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Abstract 

The efficacy and immune-modulation of mesenchymal stem cells is well documented. The issue of obtaining 

mesenchymal stem cells without patient risk, extensive intra-operative procedure, cell manipulation or exposure 

of cells to harmful reagents remains an issue. This study was designed to test the viability, composition and 

osteogenic potential of cells derived from cadaveric bone marrow by a new process. Vertebral bone from 

cadavers was collected within 24 hours of death, processed by a new procedure of tumbling and collection, and 

evaluated for viability, marker expression, cell composition, and inflammatory properties at various stages of the 

isolation process and following cryopreservation. Viability was excellent in all fractions and at all stages of the 

study. Cell staining and microscopic observation showed increased erythrocyte content in the first tumble of 

bone for marrow extraction, as well as gross observation of debris.  
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Cryopreservation favored the preservation of CD45-/CD105+ and GlycoA-/STRO-1+ mesenchymal stem cells 

at the expense of platelets, red blood cells, white blood cells and neutrophils. The resulting cell solution contains 

a percentage of mesenchymal stem cells far above that required for immune modulation. A mixed lymphocyte 

reaction assay showed no inflammatory response to this cell composition. The cells produced and preserved in 

this manner are viable, should elicit no immune response, suppress recipient immune responses and 

osteogenically differentiate.  

Keywords: MSC; cadaveric; cryopreservation; immune modulation; fracture repair. 

1. Introduction  

Due to their inherent osteogenic capacity and immunomodulatory properties, multipotent mesenchymal stem 

cells (MSCs) are strongly desired for fracture repair. It has been known since 2002 that MSCs suppress T-cell 

proliferation in mixed lymphocyte cultures [1]. With the inhibition of T-cell allo-responses widely documented 

[2, 3] an abundance of research has subsequently investigated the use of MSCs with skin [4, 5], cardiac [6], liver 

transplants [7], islet transplant [8, 9] and for the amelioration of Graft Versus Host Disease (GVHD) [10, 11, 12] 

and consistently demonstrated a lack of immune response or graft rejection. This has established bone marrow 

(BM) MSCs as a safe and advantageous component for allograft, with doses as low as 10,000 MSCs shown to 

be effective [2]. 

The metrics of dosage, concentration, carrier and effective tissue response to cell compositions all support 

regenerative applications, but the problem remains that the bone marrow contains a large variety of cell types. If 

one desires to separate MSCs from this mix of cells, centrifugal separation can segregate cells of specific 

density ranges, but cannot isolate specific cell types within that density range. Several methods of specific 

identification and separation have been developed with magnetically coupled antibodies, however the use of 

antibody-based cell isolation has not been approved for use beyond research applications with the exception of 

CD34 (cleared by the FDA, January 2014) for treatment of Acute Myeloid Leukemia. In the effort to achieve a 

pure cell determinant, or cluster of determination (CD), many of the cell types discarded during specific 

isolation are supportive of the regeneration process and MSC proliferation. The frustration of wasted 

regenerative potential in conjunction with the desire to retain the immunomodulatory characteristics of MSCs 

lead us to believe that the isolation of specific cell types may be unnecessary, impractical and perhaps even 

undesirable. We propose that the presence of supportive cell populations in combination with MSCs yields an 

attractive allograft that can not only be safely transplanted, but moreover supports effective regenerative 

potential. Further, this viable cellular allograft can also be attained without significant cell manipulation, without 

exposure of cells to enzymes that cleave cell attachment (eg. collagenase) or toxic, and devoid of damaging 

cryopreservants (eg. DMSO) or cryopreservants that contain potentially unsafe serums. 

CD105 (endoglin) and STRO-1 are well known markers of mesenchymal stem cells [13, 14, 15, 16]. 

Additionally, STRO-1+ cells are 100 times more osteogenic than STRO-1- cells [17]. Therefore, we utilized 

CD105 and STRO-1 as markers for MSCs with predisposition to osteogenic capacity. A process was developed 

to evaluate the safety and osteogenic efficacy of a cellular suspension obtained by tumbling cadaveric bone 
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marrow, centrifugal separation followed with ficoll, and preservation in poly-l-lysine-based polyampholyte 

cryopreservant for potential use as allograft material. The key indicators sought were the percentage of MSCs in 

cell solution, the imposition of immunomodulation of both donor and recipient, the ability to osteogenically 

differentiate and the absence of significant deleterious manipulation of the cells.  

