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Abstract  

The Fourier Transform (FT) is the well-known classical representation of signals components by providing the 

frequency analysis representations of the signals. The Fourier transformation is found with some determinant 

such as signal dependent transforming, in another word, the FT is helpful with only particular types of signals 

such as the pseudo-stationary signals and stationary signals [15], whereas the FT is not fulfilling the 

expectations while it’s being used with non-periodic signals such as noise, and non-stationary signals. As an 

alternative technique, a Wavelets Transformation (WT) was proposed to perform the frequency analysis for such 

kind of signals. Since it’s a revolved theory and is not broadly famous as compared with FT and other 

techniques. In this paper, we are going to review the wavelets theory with analysis and demonstrate the 

applications of this technique. 

Keywords: Wavelets Transformation; Fourier Transform; short time Fourier transformation; continues wavelets 

transform; Partial differential equations; Ordinary Differential Equations. 

1. Introduction 

In order to get a way for Wavelets transforming it is important to understand the Fourier transformation, the 

easiest manner to shift from the Fourier transformation to the Wavelets transformation is a short time Fourier 

transformation STFT. The STFT is done by applying the Fourier transform to a selected part of the signal 

(window) and the shifting that window alone the signal [4]. 
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The wavelets transforming can be done in either of; continues wavelets transform method, the true discrete 

transformation of wavelets and continues discredited method. Recently many fields have adopted the wavelets 

transform for analysing their problems such as engineering applications, science and the technology. In this 

paper, we are going to analysis a known signal by using different analysis techniques. A signal composed of 

three components; sin wave with F1 frequency starting at a T1 time, the pulse signal with an F2 frequency at a 

T2 time frame that is changing again into sin wave at T3 with F3 frequency and finally sin wave at the F4 

frequency at a T4 time frame. The signal is shown below and the frequencies are denoted on the graph. 

 

Figure 1: test signal comprising of three components to be analysis. 

The following table contains the frequencies that are dominated by the signal components at the mentioned time 

frames: 

Table 1: The signals’ component information 

Signal Time/sec Frequency/Hz 

sinusoidal 0.1-0.3, pulse at 

0.2 

45 

sinusoidal 0.4 250 

sinusoidal 0.5 75 

Sinusoidal *2 0.7-0.9 30 and 110 

For both signals 

respectively 

 

The signal will get sampling in 1000 Hz. In order to switch into wavelet transformation, it is necessary to get 

way with the Fourier transformation, the short time Fourier transformation will be discussed in the following 

section. 
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2. Fourier/STFT Analysis 

This can be considered as the most widely used method for representation the signals by their frequency 

components. It is invented by Joseph Fourier at French by 1807. FTT is found with some limitations   such as; it 

can only provide the frequency (Global) representation of the signals’ participants. As an alternative, a new 

approach has been invited to provide the time representation as a top off to the global frequency representation, 

the approach is well known as short-time Fourier transformation (STFT) [1, 2]. The process of STFT can be 

performing by selecting a limited window from the signal and then computing the Fourier transform of this 

window, the margins than are moving along the signal time axis. This window can be denoted as 𝑘𝑘(𝑡𝑡), “e” is the 

intermediate point of the limited window, the signal to be investigated is denoted by 𝑔𝑔(𝑡𝑡). The global formula of 

Fourier transform is represented by:  

ℎ(𝑓𝑓) = ∫ 𝑔𝑔(𝑡𝑡)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋∞
−∞   (1) 

The short time Fourier transform can be calculated by multiplying the windowed part of the signal “by” the 

classical Fourier transformation of the entire signal [3]. 

If the signal is 𝑔𝑔(𝑡𝑡) and the selected window is 𝑘𝑘(𝑡𝑡) which is centered at “e”, hence the 𝐺𝐺(𝑒𝑒, 𝑓𝑓) is the STFT of 

the signal. [4] The formula can be rewritten as follows: 

𝐺𝐺(𝑒𝑒, 𝑓𝑓) = ∫ 𝑔𝑔(𝑡𝑡) ∗ 𝑘𝑘(𝑡𝑡 − 𝑒𝑒) 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋 ∞
−∞ 𝑑𝑑𝑡𝑡             (2) 

 Where the 𝑘𝑘(𝑡𝑡 − 𝑒𝑒) is the conjugating complex part of the window. The outcomes from this transformation are 

varied in their efficiency depending on the size of the window. For better resolution of the time, a small window 

could be chosen. In another hand, a good frequency resolution can be yielded from bigger window outcome. It 

seems not possible to achieve both time and frequency good resolution at once, such inequalities are termed as 

Heisenberg. [5] This concept can be illustrated in the following graphs: figure 2a is presenting the time 

resolution achieved by a small window; it is cleared that window has only deployed 0.05 second from the time 

axis and figure 2b is showing the frequency resolution with bigger (longer) window. It is also cleared that best 

frequency results were gained by 0.59s deployment length on the time axis in the figure 2b. Both figures are 

demonstrating the time and frequency representations of the signal that was undergoing the Short Time Fourier 

transformation (STFT).  

