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Abstract 

This paper aims to model and forecast the evolution of unemployment rate in Greece, using the Box- Jenkins 

methodology during the period 1980-2013. The empirical study relieves that the most adequate model for the 

unemployment rate for this period is ARIMA (1,2,1). Using this model, we forecast the values of unemployment 

rate for 2014, 2015 and 2016. We found that the unemployment rate for 2014, 2015 and 2016 are 26.39% , 

25.33% and 25.27% respectively. 

Keywords: ARIMA models; Box-Jenkins; unemployment rates; forecasting; Greece.  

1. Introduction  

Unemployment is one of the most acute problems faced by the governments of all countries. An unemployed 

person is twice more likely to suffer poverty than a person in employment. Therefore unemployment is a crucial 

factor for the risk of poverty but neither is it the only one nor the most significant factor.The unemployment 

rates as the growth rate are the most important measures of the economy.  
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The unemployment rate is an indicator used by the investors to determine the health of the economy. In 

addition, from the unemployment rate they can see which sectors are losing jobs faster. Therefore, it is very 

important to estimate and forecast the unemployment rate in a country. 

In Greece, the level of unemployment is very high especially in recent years and as a result the level of poverty 

has been increased greatly. Officially, Greece is the country with the highest unemployment rate in the E.U. 

Statistics unfortunately cannot be taken because of many Greeks and immigrant workers are off-the-books. In 

addition, the immigrants make up nearly one-fifth of the work force, mainly in menial jobs. 

Greece is a low-productivity economy with an ineffective welfare state, relying almost exclusively on low 

wages and social transfers. The Centre for Planning and Economic Research (KEPE) reports that the areas 

where the most jobs can be found today in Greece are trade, construction, industry and tourism. The failure of 

governments is not to be compromised with this reality. They should be engaged seriously with the problem of 

unemployment. 

The rest of the paper is organized as follows: Section 2 describes literature review while in Section 3 data and 

econometric methodology are given. In Section 4 the empirical results are presented. The 5 section is the 

forecasting and finally, discussion and conclusions are provided in Section 6. 

2. Literature Review 

Literature on macroeconomic modeling, and forecasting, with the use of historical data from time series is vast. 

Modeling unemployment rates like any other macroeconomic variables has been analyzed by building 

econometric models, often related to stationary time series, and technique including autoregressive integrated 

moving average models (ARIMA). 

Box and Jenkins [1] methodology has been used extensively by many researchers in order to highlight the future 

rates of unemployment. Specifically the authors in [4] are checking the evolution of unemployment in Romania 

using Box and Jenkins methodology during the period 1998 – 2007. The empirical results showed that the 

model ARIMA (2,1,2) is suitable to forecast the unemployment rate for January and February 2008.  

Moreover, the research of author [6] is trying to forecast the unemployment rate in the Czech Republic and its 

regions. She estimates a SARIMA model for the period of January 2000 to March 2008 and the results of the 

forecasts showed that the unemployment rate in the Czech Republic at the end of the year 2009 will be about 

10%. 

In research [5] the authors are using monthly data of unemployment rates for Nigeria from January 1999 until 

December 2008. The forecasts of unemployment rates that were find by the model ARIMA (1,2,1) for Nigeria 

were: for January, February and March of 2009, 7.9%, 9.2% and 11.3% respectively. 

The authors in their research in [7] have tried to forecast the unemployment rate in Thailand involving two 

approaches: the Box-Jenkins methodology and the artificial neuron network. The findings of their work have 
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shown that Box-Jenkins methodology is more effective in forecasting the unemployment rate with smaller 

MAPE in comparison with the second approach. 

