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Abstract

Having good estimates in the computation of the approximation to expressions for the form f(A)v is very important in
practical applications if we know at what stage the algorithm has to stop i.e avoid the principle of "luckybreak". In this
paper we develop an a posteriori upper bound on the Krylov subspace approximation error. We seek the error committed
between the exact solution and solution of parabolic equations(heat equation) by Krylov approximation methods.The idea
of the method is to approximate the action of the evolution operator on a given state vector by means projection process
onto a Krylov subspace. This estimate will allow us not only to theoretically study the behavior of the convergence of the
Krylov method as well as its stability but also allow us to give the exact size of the Krylov space according to the fixed stop
test and the precisions Wish to establish.

Keywords: Inverses Problems; heat Source; Krylov subspace; Matrix exponential; Krylov projection method; singularity 
of function; SVD method.

1. Introduction

From a partial knowledge of the solution u of a partial differential equation (internal measures, border

measures), finding f identification of source is the problem of an inverse problem. The projection methods are

algorithms for calculating eigenvalues and eigenvectors of matrix A of order n in a subspaceK of dimension

m� n using a matrix H of orderm of linear operator associated with the matrix A inK. If the matrix A is

symmetric, the Lanczos method builds a symmetric tri-diagonal matrix H . If the matrix A is not symmetric,

the Arnoldi method builds a matrix H upper Hessenberg. In both cases, if the algorithm reaches the mth

m� n, we obtain a matrix Hm dupper Hessenberg form of size m×m, and an orthonormal matrix Qm
n×m, them columns are defined by vectors q1, q2, · · · , qm. These vectors form an orthonormal basis of the

Krylov subspace

Km(A,q1) = V ect{q1,Aq1,A
2q1, · · · ,Am−1q1}.
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Where V ect{· · ·} denotes the set of linear combinations of the elements that lie between the hooks.

The algorithm’s parameters:

• q1, any initial vector,

• A, the matrix system,

• m, the size of the Krylov subspace.

We consider the following inverse problem: Find the pair of functions (u(x,t),f(x)) which satisfies:
(cf.[1]) 

∂u

∂t
− ∂

2u

∂x2 = f(x) 0< x < 1, 0< t≤ 1
u(x,0) = 0, 0≤ x≤ 1
∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0, 0≤ t≤ 1

u(x,1) = g(x), 0≤ x≤ 1.

(1)

u(x,t) is the body temperature at a given point x of the axis at a given time t, and f(x) is the unknown source

of heat depending only on the spatial variable x.

This problem is called the inverse problem of identification of unknown source.

The boundary conditions: {
u(x,0) = 0, 0≤ x≤ 1
∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0, 0≤ t≤ 1

(2)

The final condition: u(x,1) = g(x), where g is a given measurement input internal. In applications, the

input data g(x) can only be measured, and there will be measured data function gδ(x) which is merely in

L2(0,1) and satisfies

‖g−gδ‖L2(0,1) ≤ δ (3)

where the constant δ > 0 represents a noise level of input data.

By the separation of variables, the solution of Problem (1) can be obtained as follows:

u(x,t) =
∞∑
n=1

1−e−n2π2t

n2π2 fnen (4)

where

{en =
√

2cosnπx,(n= 1,2, · · ·)} (5)

is an orthogonal basis in L2(0,1), and

fn =
√

2
∫ 1

0
f(x)cos(nπx)dx. (6)

Making use of the final condition :

g(x) =
∞∑
n=1

(g,en)en =
∞∑
n=1

gnen =
∞∑
n=1

1−e−n2π2

n2π2 fnen (7)

and defining the operatorK : f −→ g, we obtain:

g(x) =Kf(x) =
∞∑
n=1

1−e−n2π2

n2π2 fnen. (8)

It is easy to see thatK is a linear compact operator, and the singular values {γn}∞n=1 ofK are

γn = 1−e−n2π2

n2π2 ,(n= 1,2, · · ·). (9)
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On the other hand

gn = (g,en) = γnfn(en,en) (10)

i.e.,

fn = γ−1
n gn. (11)

Therefore

f(x) =K−1g(x) =
∞∑
n=1

1
γn
gnen =

∞∑
n=1

n2π2

1−e−n2π2 gnen. (12)

Note that 1
γn
−→∞ if n−→∞, which makes a small perturbation g cause the explosion of the solution. So,

the problem is ill-posed because the solution does not continuously depend on the initial data. As there is no

source of heat which is supplied indefinitely, we posed the question of the applicability of an effective method

of truncation for the identification and regularization of the solution.

We propose in this work:

• In section 2, the applicability of the Krylov method for identifying the source heat, ant its regularizing

effect.

• Section 3 is devoted to the error estimated by replacing the eigenvalues of the matrixA by the eigenvalues

of the matrix H (Ritz values) for the efficiency of the method.

• And finally, in Section 4 we some remarks and conclusion.

