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Abstract 

Typhoid, an acute gastro-intestinal infection and a waterborne disease continues to emerge in developing 

countries and remains an important global health challenge. In this paper, we develop a deterministic 

compartmental mathematical model for assessing the effects of education campaigns, vaccination and treatment 

on controlling the transmission dynamics of typhoid fever in the community. We have shown that the disease 

free equilibrium state of the model is locally asymptotically stable if the basic reproduction number is less than 

unity otherwise if the basic reproduction number is greater than unity then the disease persists and the unique 

endemic equilibrium is globally asymptotically stable in the interior of the feasible region under some 

conditions. Numerical simulation reveals that when each of the controls increased it tends to decrease the 

disease outbreak, this is in support with analytical results which yielded the same results.  We performed 

sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative 

importance to disease transmission and prevalence. 

Keywords: typhoid; reproductive number; treatment; vaccination; stability; gastro-intestinal infection. 

 

------------------------------------------------------------------------ 

* Corresponding author.  

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied


International Journal of Sciences: Basic and Applied Research (IJSBAR)(2017) Volume 32, No  1, pp 151-168 

152 
 

1. Introduction  

Typhoid is a major public health concern in tropical developing countries, especially in areas where access to 

clean water and other sanitation measures are limited [1, 2, 3].Typhoid fever has complex pathogenesis and 

manifests as an acute febrile disease, with relatively long incubation period that involves the transmigration of 

the microorganism through the Peyer’s patch, localized multiplication in the mesenteric lymph nodes, and 

subsequent spread to the liver and spleen prior to showing clinical symptoms [4]. It is a serious life-threatening 

infection characterized by false diagnosis due to similar signs and symptoms with malaria, which leads to 

improper controls and management of the disease. Despite extensive work on typhoid, not much is understood 

on the biology of the human-adapted bacterial pathogen and the complexity of the disease in endemic areas, 

especially in Africa [5]. 

   The disease is endemic in many developing countries and despite recent progress in water and sanitation 

coverage, it remains a substantial public health problem. Globally, it is estimated that typhoid causes over 16 

million cases of illness each year, resulting in over 600,000 deaths [6]. Typhoid has a long storied history as a 

public health scourge. Salmonella enterica serovar Typhi (S. Typhi) is a human restricted bacterial pathogen 

transmitted via faecal contamination of food and water [7]. While improvements in water and sanitation led to 

the elimination of typhoid from most developed countries during the twentieth century, the global burden of 

typhoid fever has recently been estimated to be between 13.5 and 26.9 million episodes and 190,000 to 216,000 

deaths annually [8]. 

In many developing nations, the public health goals that can help prevent and control the spread of typhoid fever 

disease through safe drinking water, improved sanitation and adequate medical care may be difficult to achieve. 

Health education is paramount to raise public awareness and induce behavior change [9]. 

Several mathematical models have been developed to explain the dynamics of the disease [6, 10,11,12,13, 22] 

but none has incorporated a combination of public health education campaigns, vaccination and treatment as 

control strategies. This study is at hand to fill the gap by developing an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑅𝑅  (susceptible, vaccinated, 

symptomatic infectious, asymptomatic infectious and recovered) model of typhoid fever with the mentioned 

control strategies. We assume that all susceptible individuals are equally likely to be infected by infectious 

individuals in case of contact, we also assume direct transmission of typhoid from infected individuals to 

susceptible  individuals and that there is a constant recruitment rate to the susceptible population. Furthermore, 

we assume that the rate of transmission for carriers is greater than that of symptomatic infectious individuals. 

2. Model Formulation        

 In this paper, we develop a deterministic compartmental typhoid transmission model that captures vaccination, 

education campaign and treatment as control as strategies. In order to study the impact of these control strategies 

on the dynamics of typhoid fever, this model considers the human population, 𝑁𝑁(𝑡𝑡) divided into five sub-

populations namely; susceptible, 𝑆𝑆(𝑡𝑡), vaccinated, 𝑆𝑆(𝑡𝑡), infectious, 𝑆𝑆(𝑡𝑡), Typhoid carriers, 𝑆𝑆𝑐𝑐(𝑡𝑡), and recovered 

individuals, 𝑅𝑅(𝑡𝑡).  Individuals are recruited into the susceptible population by either immigration or birth at the 
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rate a constant rate Λ . We assume that proportion 𝑝𝑝  of 𝑆𝑆(𝑡𝑡) progress to carrier class, while the compliment 

1 − 𝑝𝑝 progress to symptomatic infectious compartment. Carriers can become symptomatic at some rate 𝛼𝛼 or die 

due to typhoid at the rate 𝑑𝑑1.  

Infectious individuals can receive treatment and recover at the rate  𝜂𝜂 . Recovered individuals may become 

susceptible again at the rate 𝜔𝜔2 , this is due to the fact that typhoid does not confer permanent immunity on 

recovery. Susceptible individuals receive vaccination to protect them against infection at the rate 𝜃𝜃. 

 Since vaccine wanes with time, then after its expiry the vaccinees can return back to susceptible class at the rate 

𝜔𝜔1. We assume that an individual in each compartment may undergo a natural death at rate 𝜇𝜇. Let 𝛽𝛽 and 𝛾𝛾 be 

transmission rates for infectious and carrier individuals respectively then the susceptible population 𝑆𝑆(𝑡𝑡), is 

exposed to force of infection denoted by 𝜆𝜆, where 𝜆𝜆 = 𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐 .  

It must be clear in mind that 1 − 𝜓𝜓𝑒𝑒   is an educational parameter that caters for limiting both carriers and 

symptomatic individuals from spreading typhoid. In fact this parameter lies in an interval 0 < 𝜓𝜓𝑒𝑒 < 1. When  

𝜓𝜓𝑒𝑒 = 0 it means that no education campaigns are in place so susceptible population are ignorant of typhoid 

fever and when  𝜓𝜓𝑒𝑒 = 1 then it means that the all susceptible individuals are fully aware of typhoid fever, that is 

to say they know what causes the diseases, how it is spread and how to avoid contracting the disease. 

Detailed description of parameters is shown in Table 1 while the compartmental flow diagram of the model is 

shown by Figure 1. 

 

Figure 1: A compartmental diagram for the Typhoid transmission dynamics model that incorporates public 

Health Education Campaigns, Vaccination and Treatment. 
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Table 1: Parameters and their description 

Parameter Value Description Source 

Λ 106/year Recruitment rate [16,17] 

 𝜔𝜔1 0.1/year Rate at which the vaccine wanes Estimated 

 𝜔𝜔2 0.3/year Rate at which recovered individuals lose immunity Estimated 

𝜂𝜂 0.15/year Recovery rate for symptomatic infectious individuals [6] 

𝜃𝜃 0.6/year Rate at which susceptible individuals are vaccinated Estimated 

𝛽𝛽 0.02/year Transmission rate for symptomatic infectious individuals Estimated 

𝛾𝛾 0.01/year Transmission rate for carrier individuals [16] 

𝑝𝑝 0.5/year Proportion of newly infected individuals who become carrier [8] 

𝜓𝜓𝑒𝑒 0.4/year Education parameter Estimated 

𝛼𝛼 0.04/year Rate at which carriers develop symptoms [16] 

𝜇𝜇 0.142/year Natural mortality rate of individuals [16] 

𝑑𝑑2 0.012/year Disease-induced mortality rate of symptomatic individuals [16] 

𝑑𝑑1 0.01/year Disease-induced  mortality rate of carriers [16] 

 

2.1 Model Equations 

From the description of the dynamics of typhoid and with the aid of the compartmental diagram in Figure 1, the 

following set of non-linear ordinary differential equations can be derived: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= Λ + 𝜔𝜔1𝑆𝑆 + 𝜔𝜔2𝑅𝑅 − (𝜃𝜃 + 𝜇𝜇 + (1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐))𝑆𝑆                                                (1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= θ𝑆𝑆 − (𝜔𝜔1 + 𝜇𝜇)𝑆𝑆                                                                                                         (2) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜂𝜂 + 𝑑𝑑2 + 𝜇𝜇)𝑆𝑆 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)𝑆𝑆𝑐𝑐                                (3) 

𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒))𝑆𝑆𝑐𝑐                                                   (4) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝑆𝑆 − (𝜔𝜔2 + 𝜇𝜇)𝑅𝑅                                                                                                         (5) 

2.2 Feasibility Region 

From system (1-5) we have: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= Λ − µN − 𝑑𝑑1 𝑆𝑆𝑐𝑐 − d2𝑆𝑆 ≤ Λ − 𝜇𝜇𝑁𝑁                                                                              (6) 
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Thus, 

𝑁𝑁(𝑡𝑡) ≤ Λ
𝜇𝜇

(1 − e−µt) + 𝑁𝑁(0)e−µt                                                                                         (7) 

as t → ∞,  e−µt → 0 and hence 𝑁𝑁(𝑡𝑡) ≤ Λ
𝜇𝜇
. Therefore, the model can be studied in the feasible region 

𝐷𝐷 = �(𝑆𝑆,𝑆𝑆, 𝑆𝑆, 𝑆𝑆𝑐𝑐 ,𝑅𝑅) ∈ ℝ+
5 : 𝑆𝑆 + 𝑆𝑆 + 𝑆𝑆 + 𝑆𝑆𝑐𝑐 ≤

Λ
𝜇𝜇
�                                                                                    (8) 

which is bounded and positively invariant. 

3. Model analysis 

    The model system (1-5) is analyzed qualitatively to get insights into its dynamical features which give better 

understanding of the impact control strategies on the transmission dynamics of typhoid fever. 

3.1 Equilibria 

Setting the left hand side of system (1-5) equal to zero, we have:   

0 = Λ + 𝜔𝜔1𝑆𝑆 + 𝜔𝜔2𝑅𝑅 − (𝜃𝜃 + 𝜇𝜇 + (1 −𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐))𝑆𝑆                                                      (9) 

0 = θ𝑆𝑆 − (𝜔𝜔1 + 𝜇𝜇)𝑆𝑆                                                                                                             (10) 

0 = (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜂𝜂 + 𝑑𝑑2 + 𝜇𝜇)𝑆𝑆 + 𝛼𝛼(1 −𝜓𝜓𝑒𝑒)𝑆𝑆𝑐𝑐                                     (11) 

0 = 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒))𝑆𝑆𝑐𝑐                                                        (12) 

0 = 𝜂𝜂𝑆𝑆 − (𝜔𝜔2 + 𝜇𝜇)𝑅𝑅                                                                                                              (13) 

Model system (1-5) has a disease-free equilibrium 

𝐸𝐸0 = �𝑆𝑆0,𝑆𝑆0, 𝑆𝑆0, 𝑆𝑆𝑐𝑐0,𝑅𝑅0� = ( Λ(𝜔𝜔1+𝜇𝜇) 
𝜇𝜇(𝜃𝜃+𝜔𝜔1+𝜇𝜇)

, Λθ
𝜇𝜇(𝜃𝜃+𝜔𝜔1+𝜇𝜇)

, 0, 0, 0).                                               (14) 

An endemic equilibrium 𝐸𝐸∗ = (𝑆𝑆∗,𝑆𝑆∗, 𝑆𝑆∗, 𝑆𝑆𝑐𝑐∗,𝑅𝑅∗) satisfies 𝑆𝑆∗,𝑆𝑆∗, 𝑆𝑆∗, 𝑆𝑆𝑐𝑐∗,𝑅𝑅∗ > 0 . 