The authors in [13] examined the possibility to forecast the time series of the unemployment rates in Slovakia 

using techniques that didn’t require the assumption of constant variance over time. The analyzed data represent 

the monthly rates of unemployment during the period January 1999 - May 2013. Thereafter they examined 

whether the observed changing variability of the time series was statistically significant and could be described 

by appropriate ARIMA–ARCH model. Their findings proposed a combination of the ARIMA (0,1,2)(0,1,1)12 + 

GARCH(1,1) models, that proved to provide good predictors for both the conditional mean and the conditional 

variance.According to a new research [1] the author is trying to compare forecasts of unemployment rates in the 

Baltic States using time-varying parameter models. The time span of the data was from 2001 to 2014 and it 

included the global financial crisis. She founds that the forecasting ability of the models depends on both the 

forecasting horizon and the moment in time when the forecasts are done. The empirical evidence suggests that 

no single model is the best one, but models that include a cyclical component tend to perform better than others. 

The findings show that the preferred models differ in the time of increase or decrease in unemployment 

rates.Finally, the author in [11] is using Phillips curve to examine unemployment rates and inflation for USA 

from January 1980 to April 2015. Examining these variables with ARIMA and VAR models, she concluded that 

VAR models give better forecast than ARIMA. 

3. Methodology and Data 

The variable used in the analysis is the unemployment rate from 1960 to 2013 extracted from the official 

website of National Bank of Greece. We define linear time series model. Suppose that there are Y1, Y2, …, Yt 

observations. The variable ty  is explained by relating it to its own past values and to a weighted sum of current 

and lagged random disturbances. The Autoregressive Moving Average (ARMA) (p,q) is represented by the 

following model 

qtqttptptt yyy −−−− −−−++++= εαεαεδββ ...... 1111   (1) 

If the time series is homogenous stationary, then after differenced the series ty  to produce stationary series tw , 

we can model tw  as an ARMA process. If t
d

t yw ∆=  and tw  is an ARMA (p,q) process, then we say that ty  

is an integrated autoregressive moving average process of order (p,d,q), or simple ARIMA(p,d,q). Box and 

Jenkins (1976) were the first researchers who systematically tried to answer whether the various time series can 

be captured within an ARIMA model (p,d,q) or: 

tt
d LyL εαδβ )()( +=∆ . (2) 

Where:  
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p
p LLLL ββββ −−−−= ...1)( 21  is the autoregressive operator and  

p
pLLLL αααα −−−−= ...1)( 21  is the moving average operator. 

and thereafter to forecast their future development. 

Theoretically Box-Jenkins model identification is relatively easy if one has a pure AR or a pure MA process. 

However, in the case of mixed ARMA models (especially those of high order) it can be difficult to interpret 

sample autocorrelation ACF and partial autocorrelation PACF, so Box-Jenkins identification becomes a 

subjective exercise depending on the skill of the forecaster. Random noise in time series, especially price data, 

makes Box-Jenkins model identification even more problematic [10]. 

The Box-Jenkins methodology consists of the following steps: 

• Detection of the stationarity of the time series. If time series is not stationary in levels, we obtain successively 

the first or the second differences to in order to attain stationarity. The autocorrelation function (ACF), partial 

autocorrelation (PACF) as well as the Augmented Dickey-Fuller test [3] and the  Phillips - Perron test [12] are 

used for testing stationarity of the time series. 

• When the time series is stationary, then the order of the model ARMA (p,q) can be determined. To determine 

the order of ARMA(p,q), we use the sample of the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) of the stationary series. These two plots are suggesting the model we should build. The 

parameter p of autoregressive operator β(L) is determined by the rate of partial autocorrelation for which 

0=kkϕ  for k > p, and by decreasing rapidly to zero procedure of the partial autocorrelation coefficients. One 

other simple way to determine the significance of the partial autocorrelation coefficient kkϕ̂  is to compare its 

value with the critical value n
2

± . The parameter q of the moving average operator )(Lα  is specified by the 

autocorrelation coefficient kρ  for which 0=kρ  for k > p, and by decreasing rapidly to zero procedure of the 

autocorrelation coefficients. One other simple way to determine the significance of the autocorrelation 

coefficient kρ̂  is to compare its value with the critical value n
2

± . According to all the above an 

autoregressive model AR(p) is resulting from the partial autocorrelation function which is trimmed to the lag p 

and a model of moving average MA (q) is resulting from the autocorrelation function which is trimmed to the 

lag q. In fact we use the limits n
2

±  for the non-significance of the two functions, so we will have a number 

ARMA models (a, b), where 0 ≤ α ≤ p, 0≤ b ≤ q.. For the optimum model we are using the criteria of Akaike 

(AIC) Schwartz (SIC) and Hannan-Quinn (HQ). 

