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Abstract 

An important class of Markov chain problems is the random walk problems. In a random walk the state of the 

Markov chain are the integers and the jumps of the chain from state 𝑖𝑖 are only to neighbor states 𝑖𝑖 + 1. There are 
many variations on this basic design. When the state space of the chain is finite it is sometimes called “the 

gambler’s ruin problem”. There are various martingale and Markov chain methods to analyze probabilistic 

characteristics of a simple random walk. In this study a simple random walk  𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛;  𝑛𝑛 ≥

1; 𝑆𝑆0 = 0  is defined and the first time (𝑁𝑁)  that this random walk visits the state 1  is analyzed by using 

generating functions. 𝐸𝐸(𝑁𝑁) is calculated in terms of the probabilities 𝑝𝑝 and 𝑞𝑞. 

Keywords: Markov chain; random walk; generating functions. 

1. Introduction  

Markov chain models are widely used in solving certain probabilistic problems and random walk problems are 

one of the important class of the Markov chain models. Excited random walks on integers is studied in [1]. A 

combination of artificial neural network and random walk models for financial time series forecasting is studied 

by [2]. Asymptotic Analysis of the Random-Walk Metropolis Algorithm on Ridged Densities is studied in [3]. 
In a study, prediction of exchange rates out of sample is investigated by some methods including random walk 

[4].  
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In [5], diffusion and random walk processes are given in detail. There are various martingale and Markov chain 
methods to analyze probabilistic characteristics of a simple random walk. In this study a simple random walk  
𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛;  𝑛𝑛 ≥ 1; 𝑆𝑆0 = 0  and the first time (𝑁𝑁) that this random walk visits the state 1 are 

defined. A recursion formula is obtained for the distribution of 𝑁𝑁 and then this recursion formula is solved by 

using generating functions. After that 𝐸𝐸(𝑁𝑁)  is calculated in terms of the probabilities 𝑝𝑝 and 𝑞𝑞  under some 

conditions, from the solution.  

2. Simple Random Walk 

Let {𝑋𝑋𝑛𝑛 ,𝑛𝑛 ≥ 1} random variables be independent and identically distributed. If  

i. 𝑃𝑃(𝑋𝑋1 = 1) = 𝑝𝑝 and 𝑃𝑃(𝑋𝑋1 = −1) = 1 −𝑝𝑝 = 𝑞𝑞 ;   0 ≤ 𝑝𝑝,𝑞𝑞 ≤ 1 ;  𝑝𝑝+ 𝑞𝑞 = 1  

ii. 𝑋𝑋0 = 0 

iii. 𝑋𝑋𝑛𝑛+1− 𝑋𝑋𝑛𝑛  is independent of (𝑋𝑋0 ,𝑋𝑋1 ,… ,𝑋𝑋𝑛𝑛) for all 𝑛𝑛 ∈ ℕ 

  Then the simple random walk process {𝑆𝑆𝑛𝑛 ,𝑛𝑛 ≥ 1} is defined as, 

𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 +⋯+ 𝑋𝑋𝑛𝑛;  𝑛𝑛 ≥ 1; 𝑆𝑆0 = 0 

It is called “simple” from the fact that the size of each step is fixed (equal to 1) and it is only to one direction 

chosen randomly. If 𝑝𝑝 = 𝑞𝑞 = 1 2⁄  then the random walk is symmetric. The random walk {𝑆𝑆𝑛𝑛} is mostly used in 

modelling a gambling problem: in a game a gambler wins a dollar with probability 𝑝𝑝 or loses a dollar with 

probability 𝑞𝑞 = 1 − 𝑝𝑝. Although there are a number of Markov chain and martingale methods to analyze {𝑆𝑆𝑛𝑛}, 

in this study generating functions are used to obtain some characteristics of {𝑆𝑆𝑛𝑛}. 

3. Obtaining probabilistic characteristics of the Simple Random Walk 

Let 𝑁𝑁 = 𝑖𝑖𝑛𝑛𝑖𝑖{𝑛𝑛 ≥ 1: 𝑆𝑆𝑛𝑛 = 1} be the first time that the random walk jumps to the state 1, in other words that the 

gambler is ahead for the first time. The aim is to obtain the distribution of 𝑁𝑁. To do this, first a difference 

equation is constructed and then this equation is solved using generating functions.  