2. Materials and methods 

2.1. Isolation of cellular suspension 

Donor spines were collected and surrounding soft tissue and fascia was removed. Individual vertebral bodies, 

primarily cancellous bone in composition, were dissected free of the intervertebral disks and further trimmed 

into small pieces. The pieces were further ground to small chunks of 4-10 mm and placed in processing media 

(low glucose DMEM with 2.5% HSA, 10 U/ml Heparin, 0.08 mg/ml Gentamicin and 0.0025 mg/ml DNAse). 

The resulting slurry was tumbled 4 times. The solution was collected after each tumble and replaced by more 

processing media. The collected solution was passed through 500 μm, followed by 180 μm sieves. 

2.2. Gross and microscopic evaluation 

2.2.1. Cell suspensions 

Cells from each tumble (1-4), were ficoll separated and viewed with a Nikon DIAPHOT microscope at 10x 

magnification with SpotAdvanced Version 4.1 software. 

2.2.2. Alkaline phosphatase and mineralization 

The alkaline phosphatase reaction was photographed using a Nikon DIAPHOT microscope at 4x magnification 

with SpotAdvanced Version 4.1 software. Reaction products from six-well plates of alkaline phosphatase 

secretion and mineralization were recorded with a Samsung Galaxy S5 camera. 

2.3. Viability 

Pre-and Post-Ficoll samples were stained for viability with propidium iodide. Viability was measured as cells 

negative for propidium iodide with a Moxi Flow™ cell counter (Orflo technologies, United States). The Post-

thaw samples were counted and assessed for viability by trypan blue staining and counting with a 

hemocytometer. 

2.4. Flow cytometry 

Cells were stained for flow cytometry in FACS buffer (DPBS, 5% BSA, 0.01% sodium azide) with either 

CD15-AF488, CD45-APC, HLADR-FITC, CD3-APC (BioLegend, U.S.A.), CD37-PE, HLA class1-APC, 

SSEA4-FITC, GlycoA-PE (R&D Systems, U.S.A.), GlycoA-PE + STRO-1-APC (Novus Biologicals, U.S.A.), 

CD45-APC + CD105-FITC (R&D Systems) or isotype controls for each fluorophore for 30 minutes at 4-80C in 

the dark. The cells were then washed twice with FACS buffer and re-suspended in 4% paraformaldehyde. Flow 

cytometry data was collected on a BD LSR II flow cytometer (BD Biosciences, U.S.A.). All positive/negative 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2017) Volume 31, No  2, pp 183-198 

186 
 

signals were obtained by comparison with isotype control. 

2.5. Complete blood counts 

Samples were sent to Sylvester Cancer Center for Complete Blood Count by the Diagnostic Molecular 

Pathology and Flow Cytometry Laboratory. 

2.6. Efficacy assay 

Cells were seeded in fibronectin-coated 6-well plates and allowed to attach at 370C overnight. The media was 

changed to osteogenic differentiation media (alpha-MEM, 10% FBS, 1% P/S, 100uM Ascorbic Acid, 10 mM B-

glycerophosphate and 10 nM dexamethasone) and plates were incubated at 370C, 5% CO2 for up to 21 days. In 

indicated assays, the cells were allowed to grow to near confluence before transition to differentiation media. 

2.6.1. Alkaline phosphatase activity 

The media was aspirated and cells were washed twice with DPBS. Cells were fixed in 2% paraformaldehyde for 

30 minutes. The cells were again washed two times with DPBS then covered with alkaline phosphatase substrate 

solution (1.85 mM napthol, 1% n-n'dimethylformamide, 1.68 mM Fast Blue B Salt, 3.5 mM magnesium 

chloride in 30 ml 100 mM Tris-HCl pH 9.6, final solution adjusted to pH 9.0) then incubated for 30 minutes at 

370C. The alkaline phosphatase substrate solution was aspirated and cells were washed twice in DPBS and 

allowed to dry for photography. 

