976,408 -927,878 

Frank 2,5678 0,1191 -623,8091 -619,3973 

Clayton 0,5933 0,0286 -723,7875 -719,3756 

Gumbel 1,3402 0,0195 -585,004 -580,5922 

The correlation matrix for the best fitted copula is given in Table 6. The results show that correlations between 

returns of the stocks are rather different. Under all samples there are positive correlations among returns. The 

strongest correlation is between Pgsus and Thyao. However the correlation between Goody and Doas is the 

lowest with respect to the best fitted copula. Plots of the returns and transform returns are given in Figure 1. 

While the returns that have the strongest dependence show denser diffusion along the diagonal, the returns of 

Doas and Goody that have the lowest dependence exhibit less denser diffusion along it. Dependence path of the 

best fitted copula are showed in Figure 2. This implies that data simulated from real data represents the same 

pattern with the returns. In this sense the estimations obtained from the best fitted copula give more robust 

results. Plots for other copulas are presented in annex (Figure A1. in Annex). After examined the correlation 

matrix, next step is to simulate data from the best fitted copula to construct the portfolio concerning five stocks. 

The number of the simulation can be taken the value of 12000. 

Table 6: Correlations between returns for the whole sample 

  Goody Doas Pgsus Tavhl Thyao 

Goody 1 0,29963 0,43151 0,3385 0,44601 

Doas 0,29963 1 0,44102 0,31492 0,50803 

Pgsus 0,43151 0,44102 1 0,43052 0,74103 

Tavhl 0,3385 0,31492 0,43052 1 0,46039 

Thyao 0,44601 0,50803 0,74103 0,46039 1 

Table 7: Descriptive statistics of the created portfolio 

Statistics Value 

Mean -0,00032 

SD 0,01625 

Variance 0,00026 

Median 0,00016 

Range 0,30149 

Skewness -1,85993 

Kurtosis 21,0503 

MSE 0,00014 
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Descriptive statistics of the portfolio created is presented in Table 7. The value of MSE is quite small. This 

implies that the model selected is appropriate for the portfolio that will be created. The inference from this 

model is rather robust for calculating the risk regarding the portfolio.  In this step of the paper the equally 

weighted next day portfolio return is evaluated. Firstly each of the returns is transformed into nominal scale. 

After all returns are given equal weights, the result is transformed into a net return by subtracting one. 

Eventually empirical quantiles of simulated daily portfolio return are evaluated. 

Table 8: The return quantiles of the created portfolio 

Quantile Estimate 

100 % Max 0,102695 

99% 0,040545 

95% 0,02153 

90% 0,015967 

75 % Q3 0,000785 

Table 8 shows that the with 99 % maximum potential losses based on an equally weighted portfolio for the next 

day does not surpass 4 %. In other words, with % 99 maximum potential losses for the portfolio constructed 

based on the copula approach are 4 %. Maximum potential losses of the portfolio with 95 % and 90 % are 2.1 

and 1.5, respectively. For Frank, Clayton and Gumbel copula, the return quantiles of the created portfolio are 

given in annex (Tables A1-A3).  

 

Figure 1: Dependence path of the returns and the transformed returns, respectively. 

 

Figure 2: Dependence path of the Student’s T copula with empirical margins. 
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4. Conclusion 

This study investigated the modelling of dependency. It is quite difficult to determine dependence structure 

when relationship is nonlinear and distribution of variables is not appropriate for normal distribution. In this 

case copulas are commonly used and play crucial role in modelling the dependence structure between variables 

regardless of marginals. In this paper portfolio analysis was performed by considering dependence structure 

between variables. Five stocks that have increased in value recently were investigated and the portfolio 

concerning these stocks was constructed. Marginals of each stock were transformed into joint distribution 

function by taking into consideration dependence structure between variables. The portfolio of these stocks was 

constructed by means of new joint distribution function obtained. In this analysis each stock was given an equal 

weight to create the portfolio. Next-day maximum possible losses of the portfolio were computed using the best 

fitted copula. In consequence of the study it was seen that the copula approach provides crucial flexibilities to 

construct the joint distribution function. In general the values of stocks are distributed as heavy-tailed. In this 

case a tool that can be model the best for the stocks is needed. İrrespective of marginals, copulas constructs the 

joint distribution to evaluate Value-at-Risk. Besides, the copula does not require too much assumption compared 

to other methods modelling the dependence structure. Since the dependency was modelled correctly, the results 

obtained using the copulas are rather robust and reliable. On the whole, buying the portfolio of stocks 

considered will be benefit for investors since the portfolio indicates low risk. In this sense this paper leads the 

investor to evaluate risk level for the portfolio. Moreover the study guides to investigations in economics field 

such as banking, insurance in evaluating risk and determining investment tools.   
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Appendix 

Table A1: The return quantiles of the created portfolio with respect to Frank copula 

Quantile Estimate 

100 % Max 0,079326 

99% 0,032772 

95% 0,020922 

90% 0,016128 

75 % Q3 0,008527 

 
 

 

Table A2: The return quantiles of the created portfolio with respect to Clayton copula 

Quantile Estimate 

100 % Max 0,069381 

99% 0,029145 

95% 0,018158 

90% 0,014387 

75 % Q3 0,008213 
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Table A3: The return quantiles of the created portfolio with respect to Gumbel copula 

Quantile Estimate 

100 % Max 0,111311 

99% 0,041415 

95% 0,022286 

90% 0,015478 

75 % Q3 0,006445 

 

 

 

 

Figure A1: Dependence path of Frank, Clayton, Gumbel copula with empirical margins, respectively. 