• Estimation of the model. The involvement of the white noise terms in an ARIMA model entails a nonlinear 

iterative process in the estimation of the parameters, βi and αj. To overcome this situation an optimized criterion 
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like least error of sum of squares, maximum likelihood or maximum entropy is used. An initial estimate is 

usually used, and then each iteration is expected to be an improvement of the prior estimate until the estimate 

converges to an optimal one [5]. However, many researchers are trying to adopt linear methods in order to 

estimate ARΙMA models [2, 8]. 

• Diagnostic checking of the model. With diagnostic checking we investigate whether the estimated model is 

acceptable and statistically significant, i.e. if it fits well to the data. Box and Jenkins for the adequacy of 

estimated ARIMA model suggested checking the randomness of the residuals, i.e. whether the residuals from 

the estimated ARIMA model is white noise, and are not serially correlated. 

• Forecasting: One of the main reasons of the analysis of time series models is forecasting. The forecasts are 

very useful either for policy making or for decision making. The accuracy of the forecasts depends on the 

forecasting error, i.e. the deviation of the forecast and the real one. The smaller the difference is, the better will 

be the forecast. 

4. Empirical Results 

The ARIMA approach is an iterative three-stage process of identification, estimation and testing.  

4.1. Testing for non-stationarity 

Autocorrelation function (Box-Jenkins approach) if autocorrelations start high and decline slowly, then series is 

non-stationary, and should be differenced. Figures 1 and 2, represents the correlogram of the unemployment rate 

series with a pattern of up to the 24 lags in level and for first differences. 

 

Figure 1: Correlogram of Unemployment Rate Series (Level) 
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Figure 2: Correlogram of Unemployment Rate Series (First Differences) 

From the above diagrams we can conclude that the coefficients of autocorrelation (ACF) starts with a high value 

and declines slowly, indicating that the series is non-stationary. Also the Q-statistic of Ljung-Box [9] at the 24th 

lag has a probability value of 0.000 which is smaller than 0.05, so we cannot reject the null hypothesis that the 

unemployment rate series is non-stationary. Thus the series must be configured in second differences. 

The third diagram represents the coefficients of the autocorrelation for the time series of unemployment rates, 

with up to 24 lags again but in second differences. 

 

Figure 3: Correlogram of Unemployment Rate Series (Second Differences) 
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The results are indicating that the series of unemployment rates is stationary in the second differences. The 

results of Augmented Dickey–Fuller (ADF) test and Phillips-Perrons (PP) test on unemployment rate series are 

representing in Table 1.  

Table 1: ADF and Phillip-Perron’s Test on Unemployment Series 

 Level First Differences Second Differences 

C C,T C C,T C C,T 

ADF 0.525 

(0.985) 

-3.098 

(0.117) 

-2.566 

(0.107) 

-2.962 

(0.153) 

-6.371 

(0.000) 

-6.412 

(0.000) 

PP 1.468 

(0.999) 

-0.340 

(0.987) 

-2.276 

(0.183) 

-2.713 

(0.235) 

-5.275 

(0.000) 

-4.689 

(0.002) 

 

The results in Table 1 indicate that unemployment rate is stationary in second differences. Therefore for our 

model ARIMA (p,d,q) we will have the value d=2 

4.2. Identification of the model 

After the identification of the stationarity of the time series we can use the correlogram of Figure 3 to determine 

the model ARMA (p,q), i.e. the values of parameters p and q.  

One other simple way in order to determine the parameters p and q is to compare the coefficients of partial 

autocorrelation and autocorrelation respectively with the critical values 
n

2
± . 