2. Approaching Problem (1) by the Krylov Method

Let H = L2(0,1). We consider Problem (1): Find the pair of functions (u(x,t),f(x)) that satisfies

∂u

∂t
− ∂

2u

∂x2 = f(x) 0< x < 1, 0< t≤ 1
u(x,0) = 0, 0≤ x≤ 1
∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0, 0≤ t≤ 1

u(x,1) = g(x), 0≤ x≤ 1.
It is easy to see that the pair of functions

u(x,t),f(x)) =
(

1−e−π2t

π2 cos(πx), cos(πx)
)

(13)

is the exact solution of Problem (1.1). Consequently, the data function is g(x) = 1−e−π2

π2 cos(πx).

You can put the couple in the form of solution:

(
u(x,t),f(x)

)
=
(

(1−e−π
2t)cos(πx),π2cos(πx)

)
(14)

and

g(x) = (1−e−π
2
)cos(πx). (15)

2.1. Appoximation

Either the system Au = v⇔ u = ϕ(A)v. Our goal is to obtain a solution approached this system that is

sufficiently precise for the needs and lowest possible cost of calculation.

The heat source identified is given by equation (12) :
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f(x) =K−1g(x) =
+∞∑
n=1

1
γn
gnen =

+∞∑
n=1

n2π2

1−e−n2π2 gnen.

Which can be written numerically f(x) =
N∑
n=1

ϕ(λn)gnen, whereϕ(s) = s

1−e−s , λn, and en are, respectively,

the eigenvalues and eigenvectors of the matrix of the discretized operator Ah or g(x) =
N∑
n=1

gnen. So, f is of

the form

f = ϕ(A)g = (In−exp(−A))−1Ag (16)

where f,g ∈ Rn, A ∈Mn(R).

Let A be the unbounded operator defined by: D(A) = {u ∈H1(0,1);u′(1) = u′(0) = 0}

Au=−d
2u

dx2
(17)

where D(A) is the domain of definition of the operator A.

Proposition 0.1. The operator A is self-adjoint and positive. (cf.[10])

After the semi-discretization of the operator A, we have:

Ah = 1
h2



1 −1 0 0 . . 0 0
−1 2 −1 0 . . 0 0
0 −1 2 −1 0 . . 0
. 0 . . . . . .
. . . . . . . .
0 0 . . 0 −1 2 −1
0 0 . . 0 0 −1 1


(18)

The matrix Ah is tridiagonal and symmetric by construction.

Proposition 0.2. The matrix Ah is symmetric and positive.

2.2. Arnoldi Algorithm

(cf.[6]) Let A ∈Mn(R), q1 ∈ Rn, andm� n. This algorithm computes the factorization of A in the form

AQ=QH , whereQ ∈Mn,m(R) orthonormal columns andH ∈Mm(R) upper Hessenberg. That is to say, it

calculates an orthogonal basis of a Krylov subspace generated by (g,Ag,A2g, ....,Am−1g) by the method of

Arnoldi and returns the stored column vectors in Q and the base of the Hessenberg matrix orthogonalization

coefficients in H . It chooses an arbitrary vector q1

Algorithm

1. q1 = g

‖g‖2

2. For j = 1 :m do

3. w :=Aqj

4. For i= 1 : j do
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5. hi,j := q∗i w

6. w := w−hi,jqi −→ orthogonalization of w, hi,j = (Aqj , qi), i≤ j

7. end

8. hj+1,j := ‖w‖2 −→ hj+1,j = 0 if j = L

9. if hj+1,j > 0 then

10. qj+1 := w

hj+1,j

11. otherwise

12. qj+1 := 0

Arnoldi Approximation

Was as given: A ∈Mn(R), g ∈ Rn, andm� n. The result of the approximation is given by

ϕ(A)g ≈ fm = ‖g‖Qmϕ(Hm)e1 (19)

where Qm andHm are the matrix of the Arnoldi procedure, and e1 is the first vector of the canonical basis of

Rm (cf.[4]).

As the matrix A is tridiagonal and symmetric, for convenience, an algorithm is used which makes the

Lanczos matrix Hm = Tm a tridiagonal symmetric matrix, as the Arnoldi method is more general. (cf.[3])

2.3. Lanczos Algorithm

(cf.[9])

1. Let q0 = 0, β0 = 0, and q1 ∈ RN such that ‖q1‖2 = 1

2. Is calculated successively for j = 1, · · · ,m

3. zj :=Aqj−βjqj−1 −→ Direct iteration

4. αj := (zj , qj) −→ Scalar Product

5. zj := zj−αjqj −→ Orthogonalization

6. βj+1 := ‖zj‖2 −→ calculate the Euclidean norm

7. if βj+1 := 0, then stop.

8. qj+1 := zj
βj+1

−→ Normalization

9. End

Is thus obtainedm orthonormal vectors qj and a tridiagonal symmetric matrix T sizem×m (matrix Rayleigh)

of diagonal elements

αj = Tj,j and extra diagonal βj = Tj,j−1 = Tj−1,j .

The Krylov approximation of the vector f is given by:

fm = ‖g‖Qmϕ(Tm)e1 (20)

or ϕ(Tm) = (Im−exp(−Tm))−1Tm.
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2.4. Numerical Results

We took N = 200, m = 100, and—as the starting vector of the Lanczos Algorithm—v = g, with g ∈ RN ,

which is the test function.
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Figure 1: Graphical representation:(a) exact solution and approximation of Krylov, (b) exact solution and
singular value decomposition (SVD) solution.
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Figure 2: Graphical representation:(c) exact solution, approximation of Krylov and SVD solution, (d)
respective errors.