From the equilibrium equations we can show that 𝐸𝐸∗ exists with 

𝑆𝑆∗ =  
(𝜇𝜇 + 𝑑𝑑2 + 𝜂𝜂)(𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒))

(1 − ψe){(1 − 𝑝𝑝)𝛽𝛽�𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 −𝜓𝜓𝑒𝑒)� + 𝑝𝑝𝛾𝛾(𝜇𝜇 + 𝑑𝑑2 + 𝜂𝜂) + 𝑝𝑝𝛽𝛽𝛼𝛼(1 −𝜓𝜓𝑒𝑒)}
 

For 𝐸𝐸∗ to exist in the feasible region 𝐷𝐷, the necessary and sufficient condition is that: 
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0 < 𝑆𝑆∗ < Λ(𝜔𝜔1+𝜇𝜇) 
𝜇𝜇(𝜃𝜃+𝜔𝜔1+𝜇𝜇)

   or equivalently,  Λ(𝜔𝜔1+𝜇𝜇) 
𝜇𝜇(𝜃𝜃+𝜔𝜔1+𝜇𝜇)𝑑𝑑∗

≥ 1                                                   (15) 

Define 

𝑅𝑅𝑒𝑒 =
1
𝑆𝑆∗

Λ(𝜔𝜔1 + 𝜇𝜇) 
𝜇𝜇(𝜃𝜃 + 𝜔𝜔1 + 𝜇𝜇) 

     ℛ𝑒𝑒 = (1−ψe)Λ(𝜔𝜔1+𝜇𝜇) 
𝜇𝜇(𝜃𝜃+𝑤𝑤1+𝜇𝜇)

� (1−𝑝𝑝)𝛽𝛽
(𝜇𝜇+𝑑𝑑2+𝜂𝜂)

+ 𝑝𝑝𝑝𝑝
(𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒))

+ 𝑝𝑝𝛼𝛼𝛽𝛽(1−𝜓𝜓𝑒𝑒)
(𝜇𝜇+𝑑𝑑2+𝜂𝜂)(𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒))

�                  

Then  𝑅𝑅𝑒𝑒  is a threshold parameter that determines the number of equilibria. We will show in Section (3.2) that 

𝑅𝑅𝑒𝑒  is the basic reproduction number. 

Proposition .  If 𝑅𝑅𝑒𝑒 < 1 then 𝐸𝐸0 is the only equilibrium in system (1-5); if  𝑅𝑅𝑒𝑒 > 1, then there are two equilibria, 

disease free equilibrium, 𝐸𝐸0 and a unique endemic equilibrium, 𝐸𝐸∗. 

3.2 The Reproduction Number, 𝑹𝑹𝟎𝟎 

  The basic reproduction number denoted by 𝑅𝑅0 is the average number of secondary infections caused by an 

infectious individual during his or her entire period of infectiousness [14].The basic reproduction number is an 

important non-dimensional quantity in epidemiology as it sets the threshold in the study of a disease both for 

predicting its outbreak and for evaluating its control strategies. Thus, whether a disease becomes persistent or 

dies out in a community depends on the value of the reproduction number,  𝑅𝑅0 . Furthermore, stability of 

equilibria can be analyzed using 𝑅𝑅0; if 𝑅𝑅0 < 1 it means that every infectious individual will cause less than one 

secondary infection and hence the disease will die out and when 𝑅𝑅0 > 1, every infectious individual will cause 

more than one secondary infection and hence the disease will invade the population. A large number of 𝑅𝑅0 may 

indicate the possibility of a major epidemic. For the case of a model with a single infected class, 𝑅𝑅0 is simply 

the product of the infection rate and the mean duration of the infection. 

    In this paper, the reproductive number accounts for the average number of new typhoid cases generated by a 

single typhoid infected individual (either from symptomatic class or from chronic enteric carriers) introduced 

into a wholly susceptible population. 

Due to complicated epidemics in our model, we compute the reproduction number, 𝑅𝑅𝑒𝑒  using the next 

generation operator approach by [15].The reproduction number for the model in system eqn. (1-5) is: 

 

ℛ𝑒𝑒 = (1−ψe)Λ(𝜔𝜔1+𝜇𝜇) 
𝜇𝜇(𝜃𝜃+𝑤𝑤1+𝜇𝜇)

� (1−𝑝𝑝)𝛽𝛽
(𝜇𝜇+𝑑𝑑2+𝜂𝜂)

+ 𝑝𝑝 � 𝑝𝑝
�𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒)�

+ 𝛼𝛼𝛽𝛽(1−𝜓𝜓𝑒𝑒)
(𝜇𝜇+𝑑𝑑2+𝜂𝜂)�𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒)�

��       (16) 

Considering equation (16) above, we can give the interpretations of the effective reproduction, ℛ𝑒𝑒  of our 

model as follows:   
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   When a single infective is introduced into the population, with probability 1 − 𝑝𝑝 it is a non-carrier, hence 

makes 𝛽𝛽 effective contacts per unit time. This is multiplied by the average infectious period 1
𝜇𝜇+𝑑𝑑2+𝜂𝜂

 for non-

carriers; with probability 𝑝𝑝 the infective is a carrier, and hence makes 𝛾𝛾 effective contacts per unit time during 

the average period 1
𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒)

 it remains a carrier. This number should be augmented by the number of 

infections 𝛽𝛽(1−𝜓𝜓𝑒𝑒)
𝜇𝜇+𝑑𝑑2+𝜂𝜂

 caused by this infective after it becomes a non-carrier, with probability 𝛼𝛼
𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒)

 to 

survive the carrier stage. Therefore, the expression in the big square brackets in (16) is the per capita average 

number of secondary infections. This number multiplied by the number of susceptibles at the disease-free 

equilibrium, Λ(𝜔𝜔1+𝜇𝜇) 
𝜇𝜇(𝜃𝜃+𝜔𝜔1+𝜇𝜇)

 and educational parameter 1 − ψe gives 𝑅𝑅𝑒𝑒. 