The limits for both functions (ACF, PACF) are 272.0
54
2

±=± . From the column of autocorrelation in 

Figure 3 we can notice that only the value of the coefficient 4ρ is greater from the value 272.0± , while from 

the column of the coefficients of partial autocorrelation the values 4ϕ̂  is greater than the value 272.0± . 

Therefore, the value of p  will be between 40 ≤≤ p (since the parameters are determined by the rate of 

partial autocorrelation). Respectively, the value of q  will be between to 40 ≤≤ q  (since parameter q  are 

determined by the rate of autocorrelation).  

From figure 3, the ACF cuts off at lag 4 (q=4) and the PACF at lag 4 (p=4). Exploring the range of models 

{ARMA(p,q): 40 ≤≤ p  0, 40 ≤≤ q } for the optimal on the basis of AIC, SIC and HQ. Thereafter we 
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create Table 2 with the values of p and q as follows: 

Table 2: Comparison of models within the range of exploration using AIC, SIC and HQ 

p q AIC SIC HQ 

0 1 2.708 2.783 2.736 

0 2 2.636 2.748 2.679 

0 3 2.624 2.774 2.682 

0 4 2.367 2.555 2.439 

1 1 2.645 2.758 2.688 

1 2 2.679 2.831 2.737 

1 3 2.618 2.807 2.690 

1 4 2.104 2.331 2.191 

2 1 2.699 2.852 2.757 

2 2 2.584 2.775 2.657 

2 3 1.822 2.051 1.909 

2 4 2.005 2.272 2.107 

3 1 2.754 2.947 2.828 

3 2 2.582 2.814 2.670 

3 3 2.369 2.639 2.472 

3 4 2.065 2.374 2.182 

4 1 2.508 2.742 2.596 

4 2 2.426 2.699 2.529 

4 3 2.171 2.483 2.289 

4 4 2.484 2.835 2.616 

 

The results from Table 2 indicate that according to the criteria of Akaike (AIC), Schwartz (SIC) and Hannan-

Quinn (HQ) the model ARMA is formulated to ARMA (2,3). As the model is stationary on second differences, 

i.e. (d=2) our ARIMA model will be ARIMA (2,2,3).   

4.3. Estimation of the model 

Thereafter we can proceed to the second stage estimating the above model. Because the model ARIMA (2,2,3) 

has not statistically significant coefficients, we create the model ARIMA (1,2,1) which it has statistically 

significant coefficients.  

The following Table 3 presents the results of this model. 
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Figure 4: Estimation Model ARIMA(1,2,1) 

The results in Table 3 indicate that both coefficients are statistically significant at 1% level of significance. 

The non-linear techniques used by Eviews 8.0 involved an iterative process that is converged after 17 iterations. 

The roots of 0)( =Lβ  and 0)( =Lα  are 0.65 and 0.92, both inside the unit circle indicating stationarity and 

invertibility respectively.  

The chosen model as summarized in Table 3 is ARIMA(1,2,1) and is given by: 

DDUNEt = 0.648121DDUNEt-1 - 0.921870εt-1 + εt 

t-stat.                 (3.796)                   (-9.112) 

prob.                  [0.000]                   [0.000] 

s.e                     {0.170}                  {0.101} 

On the following diagram the inverse roots of AR and MA characteristic polynomials for the stability of 

ARIMA model are presented. 

From diagram 4 we can see that the ARIMA model is stable since the corresponding inverse roots of the 

characteristic polynomials are in the unit circle. 
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Figure 5: Inverse Roots of AR and MA 

4.4. Diagnostic checking of the model 

Diagnostic checking of the model, help us to check if the estimated model is acceptable and statistical 

significant that means that the residuals do not autocorrelated. For the check of autocorrelation we use Q 

statistic of Ljung-Box [9]. The diagram below represents the test of the autocorrelation of the residuals of the 

model ARIMA (1,2,1). 

 

Figure 6: Correlogram residuals of model ARIMA (1,2,1) 
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The results indicate that the Q statistic of Ljung – Box for all the 16 lags has values greater than 0.05 thus the 

null hypothesis cannot be rejected i.e. there is no autocorrelation for the examined residuals of the series. 