The SVD (Singular Value Decomposition)is the method used by Matlab to calculate the matrix functions.

3. Error Estimation

Let A ∈Mn(R) symmetric positive definite matrix. Our goal is to calculate the error estimate of ‖f−fm‖2 to

assess the accuracy of the result. Substituting the values of thematrixϕ(A) by those ofϕ(Hm), what is the error?

Our objective here is to estimate the quantity ‖f −fm‖.

Let A ∈Mn(R) be a positive symmetric definite matrix. It has

f = ϕ(A)g =A(I−e−A)−1g =
n∑
i=1

λi
1−e−λi

giei =
n∑
i=1

λi
1−e−λi

(g,ei)ei =
n∑
i=1

ϕ(λi)(g,ei)ei (21)

g ∈ RN , where (λi,ei) are the pair of eigenvalues and eigenvectors of the matrix A:

Aei = λiei, (ei,ej) = δij , Rn =
n⊕
i=1

[ei].

fm = ‖g‖2Qmϕ(Hm)e1 = ‖g‖2[QmHm(I−e−Hm)−1]e1. (22)

We use the Chebyshev series that are important approximation theory. It is known that the truncated expansion

of a function by Chebyshev series polynomial is the best at approximating the sense of the uniform norm on
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the segment [−1,1]. (cf.[7])

Let λ1,λ2, · · ·λn and β1,β2, · · ·βm, withm� n the respective eigenvalues of A, and

H =QtAQ, where H ∈Mm(R) the Hessenberg matrix, Q ∈Mn,m(R), QtQ= I , ‖Q‖< 1.

We have the following relation between the eigenvalues of A and those of H (Ritz values) (cf.[12]) :

λ1 ≤ βi ≤ λn, i= 1,2, · · ·m, with λi+1 ≥ λi, βi+1 ≥ βi.

If g =
n∑
i=1

giei =
n∑
i=1

(g,ei)ei, where (ei) is an orthogonal basis of L2[0,1], then f =
n∑
i=1

gϕ(λi)ei. The

(g,ei) are called Fourier coefficients.

As approximate values of f we take the vector fm = pm(A)g, where pm is a polynomial

deg(pm)≤m−1.

The λi and βi are known. Let λ1 and λn be lower and upper bounds, respectively, of the spectral interval of A.

Let B = λn+λ1
λn−λ1

In−
2

λn−λ1
A, with −In ≤B ≤ In or else ‖B‖ ≤ 1 and

y = 1
λn−λ1

(λn+λ1−2x) is a linear function defined over the spectral interval of A and In matrix of order

n. Define a function h on the segment [−1,1] so that h(B) = ϕ(A):

h(x) = ϕ

(
λn+λ1− (λn−λ1)x

2

)
. (23)

Consider the Chebyshev series of function h, h(x) =
+∞∑
k=0

hkTk(x), where hk are the Chebyshev coefficients

with hk = min(2,k+ 1)
π

∫ −1

1
h(x)Tk(x)(1−x2)−

1
2

and Tk are Chebyshev polynomials of the first kind and satisfy the recurrence relation: T0(x) = 1, T1(x) = x,

Tk+1(x) = 2xTk(x)−Tk−1(x), k ≥ 1.

The family (Tk) forms a basis of the Hilbert spaceL2(ω), whereω= 1√
1−x2

on the [−1,1] is themeasurement

of the dot product.

It is orthogonal with respect to the weight function ω:∫ −1

1
Tn(x)Tm(x)ω(x)dx= 0 for n 6=m.

As fm = pm(A)g = ‖g‖Qp(Hm)e1 because (Km ≈ Pm−1) you can also ask in the same way:

V = λn+λ1
λn−λ1

In−
2

λn−λ1
H, ‖V ‖ ≤ 1. (24)

Theorem 0.3. (cf.[2]) Assume that the series h(x) =
+∞∑
k=0

hkTk(x) is absolutely convergent in [−1,1], then

hold the following equalities:

f −fm =
+∞∑
k=m

(
hkTk(B)g−hkQ‖g‖Tk(V )e1

)
=

+∞∑
k=m

hk

(
Tk(B)g−‖g‖QTk(V )e1

)
(25)

we have the error bound:

‖f −fm‖ ≤ 2‖g‖
+∞∑
k=m
|hk|<+∞. (26)

Calculation of error θm = ‖f −fm‖

For function f =ϕ(A)g=A(I−e−A)−1g, we try to bound the Fourier–Chebyshev coefficients of the function

linearly translated onto the spectral interval of the symmetric positive definite matrix A by estimating the
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function’s values on ellipses whose poles are the endpoint of the spectral interval. An ellipse and its interior

must not contain the function’s singularities (z = 0). We guess that the sum of semi-axes of such an ellipse

can be optimized.

Let ER be the ellipse in the complex plane with foci -1 and 1, and with the sum of semiaxes R, R> 1. This

ellipse is also determined by the formula

ER =
{
Reiφ+R−1e−iφ

2 , 0≤ φ≤ 2π
}
. (27)

Let

a= λn−λ1
2 > 0, c= λn+λ1

λn−λ1
> 1.