2.6.2. Mineralization 

The media was aspirated and cells were washed two times with DPBS. Cells were fixed in 2% 

paraformaldehyde for one hour. The cells were again washed two times with DPBS then covered with Alizarin 

Red solution (40 mM Alizarin Red-S pH 4.2) and incubated for 20 minutes at room temperature. The alizarin 

red solution was aspirated and cells were washed twice with DI water and allowed to dry for photography. 

2.7. Cryopreservation and thaw 

2.7.1. Cryopreservation 

Cells were re-suspended in a non-DMSO, polyampholyte cryoprotectant to a concentration of 1.1 x 106 cells/ml. 

One milliliter aliquots were transferred to cryovials and allowed to equilibrate for 30-45 minutes. The vials were 

then frozen at 100C/minute and stored at -800C. 

2.7.2. Thaw 

Cells were quickly thawed in a 370C water bath and transferred into 3 ml of physiological saline. Cell counts, 

viability and flow cytometry samples were taken from this solution. 

2.8. MLR reactions 
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A mixed lymphocyte reaction was contracted to an independent laboratory who used a Roche BrdU ELISA 

proliferation assay. A total of seven samples were sent. The immune response was measured and converted into 

stimulation indexes (SI) with an n of 1-3 for each sample. 

2.9. Statistical analysis 

Data are reported as mean ± s.d. All analyses were performed using Microsoft Excel data analysis for two-tailed 

Student’s T-test. Differences between populations with significance p<0.05 were considered statistically 

significant. 

2.10. Use of human subjects 

Whole bone marrow was obtained from the vertebral bodies of cadaveric male donors (age range; 22- to 52-

years old) following guidelines for informed consent set by the University of Miami, School of Medicine, 

Committee on the Use of Human Subjects in Research. Vertebrae were removed from normal donors within 24 

hours of death and serology was performed to assure safe source and reduced risk of disease transmission. 

3. Results 

3.1. Phenotypic composition of tumbles used for cell collection 

To better understand a composition defining cells desired vs. cells that might be potentially immunogenic, cells  

 

a 
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Figure 1: Four tumbles of vertebral bone marrow pieces result in different debris and erythrocyte content but 

maintain viability. (a) Representative ficoll separations of each tumble for a single donor. The first tumble 

clearly shows a large RBC pellet as well as a red upper fraction. The MNC ring is not apparent. The other 

tumbles have sequentially smaller RBC pellets, clearer upper fractions and more apparent MNC rings. (b) 

Microscopic hemocytometer images of the collected MNC layer of each tumble from a single donor. The first 

tumble shows more debris and cells that are not clearly round. The remaining tumbles have significantly 

reduced debris and primarily round healthy cells. (c) Flow analysis of GlycoA positive cells before and after 

ficoll separation for each tumble. The first tumble has the highest percentage of GlycoA positive cells. All 

tumbles had reduced percentages of GlycoA+ cells following ficoll separation. (d) The viability of cells by 

propidium iodide reveals no difference between tumbles before or after ficoll separation. N=3, *P<0.05. 

In each of several washes and tumbles were evaluated separately during cell collection. Gross composition, 

viability and phenotypic composition were analyzed. The suspension from each tumble was separated by density 

gradient centrifugation. Gross observation of the centrifugally separated samples revealed differences in the 

content of all fractions (Figure 1a). Most obvious was the extent of hemolyzed material in the upper fraction of 

Tumble 1 as well as the large red pellet on the bottom, red blood cells (RBCs). An apparent white mononuclear 

cell ring at the Ficoll interface was minimal, if not absent. These properties diminished with each subsequent 

tumble. Microscopic evaluation of the mononuclear cell fraction ring revealed more debris and red blood cells in 

the first tumble, with less debris and more mononuclear cells occurring in each subsequent tumble (Figure 1b). 