3.3 Local Stability of Disease-Free Equilibrium point (DFE) 

    We show that, the variation matrix, )( 0EJ of model system (1-5) has negative trace and positive determinant. 

The partial differentiation of (1-5) with respect to (𝑆𝑆,𝑆𝑆, 𝑆𝑆, 𝑆𝑆𝑐𝑐 ,𝑅𝑅) at the disease free equilibrium gives: 

  𝐽𝐽(𝐸𝐸0)  

=

⎣
⎢
⎢
⎡−(𝜃𝜃 + 𝜇𝜇) 𝜔𝜔1 −(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0 −(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0

𝜃𝜃 −(𝜔𝜔1 + 𝜇𝜇) 0 0
0 0 (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0 − (𝜂𝜂 + 𝑑𝑑2 + 𝜇𝜇) 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)
0 0 𝑝𝑝(1 −𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 − (𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒))⎦

⎥
⎥
⎤
 

We have the following stability result that shows 𝑅𝑅𝑒𝑒 is a sharp threshold. 

Proposition 2. 

 𝐸𝐸0 is locally asymptotically stable if 𝑅𝑅𝑒𝑒 < 1 and is unstable if 𝑅𝑅𝑒𝑒 > 1. 

Proof 

We want to show, when 𝑅𝑅𝑒𝑒 < 1, that the Routh-Hurwitz conditions hold, namely, 

𝑡𝑡𝑡𝑡(𝐽𝐽(𝐸𝐸0))  <  0 and 𝑑𝑑𝑑𝑑𝑡𝑡(𝐽𝐽(𝐸𝐸0))  >  0 

𝑡𝑡𝑡𝑡�𝐽𝐽(𝐸𝐸0)� = (1 − 𝑝𝑝)(1 −𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0 + 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 − �𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 −𝜓𝜓𝑒𝑒)� − (𝜂𝜂 + 𝑑𝑑2 + 𝜇𝜇) − (𝜃𝜃 + 𝜇𝜇) − (𝜔𝜔1
+ 𝜇𝜇)  

                = (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0 + 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 − �4𝜇𝜇 + 𝜃𝜃 + 𝜔𝜔1 + 𝜂𝜂 + 𝑑𝑑1 + 𝑑𝑑2 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)� 

 If  (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0 + 𝑝𝑝(1 −𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 < �4𝜇𝜇 + 𝜃𝜃 + 𝜔𝜔1 + 𝜂𝜂 + 𝑑𝑑1 + 𝑑𝑑2 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)�
 
then   𝑡𝑡𝑡𝑡(𝐽𝐽(𝐸𝐸0))  <  0                     

also,  
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det�J(𝐸𝐸0)� = 𝜇𝜇(𝜃𝜃 + 𝜔𝜔1 + 𝜇𝜇)(𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑏𝑏) = 𝜇𝜇(𝜃𝜃 + 𝜔𝜔1 + 𝜇𝜇)𝑎𝑎𝑑𝑑(1 − ℛ𝑒𝑒) 

where                                ℛ𝑒𝑒 = 𝑏𝑏𝑐𝑐
𝑎𝑎𝑑𝑑

 

                                
         𝑎𝑎 = (1 − 𝑝𝑝)(1 −𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0 + 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 

                                          𝑏𝑏 = (1 − 𝑝𝑝)(1 −𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒) 

                                            
𝑏𝑏 = 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆0

  

                                           
𝑑𝑑 = 𝑝𝑝(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆0 − (𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒))

    

  
Therefore, det�𝐉𝐉(𝐸𝐸0)� > 0 if and only if  ℛ𝑒𝑒 < 1 . This proves the proposition. 

3.4 Global Stability of Disease-Free Equilibrium point (DFE) 

Theorem 1.  𝐸𝐸0 is globally asymptotically stable in the feasible region D if 𝑅𝑅𝑒𝑒 ≤ 1. 

Proof. To prove the global asymptotic stability of 𝐸𝐸0 we use the method of Lyapunov 

functions.  

Define          𝐿𝐿 = 𝑋𝑋𝑆𝑆 + 𝑌𝑌𝑆𝑆𝑐𝑐  

   where    𝑋𝑋 = 𝛽𝛽
(𝜇𝜇+𝑑𝑑2+𝜂𝜂)

 ,   𝑌𝑌 = � 𝑝𝑝
�𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒)�

+ 𝛼𝛼𝛽𝛽(1−𝜓𝜓𝑒𝑒)
(𝜇𝜇+𝑑𝑑2+𝜂𝜂)�𝜇𝜇+𝑑𝑑1+𝛼𝛼(1−𝜓𝜓𝑒𝑒)�

� 

then we have 

                          𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑋𝑋 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 + 𝑌𝑌 𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

                                                                                                         (17) 

                              =  𝑋𝑋�(1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜂𝜂 + 𝑑𝑑2 + 𝜇𝜇)𝑆𝑆 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)𝑆𝑆𝑐𝑐� 

                                   +𝑌𝑌[𝑝𝑝(1 −𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒))𝑆𝑆𝑐𝑐] 

If we substitute the values of   𝑋𝑋 and 𝑌𝑌 in equation (17) above and simplifying we shall get 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= (𝑅𝑅𝑒𝑒𝑠𝑠 − 1)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐) −
2𝛽𝛽𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)
(𝜇𝜇 + 𝑑𝑑2 + 𝜂𝜂)  𝑆𝑆𝑐𝑐  

