Design and Synthesis of Novel NSAIDs Class Acting as Anticancer Agents

Mona S. Kadah ${ }^{\text {a }}$, A. A. Elhenawy ${ }^{b^{*}}$, Reda D. Abd - Elghany ${ }^{\text {c }}$, M. K. Hassanein ${ }^{\text {d }}$
${ }^{a}$ Chemistry Department, Faculty of Science, Al-Azhar University (Girls Branch), Nasr City, Cairo-Egypt, Tel: ++966508678586
${ }^{b}$ Chemistry Department, Faculty of Science, Al-Azhar University (Boys Branch), Nasr City, Cairo-Egypt
${ }^{c, d}$ Central Laboratory for Agricultural Climate, Agricultural Research Center, Ministry of Agriculture and Reclamation, Egypt
${ }^{a}$ Email: elhenawy_sci@hotmail.com

Abstract

Several effective anticancer therapeutic drugs containing coumarin nucleus. Thus, some coumarin derivatives 322 were prepared. The structures of these compounds established on the basis of spectral data as IR, ${ }^{1} \mathrm{HNMR}$, ${ }^{13}$ CNMR and MS. Moreover, the optimization geometries for compounds 3-13,15,17a,18a, 19-22 were discussed using PM3 base set. The molecular docking simulations into the active site of COX-2 were performed, and showed that, some compounds $7,8,11,13$, and 20 are suitable inhibitor against COX-2, and can used as anti-cancer drugs. The compounds $7,8,11,13$ and 20 were evaluated on $50 \mu \mathrm{~g}$ dose, against Ehrlich solid carcinoma (EAC) tumor model in Swiss albino mice . The activity was assessed using survival time and average increase in body weight, and showed that, these compounds are effective in reducing solid tumor mass EAC cells, and 20 showed highest potency. In silico, The ADMET profiles showed that, these 7,8, 11,13 and 20 compounds are good oral bioavailability, and are CNS active agents without marked health effects observed for rodent toxicity.

Keywords: NSAIDs; Coumarin; Anticancer agent; ADMET; DOCKIN and EAC.

[^0]
1. Introduction

Cancer is a major public health [1], which known as metastasis [2-4]. The chemotherapy agent is primary strategy for treatment of tumor cell, which depending on poisoned cancer cell [5]. Non-steroidal antiinflammatory drugs (NSAIDs) are effective in different clinical setting, which widely employed with Patients suffering musculoskeletal and inflammatory diseases [6-9], and act as COX-2 inhibitors, through inhibiting the production of prostaglandins (PGs) [10-12]. The PGS level are increased in various tumor types, the inflammation plays a vital role in formation of tumor cell, and inhibit prostaglandin biosynthesis, which is responsible for the NSAIDs chemo preventive activity of [13-16]. Some famous marketing drugs (Strcture1) are suffering from gastrointestinal drawback [17-19]. Coumarin derivatives are a novel class of inhibitors of the carbonic anhydrase (CA) [20-22]. CA is a metalloenzymes family, which involved providing bicarbonate radical through an important physiological reaction [23-27]. The bicarbonate is important for formation tumor cell, reduction supplies of bicarbonate radical is suggested mechanism action of CA inhibitors (CAIs) [27]. Coumarin nucleus inhibit many isoforms CA I-CA XV, through the hydrolyzed coumarin nucleus to 2hydroxycinnamic acid, which bind with CA to form enzyme-inhibitor adduct [28-30].

In addition, the hydrophobic amino acid derivatives especially containing amide and thioamide moieties possess diverse biological activities, as anti-inflammatory, anti-tumor and antimicrobial activities [7-9]. Hence, the present work aims to synthesis a novel class series of NSAIDs containing phenylalanine moiety acting as new anticancer agent targeting COX-2. The molecular docking was carried out, to predict the correct binding geometries for each ligand at the active site, followed by molecular modelling to identify the structural features of these new Class.

2. Experimental

Melting points were taken on a Griffin melting point apparatus and are uncorrected. Thin layer chromatography $\left(\mathrm{R}_{\mathrm{f}}\right)$ for analytical purposes were carried out on silica gel and developed. Benzidine, ninhydrin, and
hydroxamate tests used for detection reactions. The IR spectra of the compounds were recorded on a PerkinElmer spectrophotometer model 1430 as potassium bromide pellets and frequencies are reported in cm^{-1}. The NMR spectra were observed on a Varian Genini- 300 MHz spectrometer and chemical shifts (δ) are in ppm. The mass spectra were recorded on a mass spectrometer HP model MS-QPL000EX (Shimadzu) at 70 eV . Elemental analyses (C,H,N) were carried out at the Microanalytical Centre of Cairo University, Giza, Egypt.

Swiss albino mice were collected with age form 5 weeks to 7 weeks old, and weighing $18-25 \mathrm{~g}$ from the National Cancer Institute (Cairo, Egypt) (NCIE), Cairo. The mice were kept in iron cages with sawdust and straw bedding that were changed once a week regularly. Standard mouse diet (recommended and prepared by the (NCIE) and water were given in adequate amounts.

EAC cells were obtained from a line of EAC cells were obtained from the Cancer Biology Department of the National Cancer Institute (Cairo, Egypt). Body weight was balance by using Sartorious (500.0) g AC-DC CHARGER MODEL:MW79.

Tumor volume was measured by VERNIER CALIPER 150X0.02 MM/6 XL/1000 and viable cell count was determined in a neubauer counting chamber.

2.1. 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl chloride(2)

The starting material (2) was prepared as mentioned by elhenawy and his colleagues [5].

2.2. 2-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamido)-3-phenylpropanoic acid (3)

L-phenylalanine(L-Phe.) was dissolved in $1 \mathrm{~N}-\mathrm{NaOH}$, acid chloride (2; 0.01 mol) in acetone was added portionwise during $1 / 2 \mathrm{~h}$ at $10^{\circ} \mathrm{C}$, the stirring was continued for additional 3 h ., the acetone was removed by concentration of the reaction mixture under reduced pressure, water was added, and acidified with 1 N HCl to $\mathrm{pH}=5$. The crude product (3) was filtered and re-crystallized from ethanol- water to give compound (3) as dark brown crystals. The crude product (3) was obtained in 80% yeild $\mathrm{R}_{\mathrm{f}}=0.85$ (CH2-Phe/MeOH=3/1); M.P. $=90-$ 92C ${ }^{\circ}$; IR (KBr cm ${ }^{-1}$) v; $3405 \mathrm{~cm}^{-1}(\mathrm{OH}) ; 3201 \mathrm{~cm}^{-1}(\mathrm{NH}), 3090$ (CH-arm.); $2973 \mathrm{~cm}^{-1}$ (CH-ali); 1722, $1665 \mathrm{~cm}^{-1}$ (C=O); ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform) $\delta=10.40$ (s, $1 \mathrm{H}, \mathrm{OH}$-Carboxylic), 8.75(s,1H,OH-arm.), 7.21-6.7 (m,9H, CH-Arm..), 5.55 (s,1H,NH), 4.94(m,1H,CH-Phe), 3.54(s,2H, CH ${ }_{2}$-ali.), 2.84 (d,2H,CH2-Phe); Anal./Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{6}$ (367):C (65.37\%), $\mathrm{H}(4.63 \%), \mathrm{N}$ (3.81\%). Found: C (65.39); $\mathrm{H}(4.66)$; $\mathrm{N},(3.81)$.

2.3. 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetylisothiocyanate (5)

A mixture of compound ($2,0.01 \mathrm{~mol}$) and $\mathrm{NH}_{4} \mathrm{SCN}(0.01 \mathrm{~mole})$ in acetone (10 ml .) was stirred for 30 mins ., the NH 4 Cl formed was filtered off, the filtrate containing compound (5) was used in other experiment without further purification.

2.4. 2-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamido)-3-phenylpropanoyl chloride (6)

The compound ($3 ; 0.01 \mathrm{~mol}$) in acetone (10 ml), was heated with SOCl_{2} (0.01 mol .) for 30 mins. The acid chloride (6) formed, which used directly in other experiments.

2.5. 2-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamido)-3-phenyl-N-(4-sulfamoylphenyl)propanamide (7).