 

Figure 2a: Best resolution of time 
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Figure 2b: Best resolution of frequency 

At this point, it is necessary to find the way in which we can achieve an acceptable time and frequency 

resolutions. Since those values are looking critical then the only way get acceptable outcomes is done by 

adjusting the window size [5].  

For this example, a window of 0.16 seconds length may be chosen in order to get moderated results in both time 

and frequency resolutions.  

The figure below (2c) is showing the final size of the window that yields the results stated above. 

 

Figure 2c: Final window adjustment 

3. Analysing by Wavelet: 

 Since the other analysis methods such as Fourier/STFT are not performing well when it was about to 

mobilizing signals, a wavelet is considered as the best alternative. [6] It can compute the signal space as well as 

the multi-resolution analysis with a more freedom and less compromising in critical values of time and 

frequency resolutions. To overcome these issues a wavelet analysis has been proposed, it is achievable by 

computing the mother wavelet/the wavelet function Ѱ(t) and henceforth the convolution between this function 

and the signal of interest must be calculated in order to perform the wavelet analysis. The mother wavelet 

Ѱ(t) can be chosen freely as compared to the procedure of windowed signal election in the STFT, it has to take 
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a unique frequency oscillation to be more recognized and segregated from the other frequency components in 

the signal. [4] The following figure is demonstrating an example of the wavelet called as Morlet. 

 

Figure 3: An example of Wavelet signal 

The wavelet mother may act as a wavelet if the energy terms of it is not infinite such as: 

𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝑔𝑔𝐸𝐸(𝑡𝑡) = � |Ѱ(𝑡𝑡)|2        ∆𝑡𝑡
 

∞

−∞

 

where “t” (time representation) must be lesser than infinity. Another criterion such as the zero frequency 

sections of the wavelet does not exist must be assured as it explained in the following formula: 

ZѰ = �
| Ѱ(f)|2

f

∞

0

    ∆f   

The result needs to be lesser than infinity as well. And finally, the wavelet transform must be same to the non-

positive frequencies. 

4. CWF analysis 

For the input signal  𝑚𝑚(𝑡𝑡), the continuous wavelet transformation can be evaluated by applying the convolution 

between the signal of interest 𝑚𝑚(𝑡𝑡)  and the wavelet mother/analysis function Ѱ(t) . Two parameters were 

monitored in the following formula; the scaling index “c” and the parameter of translating “𝛾𝛾" [7]. 

𝑀𝑀(𝛾𝛾, 𝑐𝑐) = (𝑐𝑐−0.5)  . � 𝑚𝑚(𝑡𝑡).Ѱ∗(
𝑡𝑡 − 𝛾𝛾
𝑐𝑐

)
∞

−∞

   ∆𝑡𝑡  

The final mathematical interpretation of this convolution is given above by M (𝛾𝛾, 𝑐𝑐), where c is representing the 

absolute value of this parameter. 

The importance of the scale parameter “c” lies in changing the window length and the Centre frequency of the 
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window i.e. f c. The scale parameter “c” is employed to play the role of wavelet analysis representing instead of 

the use of frequencies. [8] On another hand, the importance of translating parameter 𝛾𝛾 is seemed to move the 

window along the axis of time as the 𝛾𝛾 value is dominating the intermediate point of the window so that the 

location at the time axis can be determined accordingly.   

The participants of the above formula are known as coefficients of the wavelet, each one of it is being associated 

with time and frequency points lying on the axis. By applying the concept of inverse wavelet transformation, [4] 

the original signal can be revealed. That can be yielded from the following formula: 

𝑚𝑚(𝑡𝑡) = 𝐶𝐶Ѱ 
−2 . �𝑀𝑀(𝛾𝛾, 𝑐𝑐) ∗ 𝑐𝑐−2 ∗ Ѱ �

𝑡𝑡 − 𝛾𝛾
𝑠𝑠

� ∆𝑐𝑐 ∆𝛾𝛾
∞

−∞

 

The admissible constant is referred as “𝐶𝐶Ѱ 
 “ and it is mandatory for satisfying the wavelet conditions stated in 

the previous section. The mother wavelet is centered at fc/ the intermediate frequency of the wavelet function. 

The scale parameter (c) is inversely proportional to the intermediate frequency fc. 

The issue of constant inequalities (Heisenberg) still exists in the wavelet analysis, in other word by reducing the 

scale parameter “c” a smaller window can be produced yielding a good time resolution with lesser frequency 

resolution. It can be said that wavelet has a relatively fixed resolution of frequency. The intermediate frequency 

fc and the scaling parameter c can be combined in one mathematical representation which is given in the 

following relation: F=Fcentered/c. 

 For the Morlet signal, firstly the window can be derived from the signal as a Gaussian format having the above 

values of scaling and intermediate frequencies so that following expressions can be written [9]. 