B = λn+λ1
λn−λ1

In−
2

λn−λ1
A, ‖B‖ ≤ 1.

We have:

[I−e−A]−1A= [I−e−a(cIn−B)]−1a(cIn−B) (28)

because h(B) = ϕ(A), then h(ω) = (1−e−a(c−ω))−1a(c−ω), ω ∈ ER. We accept the following theorem

Theorem 0.4. (cf.[8])

If a function f is analytic in the domain, bounded by the ellipse ER, and continuous up to ER, such that

|f(z)| ≤M(R),z ∈ ER,

then the Chebyshev coefficients ak of f satisfy the inequality

|ak| ≤ 2M(R)R−k

and for every r ∈ [1,R) the Chebyshev series

a0
2 T0(z) +

∞∑
k=1

akTk(z)

of the function f uniformly converges to f on the closed set bounded by the ellipse Er.

Applying the theorem 0.4 to the function h. We have

h(ω) = (1−e−a(c−ω))−1a(c−ω) with ω ∈ ER. It can be continuous extended:

ĥ(ω) =


a(c−ω)

1−e−a(c−ω) , c 6= ω

h(c) = 1,
(29)

where ĥ is analytic at c. Therefore, c is a removable singularity of the function h. As the ellipse must not

contain singularities of the function ĥ, seek other singularities in the plane complex near the spectral range.

We know, in general, that the function

ex+iy = ez

is an entire function which has a single point at infinity. This is a periodic function of period of y 2π, and

therefore a function of z 2πi period.

1−e−a(c−ω) = 0⇔ e−a(c−ω) = 1 = e2πni,n ∈ Z

Therefore, the function ĥ has pole of order 1 to

−a(c−ω) = 2πni for n= · · · ,−1,0,1, · · · .
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The nearest singularities of the spectral interval are n=−1,0,1, and consequently, one has:

−a(c−ω) = 2πni⇔ ω = c+ 2πni
a

.

For n=−1, we have ω = c− 2πi
a

For n= 0, we have ω = c

For n= 1, we have ω = c+ 2πi
a

thus, c+ 2πi
a and c− 2πi

a are non-removable singularities of ĥ.

For symmetric positive systems as defined in our case, the ellipse envelope spectrum of A degenerates into

spectral interval [λmin,λmax] on the positive part of the x-axis.

ω ∈ ER⇒ ω = Reiφ+R−1e−iφ

2 .

If we put the ellipse minor axis ρ1 = 1
2(R+ 1

R
) and ρ2 = 1

2(R− 1
R

) the major axis, we have

1
2(R− 1

R
)≤ |ω| ≤ 1

2(R+ 1
R

). (30)

Introduce the Zhukovsky function ψ(z) = 1
2(z+ 1

z
),z 6= 0, and its inverse is

φ(ω) = ω+
√
ω2−1, ω ∈ C \ [−1,1] where C is the set of complex numbers (so φ(ω) is defined for all

complex ω excepting those belonging to the real line segment [−1,1]). The nearest singularities of ĥ are on

the ellipse ER, with

R=
∣∣∣∣φ(c± 2πi

a

)∣∣∣∣. (31)

The value of R is independent of the sign, due to the symmetry. Fix this value of R. Notice that these two

non-removables singularities are simple poles. Then, decompose

ĥ= ĥ1 + ĥ2 + ĥ3. (32)

where

ĥ1 = ĥ−
Res(h,c+ 2πi

a )
ω− c− 2πi

a

−
Res(h,c− 2πi

a )
ω− c+ 2πi

a

, ĥ2 =
Res(h,c+ 2πi

a )
ω− c− 2πi

a

, ĥ3 =
Res(h,c− 2πi

a )
ω− c+ 2πi

a

. (33)

And Res denotes the residue of an analytic function at a pole.

Calculate R

R=
∣∣∣∣φ(c+ 2πi

a

)∣∣∣∣=
∣∣∣∣c+ 2πi

a
+

√(
c+ 2πi

a

)2
−1
∣∣∣∣=
∣∣∣∣c+ 2πi

a
+
√
c2− 4π2

a2 + 4iπc
a
−1
∣∣∣∣.

Let z = x+ iy, such that c2− 4π2

a2 −1 + 4iπc
a = x2−y2 + 2ixy; we have:

x2−y2 = c2− 4π2

a2 −1 (i)
xy = 2πc

a (ii)

x2 +y2 =

√(
c2− 4π2

a2 −1
)2

+ 16π2c2
a2 (iii)

(i) + (iii)⇒ x2 = 1
2(c2− 4π2

a2 −1) + 1
2

√(
c2− 4π2

a2 −1
)2

+ 16π2c2

a2

Letting x be positive for convenience, we have:

x=
[

1
2(c2− 4π2

a2 −1) + 1
2

√(
c2− 4π2

a2 −1
)2

+ 16π2c2

a2

] 1
2
.
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(ii)⇒ y = 2πc
a
× 1
y

= 2πc
a

[
1
2(c2− 4π2

a2 −1) + 1
2

√(
c2− 4π2

a2 −1
)2

+ 16π2c2

a2

]− 1
2
.