Using the condition that   0 < 𝑆𝑆∗ < Λ(𝜔𝜔1+𝜇𝜇) 
𝜇𝜇(𝜃𝜃+𝜔𝜔1+𝜇𝜇)

  we have: 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

≤ (𝑅𝑅𝑒𝑒
Λ(𝜔𝜔1 + 𝜇𝜇) 

𝜇𝜇(𝜃𝜃 + 𝜔𝜔1 + 𝜇𝜇) − 1)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐) −
2𝛽𝛽𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)
(𝜇𝜇 + 𝑑𝑑2 + 𝜂𝜂)  𝑆𝑆𝑐𝑐 ≤ 0 
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So  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ 0 if 𝑅𝑅𝑒𝑒 ≤ 1. Furthermore, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 if  𝑆𝑆 = 𝑆𝑆𝑐𝑐 = 0 or 𝑅𝑅𝑒𝑒 = 1 and 𝑆𝑆∗ = Λ(𝜔𝜔1+𝜇𝜇) 

𝜇𝜇(𝜃𝜃+𝜔𝜔1+𝜇𝜇)
  . 

Therefore the largest invariant set in the closure of D where  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 is the singleton {𝐸𝐸0}. LaSalle's Invariance 

Principle [19], 𝐸𝐸0 is globally asymptotically stable in  𝐷𝐷, completing the proof. 

3.5  Global Stability of Endemic Equilibrium Point 

Global stability of the EE is explored via the construction of a suitable Lyapunov function. Since the DFE is 

locally stable this will suggest local stability of the EE for the reverse condition as in condition [11], we only 

investigate the global stability of the endemic equilibrium. 

Theorem 2 

If  𝑅𝑅𝑒𝑒 > 1, then the system has a unique EE point *P  which is GAS in 𝐷𝐷. 

Proof 

Consider the following function: 

𝑍𝑍 = 𝐴𝐴1(𝑆𝑆 − 𝑆𝑆∗𝑙𝑙𝑙𝑙𝑆𝑆) + 𝐴𝐴2(𝑆𝑆 − 𝑆𝑆∗𝑙𝑙𝑙𝑙𝑆𝑆) + 𝐴𝐴3(𝑆𝑆 − 𝑆𝑆∗𝑙𝑙𝑙𝑙𝑆𝑆)+𝐴𝐴4(𝑆𝑆𝑐𝑐 − 𝑆𝑆𝑐𝑐  ∗𝑙𝑙𝑙𝑙𝑆𝑆𝑐𝑐) + 𝐴𝐴5(𝑅𝑅 − 𝑅𝑅∗𝑙𝑙𝑙𝑙𝑅𝑅)     

Differentiating each state variable with respect to time we get:     

𝑍𝑍′ = 𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
� 𝑠𝑠′ +𝐴𝐴2 �1 − 𝑑𝑑∗

𝑑𝑑
� 𝑆𝑆′+𝐴𝐴3 �1 − 𝑑𝑑∗

𝑑𝑑
� 𝑆𝑆′+𝐴𝐴4 �1 − 𝑑𝑑∗ 𝑐𝑐

𝑑𝑑𝑐𝑐
� 𝑆𝑆𝑐𝑐′+𝐴𝐴5 �1 − 𝑑𝑑∗ 

𝑑𝑑
� 𝑅𝑅′             

                
 

If we substitute the expressions for 𝑆𝑆′,𝑆𝑆′, 𝑆𝑆′, 𝑆𝑆′𝑐𝑐,𝑅𝑅′ from equations (3-5) we get:  

  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴1(1 − 𝑑𝑑∗

𝑑𝑑
)[Λ + 𝜔𝜔1𝑆𝑆 + 𝜔𝜔2𝑅𝑅 − (𝜃𝜃 + 𝜇𝜇 + (1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐))𝑆𝑆]     

         +𝐴𝐴2 �1 − 𝑑𝑑∗

𝑑𝑑
� [θ𝑆𝑆 − (𝜔𝜔1 + 𝜇𝜇)𝑆𝑆]    

         +𝐴𝐴3 �1 − 𝑑𝑑∗

𝑑𝑑
� [(1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜂𝜂 + 𝑑𝑑2 + 𝜇𝜇)𝑆𝑆 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒)𝑆𝑆𝑐𝑐]    

          +𝐴𝐴4 �1 − 𝑑𝑑∗ 𝑐𝑐
𝑑𝑑𝑐𝑐
� [𝑝𝑝(1 −𝜓𝜓𝑒𝑒)(𝛽𝛽𝑆𝑆 + 𝛾𝛾𝑆𝑆𝑐𝑐)𝑆𝑆 − (𝜇𝜇 + 𝑑𝑑1 + 𝛼𝛼(1 − 𝜓𝜓𝑒𝑒))𝑆𝑆𝑐𝑐]    

          +𝐴𝐴5 �1 − 𝑑𝑑∗ 
𝑑𝑑
� [𝜂𝜂𝑆𝑆 − (𝜔𝜔2 + 𝜇𝜇)𝑅𝑅]    

further simplification yields   



International Journal of Sciences: Basic and Applied Research (IJSBAR)(2017) Volume 32, No  1, pp 151-168 