Sulfanilamide (0.01 mol) in acetone with acid chloride ($5 ; 0.01 \mathrm{~mol}$), the reaction mixture was continued stirring for additional 3 hrs. at room temperature. After evaporation of the reaction mixture, the resulting crystals was filtered and recrystallized from benzene to give compound (7) as brownish red crystals. The compound was obtained in (75) \% yield. $\mathrm{Rf}=0.96(\mathrm{CH} 2-\mathrm{Phe} / \mathrm{MeOH}=3 / 1) ; \mathrm{M} . \mathrm{P} .=135-37 \mathrm{C}^{\circ} ; \mathrm{IR}\left(\mathrm{KBr} \mathrm{cm}{ }^{-1}\right) \mathrm{v} ; 3353 \mathrm{~cm}^{-1}$ (OH), $3242 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 2963 \mathrm{~cm}^{-1}$ (CH-ali), $1706 \mathrm{~cm}^{-1}$ (C=O), $1621 \mathrm{~cm}^{-1}$ (CONH amide), 1335,1230 cm^{-1} $\left(\mathrm{SO}_{2} \mathrm{NH}_{2}\right.$ and $\left.\mathrm{SO}_{2}\right)$; MS (m/z, \%) 522 (40.28\%), Anal./Calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$: C (59.86\%), H (4.41\%), N (8.05\%). Found: C (59.88); H (4.45); N, (8.06).

2.6. Methyl-2-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamido)-3-phenyl-propanoate (8)

The thionyl chloride (0.01 mol .) was added in dropwise during 30 mins, to a stirred cold solution $\left(5^{\circ} \mathrm{C}\right)$ of compound ($3 ; 0.01 \mathrm{~mol}$) in absolute methanol (30 ml .). The stirring was continued for additional 3 hrs . at ($5{ }^{\circ} \mathrm{C}$), the mixture was left for 24 hrs . at room temperature. The mixture was removed under reduced pressure, another portion of abs. methanol (10 ml .) was added and re-evaporated. The solid obtained was recrystallized from benzene to give Compound (8) as brown crystal in 90% yeild, $\mathrm{Rf}=0.87$, (CH2-Phe/MeOH=3/1); M.P.146-48 C^{0}, IR (KBr cm ${ }^{-1}$) v; $3275 \mathrm{~cm}^{-1}$ (NH), $2964 \mathrm{~cm}^{-1}$ (CH-ali..), $1721 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$), $1619 \mathrm{~cm}^{-1}$ (CONH amide); ${ }^{1} \mathrm{H}$ NMR (300 MHz, Chloroform) $\delta=8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}$), 7.686 .33 (m, $9 \mathrm{H}, \mathrm{CH}-\mathrm{arm}$.), 5.42 (s,1H,NH), $4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-$ Phe), 3.74(s,3H.CH3, OCH_{3}), 3.32 (s,2H,CH2-ali..), 2.89 (d, 2H,CH2-Phe), 13CNMR $\delta=172.30,172.18$, (2C, $\mathrm{C}=\mathrm{O}$),162.64-126.90(13C,C-arm..), 104.44(C-CH2.ali..), 53.84 (C-CH-Phe), 38.06(C-CH2-Phe), 37.63(C, CH_{3}) MS (m/z, \%) 381 (1.26\%), Anal./Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{6}$: C(66.12\%), H (4.98\%), N(3.67\%). Found: C (66.13); H (5.02); N, (3.67).

2.7. N-(1-hydrazinyl-1-oxo-3-phenylpropan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (9)

The methyl ester derivative ($\mathbf{8}, 0.01 \mathrm{~mol}$) was stirred in ethanolic hydrazine hydrate solution(0.01 mol) for 3hrs, The crude product (9) was filtered, washed with water and recrystallized from benzene to give desired compound (9) in 90\% yield;Rf = 0.80, (CH2-Phe/MeOH=3/1); M.P.230-32 $\mathrm{C}^{\circ}, \mathrm{IR}\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v ; 3405 \mathrm{~cm}^{-1}$ (broad band, OH, NH and NH_{2}) ,2962,2931 cm ${ }^{-1}$ (CH-ali.), 1712, cm^{-1} ($\mathrm{C}=\mathrm{O}$), $1620 \mathrm{~cm}^{-1}$ (CONH amide), ${ }^{1} \mathrm{H}$ NMR (300 MHz, Chloroform) $\delta=10.94$ (s,2H,NH2), 8.74-(s,1H,OH-Arm.), 7.90(s,1H, NH-Hyd.), 7.52-6.28 (m,9H,CH-arm.), 5.66(s,1H,NH), 4.68 (s,1H,CH-Phe), 3.17 (s,2H,CH2-ali..), 2.90 (s,2H,CH2-Phe), MS (m/z, \%) 381(1.06\%), Anal./Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$: C (62.97\%), H (4.98\%), N(11.01\%). Found: C (62.99); H (5.02); N, (11.02).

2.8. N-(1-(2-formylhydrazinyl)-1-oxo-3-phenylpropan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4yl)acetamide (10)

Compound ($\mathbf{9}, 0.01 \mathrm{~mol}$) was heated under reflux with formic acid (0.01 mol) for 10 hrs . The solid obtained after
cooling was filtered , and recrystallized from benzene to give compound (10) as brown crystals Yield: (65\%); Rf $=0.83\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right)$; M.P. $=185-87^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v ; 3411 \mathrm{~cm}^{-1}$ (broad band, OH and NH), 2927 cm^{-1} (CH-ali..), $1621 \mathrm{~cm}^{-1}$ (CONH amide). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform) $\delta=9.59(2 \mathrm{H}, 2 \mathrm{NH}-\mathrm{NHNH}$), 9.43(s,1H,CH-CHO),8.24(s,1H,OH-arm.),7.66-6.60(m,9H,CH-arm.),5.45(s,1H,NH), 4.78 (s,1H,CH-Phe), 3.57 (s,2H, CH_{2}-ali..), 3.16 (d, $2 \mathrm{H}, \mathrm{CH}_{2}$-Phe); Anal./Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$ (409): C (61.59\%), H (4.64\%), N (10.26\%). Found: C (61.61); H (4.68); N, (10.26).

2.9. N-(1-(2-acetylhydrazinyl)-1-oxo-3-phenylpropan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-5yl)acetamide (11)

Compound ($\mathbf{9}, 0.01$ mole) was refluxed with glacial acetic acid (20 ml .) for 3hrs., The solid obtained (11) after cooling was filtered and recrystallized from benzene to give compound (11) as brown crystals ,Yield: (70 \%); $\mathrm{Rf}=0.80^{\circ} \mathrm{C} .,\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right) ;$ M.P. $=213-15^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) \mathrm{v} ; 3402 \mathrm{~cm}^{-1}($ broad band, OH and NH$)$, $2959 \mathrm{~cm}^{-1} \mathrm{~cm}^{-1}$ (CH-ali..), $1714 \mathrm{~cm}^{-1}$ (C=O), $1617 \mathrm{~cm}^{-1}$ (CONH amide); ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform) $\delta=$ 10.59(s, 2H,NHNH), 9.36 (s, 1H, OH-arm.), 8.02-6.20 (m, 9H, CH-arm.) 5.43 (s, H, NH), 4.07 (1H,CH-L-Phe), 3.47 (s,2H,CH2-ali..), 3.00(2H-CH2-L-Phe)2.06(s,3H, CH_{3}); MS (m/z, \%) 423 (67.96); Anal./Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C (62.41\%), $\mathrm{H}(4.96 \%), \mathrm{N}(9.92 \%)$. Found: C(62.41\%), H (5.00\%), $\mathrm{N}(9.93 \%)$.
2.10. N-(1-(5-(1-amino-2-phenylethyl)-1,3,4-oxadiazol-2-yl)-2-phenylethyl)-2-(7-hydroxy-2-oxo-2H chromen-5-yl)acetamide (12)

Compound (9; 0.01 mol), L-phe. (0.01 mol) were dissolved in concentrated sulfuric acid $(10 \mathrm{ml}$); the reaction mixture was stirred for 6 h . at $80^{\circ} \mathrm{C}$. The reaction mixture was cooled, poured into crushed ice, and neutralized with sodium carbonate to $\mathrm{PH}=7$. The crude product (12) was filtered, washed with water, dried and the grey crystal was recrystallized by ethanol to obtain the pure product (14), as white crystal, in Yield: (85 \%); Rf=0.89; $\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right)$; M.P. $=155-57^{\circ} \mathrm{C}$; IR ($\mathrm{KBr} \mathrm{cm}-1$) $v ; 3408 \mathrm{~cm}^{-1}$ (broad band, OH ,NH and NH_{2}), $2958,2927 \mathrm{~cm}^{-1}$ (CH-ali.), 1714, cm^{-1} (C=O), $1620 \mathrm{~cm}^{-1}$ (CONH amide); MS (m/z, \%) 509 (019\%), Anal./Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$: C(68.22 \%), H (5.09 \%), N (10.98 \%). Found: C (68.22); H (5.13); N, (10.97).