Subsequent cell staining for GlycoA (differentiated erythrocytes) emphasized the high RBC content of Tumble 

1, as well as the significant reduction of such cells following ficoll separation (Figure 1c). Propidium iodide 
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staining of each tumble revealed no significant difference in viability between any of the tumbles or between 

pre- and post-ficoll separations (Figure 1d). The mononuclear cells from each tumble were stained for typical 

hematopoietic, granulocyte and immune cell markers, as well as the primitive stem cell marker SSEA4 and 

mesenchymal stem cell marker CD105. Additionally, the samples were sent to the Sylvester Cancer Center for 

complete blood differential count (CBC). It is noteworthy that the first tumble (pre-ficoll) was too coagulated 

for CBC in all cases. Separation of the mononuclear cell fraction from the remainder of the solution made the 

CBC (post-ficoll) possible. For this reason, all subsequent analysis were only performed on post-ficoll 

separation samples. The CBC revealed no statistically significant difference between the tumbles in any of the 

cell populations measured (Figure 2a), although the lymphocytes appear to be drastically reduced after the first 

tumble. Cell staining (Figure 2b) revealed no significant difference in CD15 (granulocyte marker) expression 

between the tumbles, providing verification of the CBC data which showed no significant difference in 

neutrophils and basophils. In addition, the cell staining showed a reduction of Human leukocyte antigen-D 

related (HLADR) with each tumble but, like the CBC, the results are not statistically significant (Figure 2b). 

There was no difference in the primitive MSC marker, SSEA4, or MSC marker CD105, between the tumbles 

(Figure 2c). Donor variability, inherent in this process, played a large part as seen by the error bars in all graphs 

in Figure 2. Therefore, reducing the undesirable cells and debris from Tumble 1 seems to provide increased 

safety without affecting any prospective efficacy. For this reason, we eliminated tumble 1 from all subsequent 

analyses and combined the solutions from tumbles 2-4 for ficoll separation.  

 

a 

 

b 
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Figure 2: There is no difference in phenotypic composition between each tumble following ficoll separation. (a) 

Complete blood count reveals no difference in indicated cell types between tumbles, measured as percent of 

WBC’s. (b) Flow cytometry shows no difference in indicated hematopoietic markers between tumbles, 

measured as a percent of all cells. (c) There is no difference between tumbles in the percent of mesenchymal 

stem cells that are SSEA4 positive or CD105 positive. N=3, *p<0.05. 

3.2. The isolated cells are osteogenic and mineralize 

In order to ensure that the cells isolated were osteogenic, cells were placed in osteogenic media and their 

production of alkaline phosphatase and level of mineralization at various time points were evaluated.  Figure 3a 

shows the production of alkaline phosphatase by the cell suspension. The cells were seeded at 1.1 x 106 

cells/well and not allowed to expand. They were osteogenically differentiated 24 hours after the time of plating. 

Colonies formed with the typical swirling pattern of differentiating osteoblasts. The low magnification and 

microscopic images in Figure 3b show the edges of colonies. Both images illustrate the alkaline phosphatase 

activity highest at the centers where the cells are more confluent and diminishing outward as the cells are 

proliferating and differentiating outward. In the following experiment, cells were seeded at the same density and 

allowed to expand to near confluency, then differentiated with exposure to osteogenic media. There was obvious 

alkaline phosphatase activity peaking at day 14 and waning at day 21(Figure 3c), as expected when cells transfer 

from differentiation to mineralization [18, 19]. Alizarin Red staining in Figure 3d shows the samples miner 

alizing at day 21. This correlates with the decrease in alkaline phosphatase, as it is known that cells will first 

secrete alkaline phosphatase, then reduce that secretion in favor of mineralization. These data confirm that the 

cell solution is osteogenic, and will mineralize, illustrating the ability of the cell solution to effectively produce 

bone. 

3.3. The cryopreserved cell suspension is safe for direct implantation 

The cells were cryopreserved in a poly-l-lysine based preservation media with no dilution or additions. After 30 

days of cryopreservation vials from three different donors were sent out for Mixed Lymphocyte Reaction 

(MLR) testing to evaluate the safety of direct application of the cell solution. A histogram of the resulting 

Stimulation Indexes (SI) for each test shows that no reaction occurred with any of our cell solutions (Figure 4). 