5. Forecasting 

Forecasting plays an important role in decision making process.  

From previous studies, many researchers have found that the selected model is not necessary the model that 

provides best forecasting.  

In this sense further forecasting accuracy test such as mean squared error, root mean squared error, mean 

absolute error, mean absolute percentage error and the inequality coefficient of Theil.  

An ARIMA(1, 2, 1) model may be written as tttt yy εεαβ ++∇=∇ −− 111
2

1
2  

This translates into 

( ) tttttttt yyyyyy εεαβ +++−=+− −−−−−− 11321121 22  

tttttttt yyyyyy εεαβββ +++−+−= −−−−−− 1131211121 22  

( ) ( ) tttttt yyyy εεαβββ ++++−+= −−−− 11312111 212  

At time t+k, the model may be written as: 

( ) ( ) tktktktktkt yyyy εεαβββ ++++−+= −+−+−+−++ 11312111 212  

Taking conditional expectations at time t, we have 

( ) ( ) ttttt yyyy εαβββ 121111 212)1(ˆ +++−+= −−  

( ) ( ) 1111 21)1(ˆ2)2(ˆ −++−+= tttt yyyy βββ  

( ) ( ) tttt yyyy 111 )1(ˆ21)2(ˆ2)3(ˆ βββ ++−+=  

( ) ( ) ( )3ˆ)2(ˆ21)1(ˆ2)(ˆ 111 −+−+−−+= kykykyky tttt βββ  

In Figure 6 we represent the criteria for the evaluation of the forecasts of the model ARIMA (1,2,1) 
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Figure 7: Forecast Accuracy Test on the model ARIMA (1,2,1) 

The results in Figure 6 indicate that the inequality coefficient of Theil has a high value U = 0.70 which means 

that our model do not have a good forecasting ability. Table 6 below summarizes the forecasting results of the 

unemployment rates over the period 2014 to 2016. 

Table 4: The unemployment rate forecasts 

Years Residuals DDUNE DUNE UNE 

2011 4.764 4.716 5.122 17.653 

2012 2.798 1.463 6.585 24.238 

2013 -2.205 -3.837 2.748 26.986 

2014 --- -3.342 -0.594 26.39 

2015 --- -1.564 -1.06 25.33 

2016 --- -1.124 -0.064 25.266 

6. Conclusion - Recommendations 

Unemployment plagues many countries so it is important to capture the trend of this series. The use of ARIMA 

models is a highly flexible tool in order to forecast unemployment rate if there is no government’s intervention 

which will change this trend. In this paper using Box – Jenkins technique we are trying to forecast the 

unemployment rates in Greece for the next three years with an ARIMA model. In ARIMA models many 

researchers find drawbacks, since they are neglecting the inclusion of explanatory variables and the conducts the 

forecasts only on past values of dependent variable in combination with present and past moving average terms.  

However, many empirical studies have been done regarding the effectiveness of ARIMA model in economic 

forecasting and as a result it is an essential component of all forecasting techniques. The proper evaluation of the 

ARIMA model is necessary to study and carry out the forecast process. The properly selected models enhance 

the predictability of the models and assist the players in making sound government policy. After checking for 
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the stationarity of the data series, we find the appropriate ARIMA (p, d, q) process. The corresponding 

correlogram helped in choosing the appropriate p and q for the data series. Forecasting plays an important role 

in decision making process so an ARIMA (1.2.1) model was created through the data used and estimating this 

model we found that the unemployment rate for the years 2014, 2015 and 2016 is forecast to be 26.39%, 25.33% 

and 25.27% respectively.   

It is more than obvious that Greece during the last years is trying to decrease the unemployment rates and to 

increase the growth rates. That achievement will lead the country to the exit from the most severe recession and 

crisis of its modern history. Our results suggest that Greece is in the right way and the goal to decrease the 

unemployment rates will be achieved in the near future time. 
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