Thus, z = x+ iy =[
1
2(c2− 4π2

a2 −1) + 1
2

√(
c2− 4π2

a2 −1
)2

+ 16π2c2

a2

] 1
2

+ i
2πc
a

[
1
2(c2− 4π2

a2 −1) + 1
2

√(
c2− 4π2

a2 −1
)2

+ 16π2c2

a2

]− 1
2
.

Let

α=
[

1
2(c2− 4π2

a2 −1) + 1
2

√(
c2− 4π2

a2 −1
)2

+ 16π2c2

a2

] 1
2

and

α−1 =
[

1
2(c2− 4π2

a2 −1) + 1
2

√(
c2− 4π2

a2 −1
)2

+ 16π2c2

a2

]− 1
2
.

therefore

R= φ

(
c+ 2πi

a

)∣∣∣∣=
∣∣∣∣c+ 2πi

a
+α+ i

2πc
a
α−1

∣∣∣∣=
∣∣∣∣c+α+ i

2π
a

(1 + cα−1)
∣∣∣∣=
√

(c+α)2 + 4π2

a2 (1 + cα−1)2.

Whether

R=

√
(c+α)2

(
1 + 4π2

a2α2

)
. (34)

Calculate

ĥ= ĥ1 + ĥ2 + ĥ3

The poles are simple:

ωn = c+ 2πni
a

,n ∈ Z

Let ω = ωn+ t, where t is a very small number.

The residue of h at these points:

h(ωn+ t) =
a(−2nπ

a − t)
1−e−a( −2nπi

a +t)
= −at−2nπi

1−eat . (35)

By the division was:

h(ωn+ t) = −2nπi−at
−at− 1

2!a
2t2− 1

3!a
3t3 · · ·

= 2nπi
at

+ · · · .

The residuals are the coefficients of 1
t = a−1. Therefore, Res(h,ωn) = 2nπi

a , and consequently,

Res(h,c+ 2πi
a

) = 2πi
a
, et Res(h,c− 2πi

a
) = −2πi

a
.

Remark 0.5. As the poles are simple, we can use the formula h(ω) = f(ω)
g(ω) .

If f(a) 6= 0, g(a) = 0, and g′(a) 6= 0, then Res(fg ,a) = a−1 = lim
ω→a

(ω−a)f(ω)
g(ω) = f(a)

g′(a) .

ĥ1 = ĥ−
Res(h,c+ 2πi

a )
ω− c− 2πi

a

−
Res(h,c− 2πi

a )
ω− c+ 2πi

a

= a(c−ω)
1−e−a(c−ω) −

2πi
a

ω− c− 2πi
a

+
2πi
a

ω− c+ 2πi
a

.

ĥ1(ω) = a(c−ω)
1−e−a(c−ω) −

2πi
a
× 1
ω− c− 2πi

a

+ 2πi
a
× 1
ω− c+ 2πi

a

= a(ω− c)
ea(ω−c)−1

− 2πi
a(ω− c− 2πi

a )
+ 2πi
a(ω− c+ 2πi

a )
. (36)

Let us consider two discs AR(c− 2πi
a , πa ) andBR(c+ 2πi

a , πa ) on the ellipse. We look for an increase of ĥ1(ω)

on the whole ellipse. We separately estimate the function on a set around the poles and on its complement in

the ellipse. To do this, we will proceed in three steps.
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Step 1

Let us consider the disc AR with center c− 2πi
a and radius πa

Figure 3: Error estimation around the poles of the ellipse.

AR =
{
ω ∈ ER,

∣∣ω− c+ 2πi
a

∣∣< π

a

}
. (37)

Let X = a(ω− c+ 2πi
a ) = a(ω− c) + 2πi; therefore, ω = c− 2πi

a + X
a and ω ∈AR⇒ |X|< π.

We have

F (X) = ĥ1(ω) = ĥ1(c− 2πi
a

+ X

a
) = X−2πi

eX−2πi−1 + 2πi
X
− 2πi
X−4πi = X−2πi

eX −1 + 2πi
X
− 2πi
X−4πi

= X

eX −1 −
2πiX

X(eX −1) + (2πi)X(eX −1)
X2(eX −1) + 1

2
1

(1− X
4πi )

= X

eX −1 −
2πiX

X(eX −1) + (2πi)X(eX −1)
X2(eX −1) + 1

2 ×
1− X

4πi + X
4πi

(1− X
4πi )

=
[
1− 2πi

X
+ (2πi)(eX −1)

X2

]
X

eX −1 + 1
2 + 1

8πi
X

(1− X
4πi )

We set H(X) = X

eX −1 = 1− X2 +
+∞∑
n=1

b2n
(2n)!X

2n, where b2n are the numbers of Bernoulli.

It is known that

b2n| ≤ 4 (2n)!
(2π)2n for n≥ 1 (38)

By asking that Ψ(X) =−X2 +
+∞∑
n=1

b2n
(2n)!X

2n, we have H(X) = 1 + Ψ(X), and F (X) becomes

F (X) = 1
2 +

[
1− 2πi

X
+ (2πi)(eX −1)

X2

]
(1 + Ψ(X)) + 1

8πi
X

(1− X
4πi )

. (39)

It is also known that

eX −1
X2 = 1

X2

(+∞∑
n=1

Xn

n!