2.11. N-(1-(2-carbamothioylhydrazinyl)1-oxo-3-phenylpropan-2-yl)-2-(7-hydroxy-2-oxo-2H- chromen-4yl)acetamide (13)

The hydrazide derivative ($9 ; 0.01 \mathrm{~mol}$.) was reacted with ammonium thiocyanate (0.01 mol) in concentrated hydrochloric acid (20 ml). The reaction mixture was concentrated, and cool. The separated solid (13) was filtered, washed with water, and recrystallized from ethanol to give compound (13) as brown crystals; Yield: 80%; Rf $=0.83(\mathrm{CH} 2-\mathrm{Phe} / \mathrm{MeOH}=3 / 1) ;$ M.P. $=165-67^{\circ} \mathrm{C}, ; \mathrm{IR}\left(\mathrm{KBr}_{\mathrm{cm}-1}\right) v ; 3405_{\mathrm{cm}-1}$ (broad band, OH , NH and NH2) ,2960,2930 cm^{-1} (CH-ali.), $1698 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1622 \mathrm{~cm}^{-1}$ (CONH amide) $1239 \mathrm{~cm}^{-1}$ (C=S); ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform) $\delta=9.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), \quad 8.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH} 2), 7.43-6.33(\mathrm{~m}, 11 \mathrm{H},(2 \mathrm{H}, \mathrm{NH}-\mathrm{NHNH})+(9 \mathrm{H}, \mathrm{CH}-$ arm.),5.63(s,1H,NH), 4.97(m,1H,CH-Phe), 3.19(s,2H, CH CH_{2}-ali..) , 2.90 (d,2H, CH_{2}-Phe); Anal./Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}(440)$: C(57.25 \%), H(4.54\%),N(12.72\%). Found: C (57.26); H (4.58); N, (12.72).

2.12. 2(7-hydroxy-2-oxo-2H-chromen-4-yl)-N-(2-phenyl-1-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)-

ethyl)acetamide(15)

Dissolve compounds ($\mathbf{9} ; 0.01 \mathrm{~mol}$) in alcoholic KOH , carbon disulfide (0.01 mol) was added to the reaction mixture. The reaction mixture was removed under reduced pressure; the residual salt was treated with water. The filtrate was neutralized to $\mathrm{pH}=6$ using dil. HCl , the residual material (15) was filtered, washed with water, dried, crystallized by ethanol as brown crystal; in Yield 80%; Rf $=0.88$ (CH2-Phe/MeOH=3/1); M.P. $=218-$ $20^{\circ} \mathrm{C}$; IR (KBr cm ${ }^{-1}$) v; $3412 \mathrm{~cm}^{-1}$ (broad band, OH and NH) ,2960 cm ((CH-ali.), $1620 \mathrm{~cm}^{-1}$ (CONH amide), $1239 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{S})$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, Chloroform) $\delta=8.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.66-6.47(\mathrm{~m}, 10 \mathrm{H}(1 \mathrm{H}, \mathrm{NH}-$ oxadiazolthione) $+(9 \mathrm{H}, \mathrm{CH}-\mathrm{arm}),$.5.47 (s, $1 \mathrm{H}, \mathrm{NH}$), 4.83 (m, $1 \mathrm{H}, \mathrm{CH}-\mathrm{Phe}$), 3.60 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-ali.), 3.20 (d, $2 \mathrm{H}, \mathrm{CH}_{2}-$ Phe) ; Anal./Calcd. for C21H17N3O5S (423): C(59.56\%), H(4.01\%), N(10.63\%). Found: C (59.57); H (4.05); N, (9.92).
2.13. General procedures for synthesis N-(1-(2-aryylidenehydrazinyl)-1-oxo-3-phenyl -propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (17-c)

The compound ($9,0.01 \mathrm{~mol}$) in glacial acetic acid (10 ml .) was heated with aromatic aldehydes (0.01 mole), the reaction mixtures were heated under reflux for $6-8$ hrs. The solid products (17a-c) obtained after cooling, collected by filtration and recrystallized from ethanol to give compounds (17a-c),

2.13.1. N-(1-(2-(2,4-dihydroxybenzylidene)hydrazinyl)-1-oxo-3-phenyl-propan-2-yl)-2-(7-hydroxy-2-oxo-

 2H-chromen-4-yl)acetamide (17a)Brownish red crystal; Yield 90%; Rf $=0.85(\mathrm{CH} 2-\mathrm{Phe} / \mathrm{MeOH}=3 / 1)$; M.P. $=85-87^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}_{\mathrm{cm}-1}\right) v ; 4434 \mathrm{~cm}^{-}$ ${ }^{1}$ (broad band, OH), 3353,3270 cm ${ }^{-1}(\mathrm{NH})$, $2921 \mathrm{cm-1}$ (CH-ali.), $1657 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1597 \mathrm{~cm}^{-1}\left(\mathrm{CONH}\right.$ amide); ${ }^{1} \mathrm{H}$ NMR (300 MHz, Chloroform) $\delta=10.11-10.3$ (t,3H,OH), 8.10 (s,1H,CH-N CH), 7.44-6.64 (m,13H,CH-arm.), 6.41(1H,NH-NHNCHR),5.44(s,1H,NH-arm.), 4.85 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Phe}$), 3.07 (s,2H, CH_{2}-ali.), 2.90 (d, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Phe}$); Anal./Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7}(501)$: C (64.67 \%), H (4.59\%), N(8.38\%). Found: C(64.67); H (4.62); $\mathrm{N},(8.38)$.

2.13.2. N-(1-(2-(4-(dimethylamino)benzylidene)hydrazinyl)-1-oxo-3-phenyl-propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (17b)

Brown crystal; Yield 73% Rf $=0.90\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right) ;$ M.P. $=170-72^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v ; 3385 \mathrm{~cm}^{-}$ ${ }^{1}$ (broad band, OH, NH), $2931 \mathrm{~cm}^{-1}(\mathrm{CH}-\mathrm{ali}),. 1662 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1601 \mathrm{~cm}^{-1}\left(\mathrm{CONH}\right.$ amide) ${ }^{1} \mathrm{H} \mathrm{NMR}$ (300 MHz , Chloroform) $\delta=10.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.19$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{NCH}), 7.53-6.71(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}-\mathrm{arm}),. 6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{NHNCH})$, 5.57(s, 1H,NH-arm.), 4.56 (s,2H, CH_{2}.Phe.), 3.35 (s,2H,CH2-ali.), 3.00(s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}-\mathrm{N}\left(\mathrm{CH}_{3}\right) 2$), $2.84\left(2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ Phe); Anal./Calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}$ (512): C (67.69 \%), H (5.46\%), N (10.93\%). Found: C (67.96); H (5.51); N, (10.93)

2.13.3. 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)-N-(1-(2-(4-methox-ybenzyl-idene)hydrazinyl)-1-oxo-3-phenylpropan-2-yl) acetamide (17c)

Brown crystal; Yield 65% Rf $=0.87\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right) ;$ M.P. $=210-12^{\circ} \mathrm{C} ; \operatorname{IR}\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v ; 3391 \mathrm{~cm}^{-}$
${ }^{1}$ (broad band, OH ,NH) , $2957,2926 \mathrm{~cm}^{-1}$ (CH-ali.), $1698 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}),, 1620 \mathrm{~cm}^{-1}$ (CONH amide);),; ${ }^{1} \mathrm{H}$ NMR (300 MHz, Chloroform); $\delta=10.57$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 8.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{N}-\mathrm{CH}$), 7.60-6.65 (m,14H,CH-arm.), 5.86 (1H,NH-NHNCHR),5.48(s,1H,NH-arm.),5.06 (s,2H, CH_{2}. Phe.), 3.78(s, $3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{OCH}_{3}$), 3.19 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$-ali.), 3.17 (m,1H, CH-Phe), 2.96 (d,2H, $\mathrm{CH}_{2}-$ Phe) MS (m/z, \%) m/z 499 (46.51\%) ,Anal./Calcd.for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C (67.33\%), H (5.01\%), N (8.41\%). Found: C (67.33); H (5.04); N, (8.40).
2.14. General procedures for synthesis of 4-(2-((1-(4-acetyl-5-aryl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2-phenylethyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-ylacetate (18a-c):

The compounds ($\mathbf{1 7 a - c}$; 0.01 mol) were heated under reflux with acetic anhydride (15 ml) for 10 hrs . The excess of acetic anhydride was decomposed with water (10 ml), the reaction mixture was stirred for 30 mins. The separated solids were filtered, washed with water, dried and recrystallized from ethanol to give compounds (18 a-c), respectively.

2.14.1. 4-(2-((1-(4-acetyl-5-(2,4-dihydroxyphenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2-phenylethyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl acetate (18a)

Brown crystal; Yield: 85% Rf $=0.90\left(\mathrm{CH}_{2}\right.$-Phe/MeOH=3/1); M.P. $=221-23^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v ; 3411 \mathrm{~cm}^{-}$ ${ }^{1}$ (NH) ,2959,2929 cm-1,(CH-ali.), $1621 \mathrm{~cm}^{-1}$ (CONH amide) and; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform) $\delta=8.03-6.54$ (m, 14H, (1H,NH-arm.) +(13H,CH-arm.), 4.38(m,1H,CH-Phe), 3.02(s,2H,CH2.ali.), 2.82 (m, 8H,(6H,2(CH3)$\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)+\left(2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Phe}\right), 2.25$,2.06 (s, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}-\mathrm{COCH}_{3}\right)$;Anal./Calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O} 9(585)$: C (63.58\%), H (4.61\%), N (7.17\%). Found: C (63.55); H (4.61); N, (7.18).