Based on these results, the cryopreserved cell solution should elicit no immune response. 
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Figure 3: Cells collected by this new method form colonies and are osteogenic. (a) Representative photograph 

of post ficoll cells grown in osteogenic media for 30 days. No prior expansion was allowed.  Alkaline 

phosphatase staining shows many colonies at varying densities positive for alkaline phosphatase secretion. (b) 

Representative photograph of post ficoll cells from a different donor grown in osteogenic media for 14 days. No 

prior expansion was allowed.  Low magnification and 4X magnification of alkaline phosphatase staining shows 

typical swirling pattern within colonies which are positive for alkaline phosphatase secretion. (c) Representative 

photographs of alkaline phosphatase staining of post ficoll cells from a different donor that were allowed to 

expand to near confluence, then differentiated in osteogenic media for up to 21 days. (d) Representative 

photographs of Alizarin Red staining of post ficoll cells from the same donor as in (c) that were allowed to 

expand to near confluence, then differentiated in osteogenic media for up to 21 days. 

 

Figure 4: The cell solution does not elicit an immune response. Seven separate frozen donor samples were sent 
out for mixed lymphocyte reaction (MLR) testing. The MLR performed by Xeno Diagnostics shows no 

difference in the stimulation index between stimulated test cells and unstimulated control cells. Positive controls 
(PBMCs) clearly showed significant stimulation. N=3 for six samples, n=1 for the seventh sample. mitC= 

mytomycin C treated. PHA= phytohemagglutinin treated. Allo= allogenic reaction. 

3.4. The cells have reduced blood cells and increased MSC content upon thaw 

The final analysis of this study was to ascertain the viability and composition of the cell suspension after 

cryopreservation. We sought to determine these parameters after 90 days and 6 months of cryopreservation. 

Viability was not significantly different between cells before freezing (pre-freeze) and those thawed at 90 days 
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or thawed at 6 months (Figure 5a). The Complete Differential Blood Count (CBC) in Figure 5b shows that 

although ficoll separation significantly reduced the percentage of platelets and red blood cells, cryopreservation 

for 90 days further reduced the platelets, RBCs and WBCs. The CBC (Figure 5c) also shows that ficoll 

separation alone was responsible for significant reduction in lymphocytes and monocytes. In such depletion, the 

relative number of neutrophils, large unstained cells (LUC) and basophils appeared to increase in proportion to 

the total number of cells. Following 90 days of cryopreservation, the thawed cells showed significant reduction 

in neutrophils and an increase in monocytes, eosinophils and basophils compared to pre-freeze samples. Cell 

staining for flow cytometry showed that after 6 months of cryopreservation, there is no significant change in 

CD15 or CD3 compared to pre-freeze (Figure 5d). The B-cell marker, CD37 was completely (and significantly) 

lost. The hematopoietic marker, CD45, was reduced almost to significance (p=0.08) and cells expressing HLA 

class 1 were significantly reduced. Surprisingly, HLADR was significantly increased after 6 months of 

cryopreservation (Figure 5d). As expected, the percentage of cells expressing GlycoA (differentiated 

erythrocytes) was significantly reduced after 6 months of cryopreservation (Figure 5e). Interestingly, the 

percentage of cells negative for hematopoietic marker CD45 and expressing mesenchymal stem cell marker 

CD105 increased significantly following 6 months of cryopreservation compared to pre-freeze (Figure 5f). 

Similarly, the percentage of cells that are negative for the erythrocyte marker GlycoA and positive for the 

osteogenic MSC marker STRO-1 increased significantly at 6 months thaw compared to pre-freeze (Figure 5f). 

The observation supported by this data suggests that freezing in poly-l-lysine-based cryopreservant 

preferentially results in lysis of erythrocytes, lymphocytes and neutrophils, and in consequence augments the 

percentage of viable MSC’s. 