Let,  

𝜉𝜉𝑛𝑛 = 𝑃𝑃(𝑁𝑁 = 𝑛𝑛),𝑛𝑛 ≥ 0 

then, 𝜉𝜉0 = 0 and 𝜉𝜉1 = 𝑝𝑝. If 𝑛𝑛 ≥ 2, then in order to for the random walk moves from 0 to 1 in 𝑛𝑛 steps, the very 

first step must be to −1, which has the probability 𝑞𝑞. After that, the walk must be back to 0, assume that this 

takes 𝑗𝑗 steps. Then, the probability that the random walk moves from −1 to 0 in j step is 𝜉𝜉𝑗𝑗 . After reaching the 

state 0, the random walk must go to state 1, lets say this takes 𝑘𝑘 steps, hence this probability is 𝜉𝜉𝑘𝑘  and 1 + 𝑗𝑗 +

𝑘𝑘 = 𝑛𝑛.  Thus, the following recursion formula is obtained [6],  

𝜉𝜉0 = 0 , 𝜉𝜉1 = 𝑝𝑝 
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𝜉𝜉𝑛𝑛 = �𝑞𝑞𝜉𝜉𝑗𝑗𝜉𝜉𝑛𝑛−𝑗𝑗−1 ,   𝑛𝑛≥ 2.
𝑛𝑛−2

𝑗𝑗=1

                                        (1) 

In order to solve equation (1), both sides of equality is multiplied by 𝑠𝑠𝑛𝑛  and sum over 𝑛𝑛 . Let 

Φ(𝑠𝑠) = �𝜉𝜉𝑛𝑛𝑠𝑠𝑛𝑛
∞

𝑛𝑛=0

, 

then we have, 

�𝜉𝜉𝑛𝑛𝑠𝑠𝑛𝑛
∞

𝑛𝑛=2

= ���𝑞𝑞𝜉𝜉𝑗𝑗𝜉𝜉𝑛𝑛−𝑗𝑗−1

𝑛𝑛−2

𝑗𝑗=1

�
∞

𝑛𝑛=2

𝑠𝑠𝑛𝑛 

= ���𝑞𝑞𝜉𝜉𝑗𝑗𝜉𝜉𝑛𝑛−𝑗𝑗−1

𝑛𝑛−2

𝑗𝑗=0

�
∞

𝑛𝑛=2

𝑠𝑠𝑛𝑛 .                                            (2) 

Reversing the order of summation and setting 𝑚𝑚 = 𝑛𝑛− 𝑗𝑗 − 1 yields: 

= �� � 𝜉𝜉𝑛𝑛−𝑗𝑗−1𝑠𝑠𝑛𝑛−𝑗𝑗−1
∞

𝑛𝑛=𝑗𝑗+2

�𝜉𝜉𝑗𝑗𝑠𝑠𝑗𝑗𝑞𝑞𝑠𝑠
∞

𝑗𝑗=0

 

= ��� 𝜉𝜉𝑚𝑚𝑠𝑠𝑚𝑚
∞

𝑚𝑚=1

�𝜉𝜉𝑗𝑗𝑠𝑠𝑗𝑗𝑞𝑞𝑠𝑠
∞

𝑗𝑗=0

 

= �Φ(𝑠𝑠)𝜉𝜉𝑗𝑗𝑠𝑠𝑗𝑗𝑞𝑞𝑠𝑠 =
∞

𝑗𝑗=0

𝑞𝑞𝑠𝑠Φ(𝑠𝑠)�𝜉𝜉𝑗𝑗𝑠𝑠𝑗𝑗
∞

𝑗𝑗=0

 

 = 𝑞𝑞𝑠𝑠Φ2(𝑠𝑠).                                                                                                   

The left hand side of equation (2) is: 

�𝜉𝜉𝑛𝑛𝑠𝑠𝑛𝑛− 𝜉𝜉1𝑠𝑠 = Φ(𝑠𝑠)− 𝑝𝑝𝑠𝑠
∞

𝑛𝑛=1

, 

thus,  

Φ(𝑠𝑠)− 𝑝𝑝𝑠𝑠 = 𝑞𝑞𝑠𝑠Φ2(𝑠𝑠).                                                                 (3) 

The equation (3) is a quadratic equation for the unknown Φ(𝑠𝑠), and solution of this equation is, 
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Φ(𝑠𝑠) =
�1 ±�1− 4𝑝𝑝𝑞𝑞𝑠𝑠2�

2𝑞𝑞𝑠𝑠                                                                (4) 

The solution with " + " sign is probabilistically not acceptable, thus: 

Φ(𝑠𝑠) =
1− �1− 4𝑝𝑝𝑞𝑞𝑠𝑠2

2𝑞𝑞𝑠𝑠 , 0 ≤ 𝑠𝑠 ≤ 1                                        (5) 