2.14.2. 4-(2-(1-(4-acetyl-5-(4-methoxyphenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2-phenylethylamino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl acetate(18b)

Brown crystal; Yield: 80 \%; Rf $=0.86$ (CH2-Phe/MeOH=3/1); M.P. $=90-92^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) \mathrm{v} ; 3198 \mathrm{~cm}^{-}$ ${ }^{1}(\mathrm{NH})$, $2927 \mathrm{~cm}^{-1}(\mathrm{CH}-\mathrm{ali}),. \quad 1764,1684 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), \quad 1604 \mathrm{~cm}^{-1}(\mathrm{CONH}$ amide); MS (m/z, \%) 596 (12.19\%),Anal./Calcd. for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{7}$: C (66.44\%), H (9.39\%). Found: C (66.43); H (5.41); N, (9.36).

2.14.3. 4-(2-(1-(4-acetyl-5-(4-chlorophenyl)-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2-phenylethylamino)-2-oxoethyl)-2-oxo-2H-chromen-7-ylacetate (18c)

Brown crystal; Yield: 76 \%; $\mathrm{Rf}=0.89\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right)$; M.P. $=220-22^{\circ} \mathrm{C} ; \operatorname{IR}\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v ; 3220 \mathrm{~cm}^{-}$ ${ }^{1}(\mathrm{NH})$, $2961 \mathrm{~cm}^{-1}$ (CH-ali.), $1624 \mathrm{~cm}^{-1}$ (CONH amide); MS (m/z, \%) 583 (0.42%) Anal./Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}$: C (65.86\%), H(4.97\%), N (7.20). Found: C (65.86); H (5.01); N, (7.21).

2.15. 4-(2-((1-(2-acetylhydrazinyl)-1-oxo-3-phenylpropan-2-yl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl acetate (19)

Compound ($\mathbf{9} ; 0.01 \mathrm{~mol}$) was heated with acetic anhydride (5 ml) for 3 hrs., the catalytic amount of AcONa was added. The solid obtained (19) after cooling, filtered, washed with pet. ether $\left(60 / 80^{\circ} \mathrm{C}\right)$ and recrystallized from
abs. ethanol to give compound (19) , as brown crystals; Yield: 65%; $\mathrm{Rf}=0.80\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right)$; M.P. $=185-87^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v 3323 \mathrm{~cm}^{-1}(\mathrm{NH}), 2961 \mathrm{~cm}^{-1}$ (CH-ali.), $1767 \mathrm{~cm}^{-1}$ (C=O),1619 cm^{-1} (CONH amide; ${ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform) $\delta=9.24,8.32$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{NHNH}$), 7.62-6.55 (m,9H,CH-arm.), 6.54 (s,1H,NH-arm.), 4.81 (m,1H,CH-phe.), 3.23 (s,2H,CH2-ali..), 2.84 (d, 2H, CH_{2}-Phe), 2.27,1.99(s,6H,2CH3COCH_{3}); MS (m/z,\%) 465 (1.61\%) Anal./Calcd.for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7}: \mathrm{C}$ (61.91\%), H (4.94\%), N (9.02\%). Found: C (61.93); H (4.98) ; N, (9.03).

2.16. 2-(3-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl)thioureido)-3-phenyl-propanoic acid (20)

L-phe. (0.01) was stirred with compound (5) for 6hrs. Then the reaction mixture poured onto ice path. The solid obtained was recrystallized from ethanol to give compound (20) as white crystal; Yield:(85 \%); Rf $=0.86$ $\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right)$; M.P. $=238-40^{\circ} \mathrm{C} . ;$ IR $\left(\mathrm{KBr} \mathrm{cm}^{-1}\right) v ; 3404 \mathrm{~cm}^{-1}($ broad band, $\mathrm{OH}, \mathrm{NH}), 2960 \mathrm{~cm}^{-1}(\mathrm{CH}-\mathrm{ali}$.$) ,$ $1698 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1620 \mathrm{~cm}^{-1}$ (CONH amide), $1238 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{S}) . ;{ }^{1} \mathrm{H}$ NMR (300 MHz , Chloroform) $10.28(1 \mathrm{H}$, CONHCS), 10.12 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}-\mathrm{COOH}$),9.41 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OHphenyl}$), 7.47-6.27 (m,9H,CH-arm.), 5.47 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}-$ CSNH), 4.70 (m,1H,CH-Phe), 3.03 (s , 2H,CH2-ali.), 2.80 (d, 2H,CH2- Phe); MS (m/z, \%) $427 \mathrm{M}+1$ (6.81\%),Anal./Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C(59.14\%), $\mathrm{H}(4.22 \%)$, $\mathrm{N}(6.57 \%)$. Found: C (59.15); H (4.25); N, (6.57).

2.17. Methyl2-(3-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl)thioureido)-3-phenylpropanoate (21)

The acid (20, 3.98 g., 0.01 mol .) was allowed to react with thionyl chloride (0.01 mol) in presence of methanol, using the technique described in the preparation of compounds (8) to give compound (21) which was
 Phe/MeOH=3/1);M.P. $=195-97^{\circ} \mathrm{C} ; \mathrm{v} ; 3428 \mathrm{~cm}^{-1}$ (broad band, OH and NH), $2963 \mathrm{~cm}^{-1}(\mathrm{CH}-\mathrm{ali}),. 1622 \mathrm{~cm}^{-1}(\mathrm{CONH}$ amide); ${ }^{1}$ H NMR (300 MHz , Chloroform) 10.34(s,1H,CONHCS), 9.45 (s,1H,OHPhenyl), 7.99-6.11 (m,9H,ArH.), 5.40(s,1H,NHCS), 3.92(s,3H, $\mathrm{CH}_{3}, \mathrm{OCH}_{3}$), 3.16 (s,2H, CH2-ali.); MS(m/z,\%) 440 (16.18\%) Anal./Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: C(60.00\%), $\mathrm{H}(4.54 \%), \mathrm{N}$ (6.36\%). Found: C (59.99); $\mathrm{H}(4.58)$) $\mathrm{N}(6.36)$.

2.18. N-(1-hydrazinyl-1-oxo-3-phenylpropan-2-ylcarbamothioyl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl) acetamide (22)

The compound (21; 0.01 mol .) was reacted with alcoholic hydrazine hydrate (0.01 mol), the remaining procedures as which described in the preparation of the compound (9) which was recrystallized from ethanol, as brown crystal; Yield: (89 \%); Rf = 0. $94\left(\mathrm{CH}_{2}-\mathrm{Phe} / \mathrm{MeOH}=3 / 1\right)$; M.P $=290-92^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr} \mathrm{cm}{ }^{-1} v ; 3408 \mathrm{~cm}^{-}\right.$ ${ }^{1}$ (broad band, OH, NH and NH_{2}), $2960 \mathrm{~cm}^{-1}$ (CH-ali.), $1622 \mathrm{~cm}^{-1} \mathrm{~cm}^{-1}$ (CONH amide), $1239 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{S}\right.$); ${ }^{1} \mathrm{H}$ NMR (300 MHz, Chloroform) 11.08(s,1H,NH,CONHCS), 9.82(s,1H.OH), 7.24-6.78 (m,10H,(1H,NH-NHNH2) + (9H,CH-arm.), 5.59 (s,H, NH-CSNH),5.69(s,2H,NH2), 3.97(s,1H,CH-Phe), 3.07(2H,CH2-ali.), 2.79 ($2 \mathrm{H}, \mathrm{CH} 2-$ Phe); MS (m/z, \%) 440 (0.07%) Anal. /Calcd. for C21H20N4O5S: C (57.25\%), H(4.54\%),N (12.72\%). Found: C (57.26); H (4.58); N, (12.72).

2.19. Pharmacological activity

Swiss albino mice were divided into 26 groups ($\mathrm{n}=5$). All the groups were injected with Ehrlich Ascites Carcinoma (EAC) cells (0.2 ml of 2×106 cells/mouse) intraperitoneally and intramuscularly in the thigh of each recipient mouse except the normal group, This was taken as day zero, the normal saline and tween (0.2 ml /mouse/day) were administered to normal and EAC control groups, the compounds (7,8,11,13, and 20) and standard drug Dose ($50 \mu \mathrm{~g} / \mathrm{kg} /$ day) were administered in groups $(4,5)$ respectively for 9 days intraperitoneally, after the administration of last dose followed by 24 hrs. Fasting 3 mice form each group was sacrificed for the study of antitumor activity.