4. Conclusion 

The production of safe, effective allograft material is challenging. Current regulations preclude the use of 

antibody-based isolation and separation of specific cell types, and furthermore, highly selective isolation 

techniques would remove desirable supportive cell populations. In the reflection of bone marrow offering a 

multitude of potentials in a mosaic of identities, an ideal allograft should contain supportive cell populations yet 

maintain a high enough percentage of MSCs to abrogate any inflammatory or immune effects to both allograft 

and recipient. We have isolated a cell solution that is both safe, due to the high percentage of MSCs, and 

effective due to the presence of several supportive cell populations in coordination with the MSCs. 

The elimination of debris, erythrocytes, and considerable amounts of leukocytes and HLADR+ cells by removal 

of cells from the first tumble establishes a more favorable baseline group of cells for ficoll separation. Observed 

debris may be due to necrosis, dying cells or platelets, all of which are not desired in this allograft product. This 

is illustrated by the extensive clotting of the pre-ficoll cells from tumble 1, barring CBC analysis. Fortunately, 

supportive cells remain in the remaining three fractions, allowing retention for ficoll separation. 

Tumbles 2 through 4 in our processing media were combined and separated by density gradient centrifugation 

with ficoll. The recovered MNC layer secretes alkaline phosphatase at 14 days and begins mineralization at 21 

days. This clearly demonstrates the osteogenic capacity of these cells upon introduction to osteogenic factors. 

Introduction of this cell mixture to an environment rich in bone forming niche cells (e.g. osteoblasts, osteoclasts, 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2017) Volume 31, No  2, pp 183-198 

193 
 

matrix, etc.) such as demineralized bone and the in vivo niche would further promote the efficacy of the MSC 

component, increasing the efficacy of the supporting cells by feedback. 

 

Figure 5: The phenotypic profile of the cell solution following cryopreservation. (a) The viability as measured 

by trypan blue staining shows high viability following cryopreservation with no difference between pre-freeze 

(n=42), 90 days frozen (n=9) and 6 months frozen (n=8). (b) Complete blood count shows a significant decrease 

in the number of platelets, red blood cells (RBCs) and white blood cells (WBC) following ficoll separation, 

before freeze (n=17) and again after 90 days of cryopreservation (n=6). (c) Complete blood count shows 

significant changes in some cell types within the WBC count following ficoll separation, before freeze (n=17) 

and after 90 days of cryopreservation (n=6). (d) Flow cytometry analysis reveals a significant decrease in the 

percentage of CD37 positive B-cells and HLA class I cells and a significant increase in the percentage of 

HLADR positive cells after 6 months in cryopreservation (n=8) compared to pre-freeze (n=38). (e) GlycoA 

staining of cells before freeze (n=35) and after 6 months of cryopreservation (n=8) show the significant decrease 

in the percentage of erythrocytes in the cell solution. (f) Flow cytometry analysis of MSC markers show that 

following 6 months of cryopreservation (n=8) the percentage of CD45-/CD105+ and GlycoA-/STRO-1+ cells 

are significantly increased compared to pre-freeze percentages (n=37). *p<0.05, **p<0.01, ***p<0.001. 

The choice of a poly-l-lysine based cryopreservant proved to be an important component as it appears to 
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preferentially preserve desirable cells. The pH of the poly-l-lysine used may have played a role in its preferential 

preservation of MSC populations [20]. The poly-l-lysine cryoprotectant is safe for direct in vivo injection as 

evidenced by both in vitro studies [21, 22] and mixed lymphocyte reaction testing directly applied to the 

individual lots of donor allograft material. All thawed populations retained high viability when re-suspended in 

physiological saline with no centrifugation or washing of cells. As expected, RBCs and platelets were further 

eliminated during freezing, most likely due to lysis [23]. This is advantageous as platelet rich plasma (the 

product of factors released from lysed platelets during freeze) is currently being utilized as a healing therapy 

[24, 25] although The American Academy of Orthopaedic Surgeons concluded in 2011 that its effectiveness is 

still unproven. The increase in HLADR positive cells was evaluated to ensure safety. Cells that express HLADR 

on their surface include macrophages, B-cells and dendritic cells [26, 27]. The percentage of cells expressing 

CD37 (B-cells) was near zero, macrophages (monocytes) were less than 17% of the WBC’s, which amounts to 

4.8% of total cells. Since the isolate was recovered from the bone marrow, this leaves the balance as immature 

dendritic cells with low T-cell activation potential. Moreover, MSCs have been shown to suppress immune 

reactions by modulating dendritic cells [28]. 