)
=

+∞∑
n=1

Xn−2

n! = 1
X

+ 1
2 +

+∞∑
n=3

Xn−2

n! = 1
X

+ 1
2 +

+∞∑
n=1

Xn

(n+ 2)!
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Calculate the term 1− 2πi
X

+ (2πi)(eX −1)
X2 in F (X)

1− 2πi
X

+ (2πi)(eX −1)
X2 = 1− 2πi

X
+ 2πi

(
1
X

+ 1
2 +

+∞∑
n=1

Xn

(n+ 2)!

)
= 1 +πi+ 2πi

+∞∑
n=1

Xn

(n+ 2)! .

Then,
1

1− X
4πi

=
+∞∑
n=0

(
X

4πi

)n
. Replace these terms by their value in F (X)

F (X) = 1
2 +

[
1 +πi+ 2πi

+∞∑
n=1

Xn

(n+ 2)!

]
[1 + Ψ(X)] + 1

8πiX
+∞∑
n=0

(
X

4πi

)n

= 1
2 + 1 +πi+ (1 +πi)Ψ(X) + 2πi(1 + Ψ(X))

(+∞∑
n=1

Xn

(n+ 2)!

)
+ 1

8πiX
+∞∑
n=0

(
X

4πi

)n

= 3
2 +πi+ (1 +πi)Ψ(X) + 2πi(1 + Ψ(X))

(+∞∑
n=1

Xn

(n+ 2)!

)
+ 1

8πiX
+∞∑
n=0

(
X

4πi

)n
.

By passing to the module we have

|F (X)| ≤
√

9 + 4π2

2 +
√

1 +π2|Ψ(X)|+ 2π(1 + |Ψ(X)|)
(+∞∑
n=1

|X|n

(n+ 2)!

)
+ 1

8π |X|
+∞∑
n=0

∣∣∣∣X4π
∣∣∣∣n.

For ω ∈AR, we have |X|< π; thus,

|Ψ(X)| ≤ |X|2 +
+∞∑
n=1

∣∣∣∣ b2n
(2n)!

∣∣∣∣|X|2n ≤ π

2 + 4
+∞∑
n=1

1
(2π)2nπ

2n according to the relation (38)

π

2 + 4
+∞∑
n=1

1
(2π)2nπ

2n = π

2 + 4
+∞∑
n=1

(
1
4

)n
= π

2 + 4
3

+∞∑
n=1

|X|n

(n+ 2)! <
+∞∑
n=1

|X|n

n! = e|X|−1< eπ−1.

|X|
+∞∑
n=0

∣∣∣∣X4π
∣∣∣∣n < π

+∞∑
n=0

(
1
4

)n
= 4π

3 .

And finally

|F (X)| ≤
√

9 + 4π2

2 +
√

1 +π2(π2 + 4
3) + 2π(π2 + 7

3)(eπ−1) + 1
6 =M1. (40)

Let

sup
ω∈AR

|ĥ1(ω)| ≤M1 (41)

Step 2

Let us consider the disc BR of center c+ 2πi
a and radius πa

BR =
{
ω ∈ ER,

∣∣ω− c− 2πi
a

∣∣< π

a

}
(42)

Let Y = a(ω− c− 2πi
a ) = a(ω− c)−2πi; therefore, ω = c+ 2πi

a + Y
a and ω ∈BR⇒ |Y |< π.

We have

G(Y ) = ĥ1(ω) = ĥ1(c+ 2πi
a

+ Y

a
) = Y + 2πi

eY −1 −
2πi
Y

+ 2πi
Y + 4πi

= Y

eY −1 + 2πiY
Y (eY −1) −

(2πi)Y (eY −1)
Y 2(eY −1) + 1

2
1

(1− Y i
4π )
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G(Y ) = Y

eY −1 + 2πiY
Y (eY −1) −

(2πi)Y (eY −1)
Y 2(eY −1) + 1

2 ×
1− Y i

4π + Y i
4π

(1− Y i
4π )

=
[
1 + 2πi

Y
− (2πi)(eY −1)

Y 2

]
Y

eY −1 + 1
2 + i

8π
Y

(1− Y i
4π )

=
[
1 + 2πi

Y
− (2πi)(eY −1)

Y 2

]
[1 + Ψ(Y )] + 1

2 + i

8π
Y

(1− Y i
4π )

.

Calculate the term 1 + 2πi
Y −

(2πi)(eY −1)
Y 2 in G(Y )

1 + 2πi
Y
− (2πi)

Y 2 (eY −1) = 1 + 2πi
Y
− (2πi)

Y 2

(+∞∑
n=1

Y n

n!

)

= 1 + 2πi
Y
− (2πi)

(+∞∑
n=1

Y n−2

n!

)

= 1 + 2πi
Y
− 2πi

Y
−πi−2πi

(+∞∑
n=1

Y n

(n+ 2)!

)

= 1−πi−2πi
(+∞∑
n=1

Y n

(n+ 2)!