2.20.1. Drug Preparation: Preparation and Administration of Doses

Solution of tested compounds $(\mathbf{7}, \mathbf{8}, \mathbf{1 1}, \mathbf{1 3}$, and 20) were prepared in normal saline. The required volume was emulsified in distilled water by using Twin 80 (0.5% of the total volume). The emulsion was prepared in such a way that the required daily dose was contained in 0.2 mL of the emulsion. 0.2 mL of this emulsion was administered to each mouse intraperitoneally, daily from day 0 to 9 .

2.20.2. Tumor Transplantation

Ehrlich’s Ascites Carcinoma was maintained by serial transplantation from tumor bearing Swiss Albino mice. EAC cells were obtained from donor mice (Swiss albino) of $18-20 \mathrm{~g}$ body weight and suspended in sterile isotonic saline. A fixed number of viable cells usually (2×106 cells/20 g body weight) were injected intramuscularly in the thigh of each recipient mouse [31].

2.20.3. Body Weight

Animals were weighted on every other day throughout the period of the experiment.

2.20.4. Solid Tumor Volume and Tumor Growth Inhibition

Antitumor effects for the different treatments were evaluated by tumor growth inhibition. Tumors were measured individually using a caliper. Tumor volume was determined by the following equation [32]:

Tumor Volume $=\left(\right.$ Width $^{2} \times$ length $) / 2$

The percent tumor growth inhibition was calculated on day13 by comparing the average values of treated groupsthat of tumor bearing control group. Tumor growth in saline. Treated control animals was taken to be 100\% [33].

3. Result Discussion

3.1. Chemistry

The synthetic routes to obtain the target compounds 1-22 were depicted in (Schemes 1-6). The starting material 2 was prepared as mentioned by elhenawy et al [30] (Scheme 1), which reacted with L-phenyl alanine (LPhe.), and L-Phe. derivative 3 was formed. The presence COOH proton $(\delta \mathrm{H}=10.40 \mathrm{ppm})$ for 1 HNMR data, characterized the structure. The isothiocyanate derivative 5 was prepared by the reaction of acid chloride 2 with ammonium thiocyanate via intermediate 4 (Scheme 1).

The free acid derivative 3 undergoing $S N^{2}$ mechanism, and give the corresponding acid chloride 6 . The sulphanilamide was reacted with compound $\mathbf{6}$, to give the sulfanilamide derivative 7 , which supported by IR data, due to the appearance of characteristic sulfonamide bands at ($1335,1230 \mathrm{~cm}^{-1}$). Disappearance of characteristic peak ($\delta \mathrm{H}=10.40$) for COOH proton of compound 3, it is evidence for esterified the acid 3 to corresponding methyl ester derivative 8, and was hydrazonlized to corresponding hydrazide derivative $\mathbf{9}$ (Scheme 2).

The compound 10 was obtained by formylation of hydrazide 9 , which acylated with acetic anhydride, which gave 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)-N-(1-(5-methyl-1,3,4-oxadiazol-2-yl)-2-phenyl-ethyl)acetamide (11) in 70% yield. The compound 9 undergoing cyclization reaction with L-Phe in presence Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, and gaveN-(4-(5-(1-amino-2-phenyl-ethyl)-1,3,4-oxadiazol-2-yl)phenyl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)
acetamide (12). The compound 9 was reacted with $\mathrm{NH}_{4} \mathrm{SCN}$ in catalytic amount of HCl to give thiourea derivative 13 in 80% yield (Scheme 3).

The CS_{2} was reacted with compound 9 , and led to formation thion $\mathbf{1 5}$ or thiol $\mathbf{1 6}$ derivatives via salt formation intermediate 14, the disappearance peak of thiol group in spectral data led to preferred the formation of thion derivative 15 in 75 \% yield (Scheme 4).

(14)

(16)
(15)
(Scheme 4)

The compound 9 was condensed with different aromatic aldehydes, and afforded the corresponding Schiff"s bases 17a-c, which undergoing cyclization reaction with acetic anhydride to led formation oxadizole derivatives 18a-c,). The disappearance of $\mathrm{CH}=\mathrm{N}$ and OH phenyl peaks of ${ }^{1} \mathrm{HNMR}$ spectrum for Schiff"s bases 17a-c, confirmed its structures18a-c (Scheme5). The 4-(2-(1-(2-acetyl-hydrazinyl)-1-oxo-3-phenylpropan-2-ylamino)-2-oxoethyl)-2-oxo-2H-chromen-7-ylacetate (19) was obtained by acylated with acetic anhydride with fused sodium acetate, which confirmed with disappearance OH aromatic proton $(\delta \mathrm{H}=8.74$) for hydrazide 9 (Scheme 5).

Thiourido derivative 20 was prepared by coupling of compound 5 with L-Phe, the Thiourido free acid 20 was methylated with thionyl chloride via formation acid chloride intermediate to give methyl ester derivative 21, the disappearance of peak $(\delta \mathrm{H}=10.12)$ of COOH proton for acid $\mathbf{2 0}$, and appearance of 3 H proton $\mathrm{Of} \mathrm{OCH}_{3}$ at $(\delta \mathrm{H}=3.92)$, which confirmed the proposed molecular structure 21. The methyl ester derivative 21 was hydrazonolysis and exhibited hydrazide derivative 22 in good yield 89\%(Scheme 6).

3.2. Pharmacology

3.2.1. Ehrlich Tumor (Solid)

The antitumor activity of tested compounds ($\mathbf{7 , 8}, \mathbf{1 1 , 1 3}$, and 20) were assayed by observation of various parameters like Body weight of animals, tumor volume, inhibition tumor growth $[35,36]$.

3.2.2. \quad The body weights

The average weight loss of tested compounds ($\mathbf{7 , 8}, \mathbf{1 1 , 1 3}$, and $\mathbf{2 0}$) were observed against untreated (table 1). The data showed that, the compounds (20) showed higher average weight loss (20.5 ± 0.25) upon reference drug (DOX) mice group (21.85 ± 0.25), the rest tested members have lower observed average weight change between untreated groups (table1).

Table 1: Average weights and tumor inhibition of ehrlich solid tumor after treatment compounds (7,8,11,13 and 20).

Treatment	Body weight of animal on days (g)			day 13			
	day (0)	Day 5	day 9	Avg. body wt.(g)	Avg. tumor volume	\%Tumor growth inhibition	Mortality
normal	$20.2 \pm 0.25^{\mathrm{e}}$	$21.6 \pm 0.25^{\text {ed }}$	$22.8 \pm 0.25^{\mathrm{b}}$	$23.2 \pm 0.16^{\mathrm{a}}$	-	-	$0 / 5$
untreated	$20.9 \pm 0.25^{\mathrm{e}}$	$21.4 \pm 0.25^{\mathrm{e}}$	$22.2 \pm 0.25^{\mathrm{c}}$	$23.0 \pm 0.07^{\text {ed }}$	$1.8 \pm 0.09^{\mathrm{a}}$	-	$0 / 5$
Dox	$23 \pm 0.25^{\mathrm{b}}$	$22.4 \pm 0.07^{\mathrm{c}}$	$21.85 \pm 0.25^{\mathrm{d}}$	$20.4 \pm 0.25^{\mathrm{f}}$	$0.4 \pm 0.09^{\mathrm{e}}$	79.04	$0 / 5$
$\mathbf{7}$	$21.9 \pm 0.07^{\mathrm{d}}$	$22.8 \pm 0.12^{\mathrm{C}}$	$23.2 \pm 0.25^{\mathrm{b}}$	$23.5 \pm 0.16^{\text {cd }}$	$1.5 \pm 0.09^{\text {ab }}$	56.6	$0 / 5$
$\mathbf{8}$	$23.5 \pm 0.25^{\mathrm{c}}$	$23.8 \pm 0.12^{\mathrm{C}}$	$22.5 \pm 0.25^{\mathrm{c}}$	-	$1.6 \pm 0.09^{\mathrm{d}}$	40.7	$1 / 5$
$\mathbf{1 1}$	$23.6 \pm 0.25^{\mathrm{c}}$	$23.0 \pm 0.25^{\mathrm{b}}$	$23.7 \pm 0.25^{\mathrm{b}}$	$25.7 \pm 0.16^{\mathrm{C}}$	$1.6 \pm 0.09^{\text {ab }}$	13.9	$2 / 5$
$\mathbf{1 3}$	$24.4 \pm 0.25^{\mathrm{c}}$	$23.5 \pm 0.12^{\mathrm{b}}$	$23.3 \pm 0.25^{\mathrm{b}}$	$24.6 \pm 0.16^{\mathrm{b}}$	$1.7 \pm 0.09^{\text {cd }}$	31.1	$0 / 5$
$\mathbf{2 0}$	$20.5 \pm 0.25^{\mathrm{f}}$	$21.2 \pm 0.25^{\mathrm{e}}$	$22.9 \pm 0.07^{\mathrm{b}}$	$20.5 \pm 0.25^{\mathrm{f}}$	$0.5 \pm 0.09^{\mathrm{e}}$	70.5	$0 / 5$

Values are expressed as Mean \pm SEM and, $p \leq 0.05$ indicates the level of statistical significance as compared with control. Treatments show highly significant deference at pr>0.0001, the letters (a-f) represents statistically significant

3.2.3. Solid Tumor Volume:

The average tumor volume calculated on day 13 of tested compounds ($\mathbf{7 , 8}, \mathbf{1 1}, \mathbf{1 3}$, and $\mathbf{2 0}$) in compared with untreated control (table 1), and reference drug (Dox). From (table1), all members were exhibited decreasing average tumor volume in order $\mathbf{2 0}<\mathbf{7}<\mathbf{8}<\mathbf{1 3}<\mathbf{2 0}$ in range ($\sim 0.5-1.7$).