160 
 

𝑑𝑑𝑍𝑍
𝑑𝑑𝑡𝑡

= 𝐴𝐴1 �1 −
𝑆𝑆∗

𝑆𝑆
�𝜔𝜔1𝑆𝑆 �1 −

𝑆𝑆∗

𝑆𝑆
� + 𝐴𝐴1 �1 −

𝑆𝑆∗

𝑆𝑆
�𝜔𝜔2𝑅𝑅 �1 −

𝑅𝑅∗

𝑅𝑅
� − 𝐴𝐴1 �1 −

𝑆𝑆∗

𝑆𝑆
�
2

(𝜃𝜃 + 𝜇𝜇)𝑆𝑆𝑆𝑆(1 −
𝑆𝑆∗

𝑆𝑆
) 

           −𝐴𝐴1 �1 −
𝑆𝑆∗

𝑆𝑆
� (1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆 �1 −

𝑆𝑆∗

𝑆𝑆
.
𝑆𝑆∗

𝑆𝑆
�−𝐴𝐴1 �1 −

𝑆𝑆∗

𝑆𝑆
� (1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐 �1 −

𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
.
𝑆𝑆∗

𝑆𝑆
� 

            +𝐴𝐴2 �1 −
𝑆𝑆∗

𝑆𝑆
� 𝜃𝜃𝑆𝑆(1 −

𝑆𝑆
𝑆𝑆∗

.
𝑆𝑆∗

𝑆𝑆
)+𝐴𝐴3 �1 −

𝑆𝑆∗

𝑆𝑆
� (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆𝑆𝑆 �1 −

𝑆𝑆∗

𝑆𝑆
� 

            +𝐴𝐴3 �1 − 𝑑𝑑∗

𝑑𝑑
� (1 − 𝑝𝑝)(1 −𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐  �1 − 𝑑𝑑𝑐𝑐∗

𝑑𝑑𝑐𝑐
. 𝑑𝑑
𝑑𝑑∗
�+𝐴𝐴4 �1 − 𝑑𝑑𝑐𝑐∗

𝑑𝑑𝑐𝑐
� 𝛽𝛽𝑆𝑆𝑆𝑆 �1 − 𝑑𝑑𝑐𝑐

𝑑𝑑𝑐𝑐∗
. 𝑑𝑑
∗

𝑑𝑑
. 𝑑𝑑

∗

𝑑𝑑
� 

             +𝐴𝐴4 �1 −
𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
� 𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐  �1 −

𝑆𝑆∗

𝑆𝑆
� + 𝐴𝐴5 �1 −

𝑅𝑅∗

𝑅𝑅
� 𝜂𝜂𝑆𝑆 �1 −

𝑆𝑆∗

𝑆𝑆
.
𝑅𝑅
𝑅𝑅∗
� 

which can be further simplified to: 

       𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
�
2

(𝜃𝜃 + 𝜇𝜇)𝑆𝑆𝑆𝑆 �1 − 𝑑𝑑∗

𝑑𝑑
�   −𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
� (1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆 �1 − 𝑑𝑑∗

𝑑𝑑
. 𝑑𝑑

∗

𝑑𝑑
� 

             −𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
� (1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐 �1 − 𝑑𝑑𝑐𝑐∗

𝑑𝑑𝑐𝑐
. 𝑑𝑑

∗

𝑑𝑑
� 

        +𝐴𝐴1 �1 −
𝑆𝑆∗

𝑆𝑆
�𝜔𝜔1𝑆𝑆 �1 −

𝑆𝑆∗

𝑆𝑆
� + 𝐴𝐴1 �1 −

𝑆𝑆∗

𝑆𝑆
�𝜔𝜔2𝑅𝑅 �1 −

𝑅𝑅∗

𝑅𝑅
�+𝐴𝐴2 �1 −

𝑆𝑆∗

𝑆𝑆
� 𝜃𝜃𝑆𝑆(1 −

𝑆𝑆
𝑆𝑆∗

.
𝑆𝑆∗

𝑆𝑆
) 

           +𝐴𝐴3 �1 − 𝑑𝑑∗

𝑑𝑑
� (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆𝑆𝑆 �1 − 𝑑𝑑∗

𝑑𝑑
� 

            +𝐴𝐴3 �1 −
𝑆𝑆∗

𝑆𝑆
� (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐  �1 −

𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
.
𝑆𝑆
𝑆𝑆∗
� 

            +𝐴𝐴4 �1 −
𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
� 𝛽𝛽𝑆𝑆𝑆𝑆 �1 −

𝑆𝑆𝑐𝑐
𝑆𝑆𝑐𝑐∗

.
𝑆𝑆∗

𝑆𝑆
.
𝑆𝑆∗

𝑆𝑆
�+𝐴𝐴4 �1 −

𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
� 𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐  �1 −

𝑆𝑆∗

𝑆𝑆
� 

             +𝐴𝐴5 �1 −
𝑅𝑅∗

𝑅𝑅
� 𝜂𝜂𝑆𝑆 �1 −

𝑆𝑆∗

𝑆𝑆
.
𝑅𝑅
𝑅𝑅∗
� 

this result can in same way be written as: 

  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
�
2

(𝜃𝜃 + 𝜇𝜇)𝑆𝑆𝑆𝑆 �1 − 𝑑𝑑∗

𝑑𝑑
�   −𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
� (1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆 �1 − 𝑑𝑑∗

𝑑𝑑
. 𝑑𝑑

∗

𝑑𝑑
� 

            −𝐴𝐴1 �1 −
𝑆𝑆∗

𝑆𝑆
� (1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐 �1 −

𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
.
𝑆𝑆∗

𝑆𝑆
� + 𝐹𝐹(𝑆𝑆,𝑆𝑆, 𝑆𝑆, 𝑆𝑆𝑐𝑐 ,𝑅𝑅) 

where  𝐹𝐹(𝑆𝑆,𝑆𝑆, 𝑆𝑆, 𝑆𝑆𝑐𝑐 ,𝑅𝑅) =  𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
�𝜔𝜔1𝑆𝑆 �1 − 𝑑𝑑∗