)
We have:

G(Y ) = 1
2 +

[
1−πi−2πi

+∞∑
n=1

Y n

(n+ 2)!

]
[1 + Ψ(Y )] + i

8πY
+∞∑
n=0

(
iY

4π

)n

= 3
2 −πi+ (1−πi)Ψ(Y )−2πi(1 + Ψ(Y ))

(+∞∑
n=1

Y n

(n+ 2)!

)
+ i

8πY
+∞∑
n=0

(
iY

4π

)n
.

Finally, we have:

|G(Y )| ≤
√

9 + 4π2

2 +
√

1 +π2(π2 + 4
3) + 2π(π2 + 7

3)(eπ−1) + 1
6 =M1. (43)

Let

sup
ω∈BR

|ĥ1(ω)| ≤M1. (44)

Step 3

Let us consider ω ∈ ER \ (AR∪BR)

Figure 4: Error estimate on the complement of the set.
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We have

ω ∈ ER⇒ |ω− c−
2πi
a
| ≥ π

a
and |ω− c+ 2πi

a
| ≥ π

a
. (45)

Let the major axis be ρ1 = 1
2(R+ 1

R
) and ρ2 = 1

2(R− 1
R

) the minor axis, and let us consider the circle of

center c containing the ellipse.

We have

∀ ∈ ER \ (AR∪BR), |ω− c| ≤ 1
2(R+ 1

R
) + c= ρ1 + c

ĥ1(ω) = a(ω− c)
ea(ω−c)−1

− 2πi
a(ω− c− 2πi

a )
+ 2πi
a(ω− c+ 2πi

a )
By passing to the module we have:

|ĥ1(ω)|= |a(ω− c)|
|ea(ω−c)−1|

− 2π
a|ω− c− 2πi

a |
+ 2π
a|ω− c+ 2πi

a |
≤ a(ρ1 + c)
|ea(ω−c)−1|

+ 2π
a
× a

π
+ 2π

a
× a

π

|ĥ1(ω)| ≤ 4 + a(ρ1 + c)
|ea(ω−c)−1|.

(46)

It is known that |ea(ω−c)−1| ≥ ||ea(ω−c)|−1|; therefore,

|ĥ1(ω)| ≤ 4 + a(ρ1 + c)
|ea(ω−c)−1|

≤ 4 + a(ρ1 + c)
||ea(ω−c)|−1|

.

Then, for ω ∈ ER \ (AR∪BR), take ω = x+ iy, and we have:

ea(ω−c) = ea(x−c+iy) = ea(x−c)×eiay, |ea(ω−c)|= ea(x−c).

A result

||ea(ω−c)|−1|= |ea(x−c)−1|

. Seek µ > 0, such that ∀ω ∈ ER \ (AR∪BR), ||ea(ω−c)|−1| ≥ µ.

Let x1 , x2 be the abscissa of the projection of two endpoints circles AR and BR on the major axis of the

ellipse.

ω = x+ iy⇒ x≤ x1, where x≥ x2.

Let ω1 = (x1 + iy1) ,∣∣∣∣ω1− c+ 2πi
a

∣∣∣∣2 = π2

a2 ⇒ (x1− c)2 + (y1 + 2πi
a

)2 = π2

a2 ⇒ (x1− c)2 ≤ π2

a2

−π
a
≤ x1− c≤

π

a
⇒ c− π

a
≤ x1 ≤ c+ π

a
.

Which causes

c− π
a
≤ x1 < c and c < x2 < c+ π

a

then, {
a(x− c)≤ a(x1− c)< 0
a(x− c)≥ a(x2− c)> 0 ⇒

{
ea(c−x)−1≤ ea(x1−c)−1 = e−a(c−x1)−1
ea(x2−c)−1≥ ea(x−c)−1

|ea(x−c)−1| ≥ 1−e−a(c−x1) for x < x1

and

|ea(x−c)−1| ≥min(1−e−a(c−x1),ea(x2−c)−1).
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Let µ= min(1−e−a(c−x1),ea(x2−c)−1), 0< µ < 1

x1 and x2

are the solution of 
x2

ρ2
1

+ y2

ρ2
2

= 1

(x− c)2 + (y+ 2π
a

)2 = π2

a2

|ĥ1(ω)| ≤ 4 + a(ρ1 + c)
µ

. (47)

Let

M(R) = max
(
M1,4 + a(ρ1 + c)

µ

)
(48)

where sup
ω∈ER

|ĥ1(ω)| ≤M(R).

It is a graph or a resolution to find the algebraic resolution abscissa x1 and x2 of the point of intersection ER
to the circle (x− c)2 + (y+ 2π

a
)2 = π2

a2 with µ= min(1−e−a(c−x1),ea(x2−c)−1)

0< µ1.

By Theorem 0.4,

|hk,1| ≤ 2M(R)R−k = 2max
(
M1,4 + a(ρ1 + c)

µ

)
×

(
(c+α)2

(
1 + 4π2

a2α2

))−k
2

. (49)

ĥ2(ω) =
Res(h,c+ 2πi

a )
ω− c− 2πi

a

=
2πi
a

ω− c− 2πi
a

= −2πi
a

(
1

(c+ 2πi
a )−ω

)
The Chebyshev coefficients of the functions ĥ2 and ĥ3 are determined by the identity

1
z0−ω

= 4φ(z0)−1

1−φ(z0)−2

∞∑
k=0

φ(z0)−kTk(ω), z0 ∈ C\ [−1,1],

which is a reformulation of formula (25) in theorem 10.4 of Paszkowski’s book (chapter 2, p.10).