3.2.1. Structure activity relationship

The antitumor activity of tested compounds $(\mathbf{7}, \mathbf{8}, \mathbf{1 1}, \mathbf{1 3}$, and $\mathbf{2 0}$) were examined in vitro of mice, using the following parameters, body weight of animals, tumor volume, and tumor growth inhibition. The above data showed that, the member containing thiourea L-phenylalanine methyl ester moiety 20 showed highest inhibition potency (70%), the compounds have sulfonamide 7 and amino acid methyl ester fragments 8 showed moderate inhibition potency (56.6 and 40%), respectively, the other members showed lower inhibition potency, (table1).

3.3. Molecular Modeling studies

3.3.1. Conformational analysis

In trying to achieve better insight of the molecular structure, due to presence chiral center for the synthesized compounds (3-13,15,17a,18a,19-22), which led to existence optical isomerism's for its compounds (3-13,15,17a,18a,19-22). The optimization geometry was performed in vacuo with PM3 semi-empirical Hamiltonian molecular orbital calculation MOPAC7 package [34], the conformational analysis of the target compounds have been performed to prefer most stable form of stereoisomers using the PM3 (calculations in vacuo, bond dipole option for electrostatics, PolakeRibiere algorithm, RMS gradient of $0.01 \mathrm{kcal} / \mathrm{mol}$) for all synthesized compounds ($\mathbf{3 - 1 3 , 1 5 , 1 7 a , 1 8 a , 1 9 - 2 2 ,}$, (table 2). In addition, the computed molecular parameters, total energy, electronic energy, heat of formation, the highest occupied molecular orbital (HOMO) energies, the lowest unoccupied molecular orbital (LUMO) energies and the dipole moment for studied compounds were calculated (table 2). The calculated molecular parameters (table 2) showed, (L) forms have most stable structures (3-13,15,17a,18a, 19-22) which may be explained by slightly reducing calculated energy for (L) forms over (D) forms for ($\mathbf{3}-13,15,17 a, 18 a, 19-22$). The benzocoumarine rings arranged in or coplanar modes with L-Phe moieties (3-13,15,17a,18a,19-22), (table2).

3.3.2. Docking studies

COX protein are known with two isoforms: COX-1 and COX-2. The COX-1 produced prostaglandins, and expressed in most tissues; and COX-2, is responsible for the increasing production of prostaglandins during process of inflammation, which is induced by endotoxins, cytokines and mitogens in inflammatory cells [35]. Recently, analysis the X-ray of COX-2 active site showed that, the negative charge of the tetrahedral intermediate was stabilized through coordinated COOH-arachidonic with Tyr385and Ser-530, as well as the action of NSAIDs[36]. So, Tyr-385 and Ser-530 have importance structural and functional site for chelating ligand [37]. Molecular docking of the synthesized compounds $\mathbf{7 , 8 , 1 1 , 1 3}$ and $\mathbf{2 0}$ into the active site of COX-2 performed, in order to discover biological data on a structural basis, through rationalized ligand-protein
interaction behavior. All calculations for docking experiment preformed with MOE 2015.10 [38]. The tested compounds were evaluated in silico (docking), using X-ray crystal structures and COX2 (ID: 1PXX) [34] complexes with reference inhibitor.

Table 2: The optimized calculations energies for most stable steroisomer at PM3 molecular orbital for (3-13,15, 17a,18a,19-22):

$\mathbf{C p d}$	\mathbf{E}	$\mathbf{H F}$	IP	HOMO	LUMO	$\boldsymbol{\mu}$
$\mathbf{3}$	-134034.73	-168.80	8.96	-8.96	-1.09	5.56
$\mathbf{6}$	-130228.95	-121.66	9.16	-9.16	-0.87	4.52
$\mathbf{7}$	-137635.72	-183.02	9.07	-9.03	-1.21	4.07
$\mathbf{8}$	-144153.28	-157.35	9.65	-9.65	-1.30	9.07
$\mathbf{9}$	-151554.33	-209.68	9.18	-9.18	-1.13	7.76
$\mathbf{1 0}$	-123068.74	-44.05	9.20	-9.20	-1.22	1.81
$\mathbf{1 1}$	-130459.84	-86.10	9.19	-9.20	-1.02	6.93
$\mathbf{1 2}$	-128821.32	-33.25	8.95	-8.93	-1.10	8.59
$\mathbf{1 3}$	-136217.69	-118.38	9.20	-9.20	-1.09	3.04
$\mathbf{1 5}$	-149838.89	1.78	9.21	-9.21	-1.05	4.85
$\mathbf{1 7 a}$	-164621.2	-115.77	8.98	-8.98	-1.01	4.60
$\mathbf{1 8 a}$	-150486.83	-49.54	8.18	-8.17	-1.20	2.07
$\mathbf{1 9}$	-149196.3	-90.62	8.78	-8.78	-1.05	7.28
$\mathbf{2 0}$	-146045.95	-41.43	8.85	-8.85	-0.81	8.62
$\mathbf{2 1}$	-177024.5	-134.22	9.29	-9.29	-1.32	4.16
$\mathbf{2 2}$	-174357.33	-106.50	9.36	-9.36	-1.08	5.13

E: Total energy ($\mathrm{kcal} / \mathrm{mol}$)., HF: Heat of formation ($\mathrm{kcal} / \mathrm{mol}$),IP: Ionization potential energy $(\mathrm{kcal} / \mathrm{mol}$), HOMO: Highest Occupied Molecular Orbital(eV), LUMO: Lowest Occupied Molecular Orbital(eV), μ : Dipole moment(Deby).

The tested compounds docked into COX-2active site. The active site of the enzyme was defined to include residues within a $10.0 \AA$ radius to any of the inhibitor atoms. MOE scoring function of the most stable docking model for tested compounds applied to evaluate the binding affinities between the inhibitors with (COX) active site, (Table 3). The minimization energy preformed for complexes (inhibitor-active site) with anMMFF94 force field [39] until the gradient convergence reached to $0.05 \mathrm{kcal} / \mathrm{mol}$. The most active compound 20 docked successfully into the COX-2 active site, and compared with reference inhibitor (diclofenac). the compound 20 was exhibited highest binding score $-15.13 \mathrm{Kcal} / \mathrm{mol}$. (table 3).

3.3.3. Quantum Structures activity relationships

In order to get a deeper insight into the nature and type of interactions of docked compounds $\mathbf{7 , 8 , 1 1 , 1 3}$ and 20, the complexes between each compound and COX-2 receptor were visualized. The H bond interactions playing an important role in the structure and function of biological molecules. The current ligand-receptor
interactions were analyzed on the basis of H bonding. In order to reduce the complexity, hydrophobic and π cation interactions (>6A) are not shown in (Figure 1).

Table 3: Docking energy scores ($\mathrm{kcal} / \mathrm{mol}$) derived from the MOE for new isolated ligands $(\mathbf{7 , 8 , 1 1 , 1 3 , 2 0})$.

Cpd.	dG	Int.	H.B.	Eele	Evdw
$\mathbf{7}$	-14.58	34.92	-93.88	-3.59	1.27
$\mathbf{8}$	-13.53	84.77	-51.65	-4.10	1.73
$\mathbf{9}$	-14.52	-14.36	-50.41	1.74	1.05
$\mathbf{1 1}$	-14.81	85.84	-87.83	-4.38	0.72
$\mathbf{1 3}$	-14.13	68.04	-102.71	-3.87	1.56
$\mathbf{1 5}$	-12.16	62.39	-44.47	-2.3	3.44
$\mathbf{2 0}$	-15.13	80.23	-69.3	-1.45	0.97

d.G.: free binding energy of the ligand from a given conformer, Int.: affinity binding energy of hydrogen bond interaction with receptor, H.B.: Hydrogen bonding energy between protein and ligand.Eele: the electrostatic interaction with the receptor, Evdw: van der Waals energies between the ligand and the receptor.

Figure1: The most active compound 20 were Docked into the active site of COX-2, using MOE tool, H- bonds are in blue.