The elimination of B-cells and reduction of T-cells to within one s.d. of zero is ideal. Since these cells were 

frozen at 1.1 x 106 cells per vial, 50% CD45-CD105+ cells amount to 550,000 MSCs in a single vial. This cell 

population has been repeatedly shown to be MSCs [13, 29]. It has been reported that MSCs suppress immune 

reactions [30, 31, 32] avoid allogeneic recognition, interfere with dendritic cell and T-cell function, and generate 

a local immunosuppressive microenvironment by secreting cytokines [33]. And perhaps most importantly, 

10,000 MSCs (10%) sufficiently supports and conveys an immunosuppressive effect to donor cells and recipient 

cells following transplant [34]. It has also been shown that the immunomodulatory function of human MSCs is 

further enhanced when the cells are exposed to an inflammatory environment [35]. Since our cells exceed that 

requirement by 5 times, the cell solution is shown to be safe from immune reaction from both donor and 

recipient. These data illustrate the safety of the cell solution obtained and preserved in this manner. 

The non-erythrocyte (GlycoA-) MSC (STRO-1+) percentage in the cell solution was greater than 70%. This 

population is highly osteogenic [15, 17] and in combination with the production of alkaline phosphatase and 

mineralization further illustrates the expected efficacy of this cell suspension. By including supportive cell 

populations in the cell solution, the efficacy should be further enhanced, without fear of immune reactions. 

We have shown that BM allograft material can be isolated in a specific media and cryopreserved without 

antibody-based isolation, producing an effective and safe bone healing product. The resulting material contains 

greater than 50% CD45-CD105+ MSCs and greater than 70% GlycoA-STRO1+ MSCs. The percentage of 

MSCs is more than sufficient to nullify unfavorable immune responses from both donor and recipient. Our data 

shows excellent reduction of immune cells and erythrocytes upon isolation with continued marked reduction 

following cryopreservation. These results are further enhanced by the concurrent increase in mesenchymal stem 

cell concentration. We have shown that the presence of supportive cell populations in combination with high 

concentration of MSCs yield a well-rounded transplantable allograft that is producible without significant cell 

manipulation and without exposure of cells to adherence cleaving enzymes commonly used for retrieval of 

MSCs. There are no toxic, damaging cryopreservants or exposure to cyropreservants with media’s that contain 
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potentially unsafe serums. Taken together, this data illustrates the safety of bone marrow cells which are isolated 

and preserved in this manner. 

This study is constrained to the testing of a singular poly-l-lysine based cryopreservant. Hence, the results are 

limited to the properties of that preservant. We recommend expansion of the concept and extended testing to 

include other non-DMSO cryopreservants. Although these data would be best presented as a comparison to 

DMSO-based industry standards, this formulation is not safe for direct application. Therefore, in vitro 

comparative studies will need to suffice as preliminary data. Animal studies utilizing DMSO-based 

crypreservants without washing are not recommended due to toxic effects. 

Bone allograft is commonly used to enhance healing of non-union fractures and encourage fusion of bone 

following surgery. The cell solution as a component of a reconstituted cellular allograft described herein 

introduces options for clinical care for bone defects, surgical imperfections, or traumatic loss of skeletal 

material. Combination of this solution with bone microparticulate would strongly enhance the healing properties 

of both the cells and the microparticulate, working in synergy with the patient’s bone microenvironment. The 

application of MSCs to patients have already been shown to be safe in ratios of MSCs to other cells far below 

that of our solution. Since this cell solution remains viable, is expected to suppress immune responses and will 

osteogenically differentiate, it is an ideal candidate for testing with bone microparticulate transplanted to non-

union fracture or fusion scenarios. There is also the consideration that this cell solution will differentiate 

effectively into cartilage in the presence of appropriate environmental cues. There are many avenues to be 

investigated for discovery of the limits and applications of this cell solution, isolated and preserved in this 

manner. 
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