𝑑𝑑
� + 𝐴𝐴1 �1 − 𝑑𝑑∗

𝑑𝑑
�𝜔𝜔2𝑅𝑅 �1 − 𝑑𝑑∗

𝑑𝑑
�         
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                                              +𝐴𝐴2 �1 −
𝑆𝑆∗

𝑆𝑆
� 𝜃𝜃𝑆𝑆(1 −

𝑆𝑆
𝑆𝑆∗

.
𝑆𝑆∗

𝑆𝑆
) 

                                            +𝐴𝐴3 �1 − 𝑑𝑑∗

𝑑𝑑
� (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛽𝛽𝑆𝑆𝑆𝑆 �1 − 𝑑𝑑∗

𝑑𝑑
� 

                                             +𝐴𝐴3 �1 −
𝑆𝑆∗

𝑆𝑆
� (1 − 𝑝𝑝)(1 − 𝜓𝜓𝑒𝑒)𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐  �1 −

𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
.
𝑆𝑆
𝑆𝑆∗
� 

+𝐴𝐴4 �1 −
𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
� 𝛽𝛽𝑆𝑆𝑆𝑆 �1 −

𝑆𝑆𝑐𝑐
𝑆𝑆𝑐𝑐∗

.
𝑆𝑆∗

𝑆𝑆
.
𝑆𝑆∗

𝑆𝑆
�+𝐴𝐴4 �1 −

𝑆𝑆𝑐𝑐∗

𝑆𝑆𝑐𝑐
� 𝛾𝛾𝑆𝑆𝑆𝑆𝑐𝑐  �1 −

𝑆𝑆∗

𝑆𝑆
� 

                                            +𝐴𝐴5 �1 −
𝑅𝑅∗

𝑅𝑅
� 𝜂𝜂𝑆𝑆 �1 −

𝑆𝑆∗

𝑆𝑆
.
𝑅𝑅
𝑅𝑅∗
� 

F is non-positive using a modified version of Barbalat’s Lemma [20] or by following the approach of Mc 

Cluskey [21]. Thus, 0F ≤  for some  𝑆𝑆,𝑆𝑆, 𝑆𝑆, 𝑆𝑆𝑐𝑐 ,𝑅𝑅 > 0.   

Hence 0dZ
dt

≤   for all   𝑆𝑆,𝑆𝑆, 𝑆𝑆, 𝑆𝑆𝑐𝑐 ,𝑅𝑅  and is zero when  𝑆𝑆 = 𝑆𝑆∗,𝑆𝑆 = 𝑆𝑆∗, 𝑆𝑆 = 𝑆𝑆∗, 𝑆𝑆𝑐𝑐 = 𝑆𝑆∗𝑐𝑐 ,𝑅𝑅 = 𝑅𝑅∗. Therefore, the 

largest compact invariant set in D  such that  0dZ
dt

=   is the singleton  {𝐸𝐸∗}  which is the endemic equilibrium 

point. Lassalle’s invariant principle [19] guarantee that  𝐸𝐸∗ is globally asymptotically stable (GAS) in 
0
D ,the 

interior of D . Thus we have proved theorem 4. 

4.  Simulation and discussions 

 The main objective of this study was to model the effects of public health education campaign, vaccination and 

treatment on the dynamics of typhoid fever. In order to support the analytical results, Numerical results were 

presented with the aid of MATLAB programming language, we present graphical representations showing the 

variations in parameters with respect to effective reproduction number.  

Most of the parameters used were obtained from literature survey and the rest were assumed. In order to perform 

simulations, baseline values of parameters from Table 1 presented were used.   

Figure 2 shows that, increase in the transmission rates 𝛾𝛾  and 𝛽𝛽  leads to increase in effective reproduction 

number. More importantly, it can be noted that transmission rate for asymptomatic individuals, 𝛾𝛾 is greater than 

transmission rate for symptomatic individuals, 𝛽𝛽 since an increase or decrease in 𝑅𝑅𝑒𝑒 due to 𝛾𝛾 is more rapid than 

that due to  𝛽𝛽.This means that the carriers transmit the disease more rapid in the community as compared to 

symptomatic individuals. This might be attributed to the fact that, symptomatic  individuals are quickly treated 

as they become sick whereas carriers can live with the disease for sometimes long  in so doing they keep on 

transmitting the disease until they show up symptoms and  hence treated. 
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Figure 2: Effects of symptomatic and asymptomatic Infectious transmission rates on 𝑹𝑹𝒆𝒆. 

 

Figure 3: Effects of varying vaccination coverage on 𝑅𝑅𝑒𝑒. 

Figure 3 shows that, high level of vaccination coverage leads to reduction in effective reproduction number, 

when  𝑅𝑅𝑒𝑒 < 1 then typhoid is effectively controlled or eliminated in the population.    

 

 

 

 

 

 

Figure 4:  Effects of education campaigns on the transmission dynamics of typhoid fever. 
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Figure 4 shows that, mass education campaign causes a significant reduction in the effective reproduction 

number and hence effective control or elimination of typhoid cases. 

 

Figure 5: Effects of Treatment on the reproductive number, 𝑅𝑅𝑒𝑒. 

Figure 5 shows that, high treatment rate causes a sharp reduction in the effective reproduction number. It should 

be emphasized that carefully taken therapeutic treatment to an ill individual tends to kill all salmonella typhi 

bacteria from the host. When all bacteria are killed then an individual recovers from typhoid, in such a situation 

the disease tends to diminish in the population. 

 

Figure 6: Effects of varying both education campaigns and treatment rates on 𝑅𝑅𝑒𝑒. 