The highest binding score member is 20, exhibited important two hydrogen interactions with binding site through L-phe.-OMe fragment, and stabilized in binding pocket by adjusting its phenyl ring of L-Phe and coumarin ring in Parallel mode with Tyr-385. The compound 20 was stabilized with itself by arranged of phenyl ring with coumarin ring in coplanar position, (Figure.1). Furthermore, The results obtained clearly revealed that, the amino acid residues close to the reference molecule are mostly the same as observed in the tested compounds (Figure 1). The higher binding process interaction observed in 20 with COX-2, indicated that, the compounds 20 act as selective inhibitors against COX-2, this may be explained, the presence of hydrophobic amino acid in the synthesized compounds.

3.3.4. ADMET Profile

Oral bioavailability was considered to play an important role in the development of bioactive molecules as therapeutic agents. Many potential therapeutic agents fail to reach the clinic, because of their ADMET Factors. Therefore, a computational study for prediction of ADMET properties of the molecules (3-13,15,17a,18a,19-22) were performed, by the determination of topological polar surface area (TPSA), a calculated percent absorption (\%ABS)[40], and Lipinski rules [41]. In addition, the total polar surface area (TPSA) is another key property linked to drug bioavailability, the passively absorbed molecules with (TPSA>140) have low oral bioavailability [42]. All calculated descriptors were performed using MOE Package [38], and their results were disclosed in (Table 4). Our results revealed that, the CLogP (factor of the lipophilicity [43] were less than 5.0, hydrogen bond acceptors between (7-10), hydrogen bond donors between (1-5), these data showed these compounds fulfill Lipinski’s rule. Also, the absorption percent in ranged between ($\sim 50-86 \%$). The HOMO and LUMO of a molecule play important roles in intermolecular interactions [44], through the interaction between the HOMO of the drug with the LUMO of the receptor and vise versa. The interactions were stabilized inversely with energy gap between the interacting orbitals. Increasing HOMO energy and decreasing LUMO energy in the drug molecules led to enhancement stabilizing interactions, and hence, binding to the receptor.

Table 4: Pharmacokinetic parameters important for good oral bioavailability of compounds (3-13,15,
17a,18a,19-22):

$\mathbf{C P D}$	HBD	HBA	LogP	\mathbf{V}	TPSA	\%ABS	Log S	$\Delta \mathbf{E}$
$\mathbf{3}$	2	7	2.63	0	101.93	73.83	-4.67	8.39
$\mathbf{6}$	3	10	1.88	0	139.89	60.73	-5.45	8.29
$\mathbf{7}$	3	8	4.80	0	141.34	60.24	-6.64	7.50
$\mathbf{8}$	4	9	1.64	0	133.83	62.83	-4.74	8.32
$\mathbf{9}$	3	10	1.88	0	139.89	60.73	-5.45	8.29
$\mathbf{1 0}$	5	10	2.07	0	164.89	52.11	-6.49	8.43
$\mathbf{1 1}$	2	7	2.63	0	101.93	73.83	-4.67	8.39
$\mathbf{1 2}$	5	8	1.22	0	130.75	63.89	-4.53	8.53
$\mathbf{1 3}$	3	8	2.52	0	146.05	61.14	-6.40	8.25
$\mathbf{1 5}$	5	10	3.90	0	157.55	86.73	-7.96	7.09
$\mathbf{1 7 a}$	3	10	2.05	0	139.90	52.48	-6.80	7.76
$\mathbf{1 8 a}$	4	10	1.75	1	160.13	55.12	-7.47	7.97
$\mathbf{1 9}$	3	8	4.97	0	141.34	50.67	-7.88	7.09
$\mathbf{2 0}$	3	8	2.52	0	146.05	69.14	-6.40	8.25
$\mathbf{2 1}$	5	10	2.24	1	164.89	98.53	-6.30	8.53
$\mathbf{2 2}$	4	9	4.93	1	137.32	61.85	-6.27	8.38

TPSA: Polar surface area $\left({ }^{\circ} 2\right), \% A B S:$ Absorption percentage, Vol: Volume (A3), HBA: Number of hydrogen bond acceptor, HBD: Number of hydrogen bond donor, V: Number of violation from Lipinski's rule of five., Log P: Calculated lipophilicity., Log S: Solubility parameter, ΔE : Energy Gaps(eV).

3.3.5. Prediction of blood-brain barrier permeability

Blood-brain barrier (BBB) permeability, is a one of the most important challenges in the pharmacology of CNS active drugs. Many drugs have limited usage and fail to pass the clinical trials, due to failure penetration of CNS . In silico (Table 5), the pharmakinetic parameters were calculated for most active compound 20, using ADME-T algorthim, and defined human intestinal absorption (HIA) model [45,46], which predicted that, the compounds should be able to transported across the intestinal epithelium, which probably have high affinity binding to the plasma proteins, and may be passed through the blood-brain barrier, and it is necessary for ability drug transported throughout the body. In general, these data (table 5) suggested that, no marked health effects observed for rodent toxicity profiles, among the most active compound 20, its compound is a good ability transport against $B B B$, good activity for CNS can be used as a good oral bioavailability.

Table 5: The prediction of blood brain barrier most active compounds 20.

ADME-Tox	20
LogBBB (Blood-brain barrier.)	0.048
PPB\% (Plasma protein binding)	94.36
LD50 rat/mouse(mg kg ${ }^{-1}$, oral)	$500 / 590$
LD50 rat/mouse(mg kg ${ }^{-1}$, intraperitoneal)	$310 / 360$
LD50 mouse(mg kg ${ }^{-1}$, intravenous)	32
LD50 mouse(mg kg ${ }^{-1}$, subcutaneous)	350
Ames test (genotoxicity, \%)	0.32
Prob. of blood effect	0.42
Prob. of cardiovascular System	0.84
Prob. of gastrointestinal System	0.90
Prob. of kidney effect	0.82
Prob. of liver effect	0.41
Prob. of lung effect	0.52

4. Conclusion

The present work aims to synthesis some novel NSAIDs containing coumarin nucleus. The synthesized compounds were characterized by different spectral data (IR, ${ }^{1} \mathrm{HNMR}$). The antitumor activity of tested compounds $(\mathbf{7 , 8}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 9 b}$ and 20) were examined in vitro against Ehrlich solid carcinoma (EAC) tumor model in Swiss albino mice on dose $50 \mu \mathrm{~g}$, using the following parameters, body weight of animals, tumor volume, and tumor growth inhibition. The data showed that, introducing thiourea free acid fragment 20 enhancements antitumor activity than reference drug (DOX). The optimization geometries for compounds containing L-Phe., showed that, the L - isomers are most stable form for isolated compounds 3-13,15,17a,18a,19-22. The molecular docking simulations into the active site of COX-2 showed that, some
compounds $(\mathbf{7 , 8}, \mathbf{1 1}, \mathbf{1 3}$, and 20) suitable inhibitor against COX-2, and can used as New class of NSAIDs. The ADMET profiles in silico showed that, these compound are good oral bioavailability, and the most active compound 20 is CNS active agent without marked health effects observed for rodent toxicity. On the light of these data, we think that, this compound may be used new class NSAIDs as candidate anticancer drug with some modification of this structure.