Apply this formula ĥ2

ĥ2(ω) = 2πi
a

(
1

(c+ 2πi
a )−ω

)
= 2πi

a

( 4φ(c+ 2πi
a )−1

1−φ(c+ 2πi
a )−2

∞∑
k=0

φ

(
c+ 2πi

a

)−k
Tk(ω)

)
.

Let p= φ(c+ 2πi
a )−1; we have:

ĥ2(ω) = 2πi
a

(
4p

1−p2

∞∑
k=0

pkTk(ω)
)

=
∞∑
k=0

2πi
a

(
4p

1−p2 p
k

)
Tk(ω) =

∞∑
k=0

8πi
a

(
pk+1

1−p2

)
Tk(ω).

Or,

ĥ2(ω) =
∞∑
k=0

hkTk(ω).

So, by identification,

hk,2 = 8πi
a

(
pk+1

1−p2

)
.

By passing to the module we have:

|hk,2|=
8π
a

∣∣∣∣ pk+1

1−p2

∣∣∣∣ (50)

Similarly,

ĥ3(ω) = −2πi
a

(
1

(c− 2πi
a )−ω

)
= −2πi

a

( 4φ(c− 2πi
a )−1

1−φ(c− 2πi
a )−2

∞∑
k=0

φ

(
c− 2πi

a

)−k
Tk(ω)

)
.
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Let q = φ(c− 2πi
a )−1; we have:

ĥ3(ω) = −2πi
a

(
4q

1− q2

∞∑
k=0

qkTk(ω)
)

=
∞∑
k=0

−2πi
a

(
4q

1− q2 q
k

)
Tk(ω) =

∞∑
k=0

−8πi
a

(
qk+1

1− q2

)
Tk(ω).

Or,

ĥ3(ω) =
∞∑
k=0

hkTk(ω)

So, by identification,

hk,3 = −8πi
a

(
qk+1

1− q2

)
By passing to the module we have:

|hk,3|=
8π
a

∣∣∣∣ qk+1

1− q2

∣∣∣∣. (51)

As a result,

|hk| ≤ |hk,1|+|hk,2|+|hk,3|= 2max
(
M1,4+ a(ρ1 + c)

µ

)
×

(
(c+α)2

(
1+ 4π2

a2α2

))−k
2

+ 8π
a

∣∣∣∣ pk+1

1−p2

∣∣∣∣+ 8π
a

∣∣∣∣ qk+1

1− q2

∣∣∣∣.
(52)

+∞∑
k=m
|hk| ≤ 2max

(
M1,4 + a(ρ1 + c)

µ

)
×

+∞∑
k=m

R−k+
+∞∑
k=m

8π
a

∣∣∣∣ pk+1

1−p2

∣∣∣∣+ +∞∑
k=m

8π
a

∣∣∣∣ qk+1

1− q2

∣∣∣∣.
+∞∑
k=m

R−k = R−m

1−R−1 ,
+∞∑
k=m

pk+1 = pm+1

1−p

+∞∑
k=m

∣∣∣∣ pk+1

1−p2

∣∣∣∣=
∣∣∣∣ pm+1

(1 +p)(1−p)2

∣∣∣∣=
∣∣∣∣ φ(c+ 2πi

a )−m−1

(1 +φ(c+ 2πi
a )−1)(1−φ(c+ 2πi

a )−1)2

∣∣∣∣
Similarly,

+∞∑
k=m

∣∣∣∣ qk+1

1− q2

∣∣∣∣=
∣∣∣∣ qm+1

(1 + q)(1− q)2

∣∣∣∣=
∣∣∣∣ φ(c− 2πi

a )−m−1

(1 +φ(c− 2πi
a )−1)(1−φ(c− 2πi

a )−1)2

∣∣∣∣
Finally, by Theorem 26 we have the error estimate :

θm = ‖f −fm‖ ≤ 2‖g‖
+∞∑
k=m
|hk|

θm ≤ 2‖g‖
(

2max
(
M1,4 + a(ρ1 + c)

µ

)
×

(
(c+α)2

(
1 + 4π2

a2α2

))−m
2

1−
(

(c+α)2
(

1 + 4π2
a2α2

))−1
2

+

8π
a

∣∣∣∣ φ(c+ 2πi
a )−m−1

(1 +φ(c+ 2πi
a )−1)(1−φ(c+ 2πi

a )−1)2

∣∣∣∣+
8π
a

∣∣∣∣ φ(c− 2πi
a )−m−1

(1 +φ(c− 2πi
a )−1)(1−φ(c− 2πi

a )−1)2

∣∣∣∣
)

These singularities will limit the convergence because they are poles of the ellipse, and it is understood that

a singularity at a point on the ellipse has the same rate of asymptotic convergence a pole or other point of the

ellipse.
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4. Discussion
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