It is obvious from figure 6 that high level of treatment and education campaigns leads reduction in effective 

reproduction number and hence causes effective control or elimination of typhoid during an outbreak. It can be 

seen that high effort is needed to educate a large number of people so as to eliminate the outbreak. Treatment on 

its own side has a dramatic impact on the epidemic only when carefully administered to sick individuals early.  
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Figure 7: Effects of varying   both Treatment and vaccination coverage on 𝑅𝑅𝑒𝑒. 

Contours in Figure 7 shows that a decrease of both treatment and vaccination coverage causes an increase in 

typhoid fever, whereas an increase of these controls tend decrease the disease. 

5. Sensitivity Analysis of 𝐑𝐑𝐞𝐞 

Sensitivity analysis is used to determine how sensitive a model is to changes in the value of the parameters of 

the model and to changes in the structure of the model. It helps to build confidence in the model by studying the 

uncertainties that are often associated with parameters in models. Sensitivity indices allow us to measure the 

relative change in a state variable when a parameter changes. Sensitivity analysis is commonly used to 

determine the robustness of model predictions to parameter values (since there are usually errors in data 

collection and presumed parameter values). Thus we use it to discover parameters that have a high impact on Re 

and should be targeted by intervention strategies. If the result is negative, then the relationship between the 

parameters and Re is inversely proportional. In this case, we will take the modulus of the sensitivity index so that 

we can deduce the size of the effect of changing that parameter. On the other hand, a positive sensitivity index 

implies a direct relationship between a given parameter and Re. 

The explicit expression of Re is given by the equation (5.4). Since Re depends only on thirteen parameters, we 

derive an analytical expression for its sensitivity to each parameter using the normalized forward sensitivity 

index [18] as follows: 

0.8401eR e

e

R
Rθ
θ

θ
∂

= × = −
∂

Ύ  

  Table 2 illustrates the sensitivity indices of Re, evaluated at the baseline parameter values given in Table 1. 

From table 2 it is clear that Re is most sensitive to 𝜂𝜂, thus, treating symptomatic infectious individuals is likely to 

have more impact in eradicating the typhoid fever. Model parameters whose sensitivity indices are near −1 or +1 
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suggest that a change in their magnitude have a significant impact on either increasing or decreasing the size of 

Re. Thus, the remaining most sensitive parameters are recruitment rate, Λ  ,vaccination rate,𝜃𝜃 , education 

campaign, 𝜓𝜓𝑒𝑒and transmission rate for carrier individuals, 𝛾𝛾 in that order. The rest of the parameters whose 

indices are less than 0.5  in magnitude as shown in the table 2 contribute less to typhoid fever dynamics but their 

contribution is still significant. 

Table 2: Parameters and their sensitivity indices 

 

 

6. Conclusions and recommendations 

In this paper we have developed a deterministic mathematical for typhoid that captures education campaigns, 

vaccination and treatment as control strategies. The disease free equilibrium has been calculated and proved to 

be locally asymptotically stable when 𝑅𝑅𝑒𝑒 <  1  and globally asymptotically stable when 𝑅𝑅𝑒𝑒 >  1.  

The effective reproduction number, 𝑅𝑅𝑒𝑒  has been calculated and from which different control strategies have 

been analyzed. The results have shown that controlling typhoid dynamics depends on different factors. Unless 

integrated effort is put into action, it is quite difficult to eradicate or even to limit typhoid epidemics. We 

recommend that different sectors like the education sector, sanitation sector and water supply organizations as 

well as health sector  should work together so as to limit  typhoid outbreak in the population.  

It must be emphasized that, both direct and indirect education is a critical factor in typhoid control, it that has a 

greater and longer-lasting effect on disease management. Education should therefore target both human-to-

Parameter Sensitivity Index Description 

𝚲𝚲 +1 Recruitment rate 

 𝝎𝝎𝟏𝟏 +0.33 Rate at which the vaccine wanes 

 𝝎𝝎𝟐𝟐 +0.3 Rate at which recovered individuals lose immunity 

𝜼𝜼 -2.8570 Recovery rate for symptomatic infectious individuals 

𝜽𝜽 -0.8404 Rate at which susceptible individuals are vaccinated 

𝜷𝜷 +0.3807 Transmission rate for symptomatic infectious individuals 

𝜸𝜸 +0.6187 Transmission rate for carrier individuals 

𝒑𝒑 +0.2387 Proportion of newly infected individuals who become carrier 

   𝝍𝝍𝒆𝒆 -0.8284 Education parameter 

𝜶𝜶 -0.0394 Rate at which carriers develop symptoms 

𝝁𝝁 -0.2234 Natural mortality rate of individuals 

𝒅𝒅𝟐𝟐 -0.0221 Disease-induced mortality rate of symptomatic individuals 

𝒅𝒅𝟏𝟏 +0.01 Disease-induced mortality rate of asymptomatic individuals 
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human contact and also the intakes of pathogen material. We thus recommend that any typhoid-control program 

be developed in collaboration with culturally specific population-level education of susceptible and infected 

individuals.  

We must point out that vaccination, education campaigns and medical therapy and antibiotic treatment are not 

the only control measures against a typhoid outbreak. Water sanitation is also a possible prevention and 

intervention strategies. On the other hand, vaccination does not always work out due to the limitations of the 

medical development level and financial budget, which is also a restriction in our study. Moreover, in this paper, 

we consider the vaccination as a continuous state, since sometimes the vaccination process is discontinuous or 

seasonal, it can be modeled by impulsive differential equations, which is one of our future works. 

 The other limitation, which should be acknowledged, is that the model developed in this study assumes that the 

disease is transmitted through human contact only, although the disease can be acquired through consumption, 

mainly of water, but sometimes of food, that has been contaminated by sewage containing the excrement of 

people suffering from the disease.  
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