References

[1] N.C. Nicolaides Fylaktakidou, E. Litinas, D. Hadlipavlou-Litina, "Synthesis and biological evaluation of some 4-(isoxazolinyl or 1,2,4-oxadiazolyl) coumarins "J. Heterocyclic Chem. 33, 967-971,1996.
[2] D. N. Nicolaides, K. C. Fylaktakidou, K. E. Litinas ,D. Hadjipavlou-Litina, "Synthesis and biological evaluation of several coumarin-4-carboxamidoxime and 3-(coumarin-4-yl)-1,2,4-oxadiazole derivatives"Eur. J. Med. Chem. 33, 715-724,1998.
[3] R. Czerpack,S. Skolska, Med. Dosw." Effect of selected synthetic regulators on Pseudomonas aeruginosa growth in liquid culture "Microbial. 34, 37-50, 1982. Chem. Abstr. 98, 50232, 1983.
[4] L. Jund, J.Corse, A. S. King, H.Bayne, K .Mihrag, "Antimicrobial properties of 6,7-dihydroxy-, 7,8-dihydroxy-, 6-hydroxy- and 8-hydroxycoumarins "Phytochem., 10, 2971-2975,1971.
[5] S. L. El-Ansary, E. I .Aly, M. A. Halem," S. L. El-Ansary, E. I .Aly, M. A. Halem, Egypt. J. Pharm. Sci. 33, 379-390, 1992.
[6] B.Nair, and R. Taylor-Gjevre, "A Review of Topical Diclofenac Use in Musculoskeletal Disease" Pharmaceuticals. 3,1892-1908,2010.
[7] A.A.Elhenawy, M. A. El-Gazzar1 and A. M. Seliem, "A.A.Elhenawy, M. A. El-Gazzar1 and A. M. Seliem, Global Journal of Chemistry"Global Journal of Chemistry, 2(1), 45-50, 2015
[8] A.A.Elhenawy, M. A. El-Gazzar1 and H. M. Mohmmed," "Synthesis, anti-Infammatory, Analgesic, Molecular Modeling and ADMET Studies of Novel Diclofenac Derivatives Containing Alanyl MoietyA.A.Elhenawy, M. A. El-Gazzar1 and H. M. Mohmmed, Chemistry and Materials Research,6(2), 69-77,2014
[9] A.A.Elhenawy," Synthesis, Characterization, AMDET and DOCKING studies of novel diclofenac derivatives containing phenylalanine moiety acting as selective inhibitors against cyclooxygenase (COX-2)" Chemistry and Materials Research,3 (12), 75-89, 2013
[10] J.R.Vane, R.M. Botting, Mechanism of action of antiinflammatory drugs. Int. J. Tissue React., 20, 315,1998.
[11] J.R.Vane, Y.S.Bakhle,; R.M. Botting, Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol., 38, 97-120,1998.
[12] D. Mukherjee, Selective cyclooxygenase-2 (COX-2) inhibitors and potential risk of cardiovascular events. Biochem. Pharmacol., 63, 817-821,2002.
[13] J.R.Brown, R.N. DuBois, COX-2: a molecular target for colorectal cancer prevention. J. Clin. Oncol., 23, 2840-2855,2005.
[14]C.E.Eberhart, R.J.Coffey, A.Radhika,; F.M.Giardiello, S.Ferrenbach, R.N. DuBois, Upregulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107, 1183-1188,1994.
[15]B.Rigas, I.S. Goldman, L.Levine, "Altered eicosanoid levels in human colon cancer." J. Lab. Clin. Med., 122, 518-523,1993.
[16]H.Sano, Y.Kawahito,R.L.Wilder, A.Hashiramoto, S. Mukai, K. Asai,. S.Kimura, H.Kato, M.Kondo, T.Hla, "Expression of cyclooxygenase-1 and -2 in human colorectal cancer". Cancer Res., 55, 37853789,1995.
[17]C.A. Guyton, J.E. Hall, "Textbook of Medical Physiology", ninth ed. Harcourt Asia Pte. Ltd., p. 846, 1998.
[18] JR Vane, YS Bakhle, RM Botting. " Cyclooxygenases 1 and 2." Ann. Rev. Pharmacol. Toxicol. 38,97120,1998.
[19] M. Guslandi,"Gastric toxicity of antiplatelet therapy with low-dose aspirin", drugs.53,1-5,1997.
[20] A.Maresca, C.Temperini, H. Vu, N. B.Pham,; S. A. Poulsen,; A. Scozzafa;. R. J.Quinn, C. T. Supuran, "Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors."J. Am. Chem. Soc., 131, 3057-3062,2009.
[21]H.Vu, N. B. Pham, R. J. Quinn," Direct screening of natural product extracts using mass spectrometry." J. Biomol. Screen., 13(4), 265-275,2008.
[22] A.Maresca, C.Temperini, L.Pochet, B.Masereel, A.Scozzafava, C. T. Supuran," Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins" J. Med. Chem. 53, 335-344, 2010.
[23]C. T. Supuran, Nat. Rev. Drug Disc.," Carbonic anhydrases: novel therapeutic applications for inhibitors and activators." , 7, 168-181,2008
[24] C. T. Supuran, A. Scozzafava, A. Casini, Development of sulfonamide carbonic anhydrase inhibitors (CAIs). In Carbonic Anhydrase—Its Inhibitors and Activators; Supuran,Scozzafava C. T., A., Conway, J., Eds.; CRC Press: Boca Raton (FL),; pp 67-147,2004.
[25] C. T. Supuran, Carbonic anhydrases as drug targets-general presentation. In C. T. Supuran, J. Y.Winum, Eds.; Drug Design of Zinc-Enzyme inhibitors :Functional, Structural, and Disease Applications; Wiley: Hoboken (NJ), 15-38,2009.
[26] J. Y.Winum, M. Rami, A.Scozzafava, J. L.Montero, C . Supuran," Carbonic anhydrase IX: a new druggable target for the design of antitumor agents", Med. Res. Rev., 28, 445-463,2008.
[27]C. T. Supuran, A. Scozzafava, A.Casini," Carbonic anhydrase inhibitors" Med. Res. Rev., 23, 146149,2003.
[28] W.R. Chegwidden, S.J.Dodgson, I.M. Spencer, "The roles of carbonic anhydrase in metabolism, cell growth and cancer in animals."EXS, 90, 343-363, 2000.
[29] A. A. Elhenawy, Mona Sayed Kadh, Azza Radwan, Reda D. Abd-Elghany and M. K. Hassanein, J. Chem. Pharm. Res.," Design, synthesis and discovery potent of novel anticancer agents based on the coumarin scaffold" , 7(12),1056-1066,2015.
[30] P. Chen, J. Li, J. Ma, M. Teng, X. Li, "A small disturbance, but a serious disease: the possible mechanism of D52H-mutant of human PRS1 that causes gout"Iubmb Life, 65, 518-525, 2013.
[31]B.M. Nicol, S.B. Prasad. "The effects of cyclophosphamide alone and in combination with ascorbic acid against murine ascites Dalton's lymphoma" Ind. J Pharmacol ., 38(4), 260-265, 2006.
[32]S.V Gothoskar, K.J Ranadive, "Antitumour Activity of SAN-AB: An Extract of Marking Nut,

Semecarpus Anacardium"Ind. J. Exp. Biol, 9, 372-375,1971.
[33] M. A. El-Sayed, A. A. Shabaka, O. A. El-Shabrawy, N. A. Yassin, S.S. Mahmoud, S. M. El-Shenawy, E. Al-Ashqar, W.H. Eisa, N. M. Farag, M. A. El-Shaer, N. Salah, A. M. Al-Abd, "Tissue Distribution and Efficacy of Gold Nanorods Coupled with Laser Induced Photoplasmonic Therapy in Ehrlich Carcinoma Solid Tumor Model"PLOS ONE, 8(10), 1-9,2013.
[34] J.J.P. Stewart., MOPAC Manual; (1993) Seventh Edition
[35]G. R. Kurumbail, M. A. Stevens, K. J. Gierse, J. J. McDonald, A. R. Stegeman, Y. J. Pak, D. Gildehaus, M. J. Miyashiro, D. T. Penning, K. Seibert, C. P.Isakson, C. W. Stallings, " Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents " Nature 384, 644-648,1996.
[36] J. R.Kiefer, J. L. Pawlitz, K. T. Moreland, R. A. Stegeman, W. F. Hood, J. K. Gierse, A. M. Steven, D. C. Goodwin, S. W. Rowlinson, L. J. Marnett, W.C. Stallings, R. G. Kurumbail., "Structural insights into the stereochemistry of the cyclooxygenase reaction. Structural insights into the stereochemistry of the cyclooxygenase reaction.", Nature. 405,97-101,2000.
[37]G. P. Hochgesang, L. J. Marnett, " Tyrosine-385 Is Critical for Acetylation of Cyclooxygenase-2 by Aspirin" J. Am. Chem. Soc. 122, 6514-15,2000.
[38] Chemical Computing Group. Inc, MOE, 2015v.10.
[39] T.A. Halgren., "Merck molecular force field I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput. Chem.", 17 ,490-519,1996.
[40] Y. Zhao, M.H. Abraham, J. Lee, A. Hersey, N.Ch. Luscombe, G. Beck, B. Sherborne, I. Cooper., " Rate-limited steps of human oral absorption and QSAR studies." Pharm. Res. 19,1446-57,2002.
[41]Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J., " Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings" Adv. Drug. Delivery Rev. 23, 3-25, 1997.
[42]D.E. Clark, S.D. Pickett.,"_Computational methods for the prediction of 'drug-likeness", Drug Discov. Today, 5(2), 49-58,2000.
[43] S.A. Wildman, G.M. Crippen.,"_Prediction of Physicochemical Parameters by Atomic Contribution", J. Chem. Inf. Comput. Sci. 39 (5) ,868-87,31999.
[44]K. Fukui,"_Role of Frontier Orbitals in Chemical Reactions" Science, 218, 747-754,1982.
[45] W. B. Buck, G. D. Osweiter, A. G. Van Gelder, (1976) "Clinical and DiagnosticVeterinary Toxicology", 2nd ed., Kendall/Hunt Publishing Co., Iowa, p 5211.
[46] R. Wiliheme, M. Gdynia., (1972) " Gastric mucosal damage induced by non-steriodal antiinflammatory agents in rats of different ages". Pharmacology., 8,321.

[^0]: * Corresponding author.