Equation (5) can be expanded in order to have an explicit solution for {𝜉𝜉𝑛𝑛} by the Binomial Theorem [6].  From 

the definition of Φ(𝑠𝑠) we know that, 

Φ(𝑠𝑠) = �𝜉𝜉𝑛𝑛𝑠𝑠𝑛𝑛
∞

𝑛𝑛=1

 

and by expanding equation (5), we have 

Φ(𝑠𝑠) = �1 −��
1
2
𝑗𝑗�

∞

𝑗𝑗=0

(−1)𝑗𝑗(4𝑝𝑝𝑞𝑞𝑠𝑠2)𝑗𝑗� 2𝑞𝑞𝑠𝑠�  

= ��
1
2
𝑗𝑗�

(−1)𝑗𝑗+1(4𝑝𝑝𝑞𝑞)𝑗𝑗𝑠𝑠2𝑗𝑗 2𝑞𝑞𝑠𝑠�
∞

𝑗𝑗=1

 

= ��
1
2
𝑗𝑗� (−1)𝑗𝑗+1

(4𝑝𝑝𝑞𝑞)𝑗𝑗

2𝑞𝑞 𝑠𝑠2𝑗𝑗−1
∞

𝑗𝑗=1

 

= (. )𝑠𝑠 + (. )𝑠𝑠3 + (. )𝑠𝑠5 +⋯ 

thus, for the odd indices we have for  

𝜉𝜉2𝑗𝑗−1 = �
1
2
𝑗𝑗� (−1)𝑗𝑗+1(4𝑝𝑝𝑞𝑞)𝑗𝑗 2𝑞𝑞� ,   𝑗𝑗 ≥ 1, 

and  

𝜉𝜉2𝑗𝑗 = 0  

for the even indices. Now using equation (5) we compute, 

𝑃𝑃(𝑁𝑁< ∞) = Φ(1) = �1 −�1− 4𝑝𝑝(1 −𝑝𝑝)� 2𝑞𝑞�  
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= (1− |𝑝𝑝 − 𝑞𝑞|) 2𝑞𝑞⁄  

𝑃𝑃(𝑁𝑁 < ∞) = � 1 , 𝑝𝑝 ≥ 𝑞𝑞
𝑝𝑝 𝑞𝑞⁄ , 𝑝𝑝 < 𝑞𝑞 

If 𝑝𝑝 < 𝑞𝑞 then, 

𝑃𝑃(𝑁𝑁 = ∞) = 1 − (𝑝𝑝 𝑞𝑞⁄ ) > 0 

When 𝑃𝑃(𝑁𝑁 = ∞) > 0, by the definition we get 𝐸𝐸(𝑁𝑁) = ∞. On the other hand, when 𝑝𝑝 ≥ 𝑞𝑞 𝐸𝐸(𝑁𝑁) = Φ′(1) is 

computed by differentiating equation (5): 

Φ′(𝑠𝑠) =
2𝑞𝑞𝑠𝑠 �−1

2 (1 − 4𝑝𝑝𝑞𝑞𝑠𝑠2)−1 2⁄ �(−8𝑝𝑝𝑞𝑞𝑠𝑠)− �1 −�1− 4𝑝𝑝𝑞𝑞𝑠𝑠2�2𝑞𝑞
4𝑞𝑞2𝑠𝑠2  

so that, 

𝐸𝐸(𝑁𝑁) = Φ′(1) =
2𝑝𝑝

|𝑝𝑝 − 𝑞𝑞| −
(1 − |𝑝𝑝 − 𝑞𝑞|)

2𝑞𝑞  

and finally, 

𝐸𝐸(𝑁𝑁) = �
∞ , 𝑝𝑝 = 𝑞𝑞 = 1 2⁄

(𝑝𝑝 − 𝑞𝑞)−1 , 𝑝𝑝 > 𝑞𝑞  

4. Conclusion and Discussion 

There are various martingale and Markov chain methods to analyze probabilistic characteristics of a simple 

random walk. In this study a simple random walk 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 +⋯+ 𝑋𝑋𝑛𝑛;  𝑛𝑛 ≥ 1; 𝑆𝑆0 = 0  and the first time 

(𝑁𝑁) that this random walk visits the state 1 are defined. A recursion formula is obtained for the distribution of 𝑁𝑁 

and then this recursion formula is solved by using generating functions. After that 𝐸𝐸(𝑁𝑁) is calculated in terms of 

the probabilities 𝑝𝑝 and 𝑞𝑞 under some conditions, from the solution. For further studies, single step transition 

probability matrix can be used to obtain a stationary distribution of the random walk. 
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