The mother wavelet is given in the formula as: 

Ѱ(𝑡𝑡) = 𝑚𝑚(𝑡𝑡) ∗  𝑒𝑒−2𝜋𝜋∗𝜋𝜋𝑓𝑓𝑓𝑓𝑓𝑓𝜋𝜋 ∗ 𝑡𝑡 

Where: 

  𝑚𝑚(𝑡𝑡) =  �𝜋𝜋𝑓𝑓𝜋𝜋  ∗  𝑒𝑒𝜋𝜋2𝜋𝜋𝑤𝑤−1 

In the case of continuous wavelet transformation, the value of the wavelet parameters (time and scaling) are 

taken in discrete values. [10] That is yielding a series of wavelet signal and in order to convert the above 

parameters into a discrete value, the discretization process is required. 

5. Discretization method 

 The process those look after switching the continuous value into discrete values. It can be considered as most 

powerful and effective method of discretization. It is well known as the dyadic grid. The last is used to produce 

the Q results. The property of Q is the factor of quality that is used to present the frequency fixed resolution of 
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the wavelet analysis [4]. The series of wavelet can be achieved by the following expression. 

𝑌𝑌 𝜋𝜋𝑤𝑤𝑤𝑤𝑒𝑒𝑤𝑤𝑒𝑒𝑡𝑡 =  � 𝑚𝑚(𝑡𝑡)  Ѱ𝑏𝑏,𝑟𝑟(𝑡𝑡)   ∆𝑡𝑡
∞

−∞

 

Where: 

 Ѱ𝑏𝑏,𝑟𝑟= 𝐶𝐶0
−05𝑏𝑏 Ѱ(𝐶𝐶0

−𝑏𝑏 𝜋𝜋−𝑟𝑟𝛾𝛾0) 

The translation and dilation of the wavelet are controlled by the (r and b) parameters respectively. For 

𝛾𝛾0 𝑤𝑤𝐸𝐸𝑑𝑑 𝐶𝐶0  these values are equal to zero in a case of the dyadic grid. 

For the signal example illustrated in figure 1, the discrete wavelet analysis results are given the following 

figures. The figure below is showing best results in the resolution of frequency within shrink time scaling. [11] 

And best time resolution within the shorter frequency scale. The scales are explained in previous sections and 

stated to be controlling the window for best results in frequency and time scales.  

 

Figure 4: plot of the contour 

 

Figure 5: plot of the surface 

6. Applications 

In this section, we are going to discuss the some of the applications which are using the wavelet theorem for 

analysing their problems. The wavelet application is ranging from the engineering and science with other fields 
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also such as medical and finance. At this point, we are interested in highlighting the mathematical applications 

hence; the following sections are involving the significance of wavelet analysis in the numerical systems. 

6.1 Differential Equations (Ordinary) 

The DQs can be solved with help of wavelet transformation the solution can be executed by taking the Fourier 

transform to the right and side of the equation and then dividing by the coefficients of wavelet series [14]. The 

DQ may take the following format to be solved with the wavelet analysis. 

𝑀𝑀𝑤𝑤(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)          

𝜋𝜋ℎ𝑒𝑒𝐸𝐸   𝑥𝑥 𝜖𝜖 [1, 0]   𝑤𝑤𝐸𝐸𝑑𝑑   𝑀𝑀 = �𝑆𝑆𝑎𝑎(𝑥𝑥)𝐷𝐷𝑎𝑎
𝑓𝑓

𝑎𝑎=0

  

6.2 Partial differential equations 

The physical problems are being widely analysing by the partial differential equations (PDQ). Practically, it’s a 

complex task to compute the analytical solution of the PDQ, as a result to this; it seems to be important to 

employ some numerical method in order to achieve the solution. A wavelet is an efficient tool for solving the 

differential equations by applying to track the slope position to improve the resolution of the local grid by 

adding more resolution wavelet [12].  

6.3 Image processing 

As a time-frequency scale transformation tool for data, function and operator, the wavelet transform is a very 

good method for image compression, by which redundancies of the image are removed and original features of 

the image are reserved. The pixels of facial images are usually larger, so the wavelet transform is used before 

image comparison. The low-frequency images can be decomposed and extracted by wavelet transform. The 

image comparison between the sample images and the testing images, which is based on low-frequency 

components in different decomposed layer, can reduce effectively the computational complexity and make face 

recognition very fast. For face recognition, the problem of image comparison can be transformed into sequence 

comparison. The image comparison offers a similarity degree for human faces after the sequence similarity is 

defined, using a score function and a comparison function. Finally, a threshold is setting to guarantee the 

authenticity of correct recognition for human facial images to a certain extent. For the sake of improving 

computing efficiency, it is necessary to normalize different values of similarity degree. The experiments show 

that the wavelet method has the characteristics of simple realization, rapid recognition speed and high 

recognition rate. [5,13] 

7. Conclusion 

The wavelet approach is reviewed in this paper by showing the significance of this method to perform the 

analysis of frequency domain presentation of time domain signals aiming to investigate the frequency analysis 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2017) Volume 35, No  3, pp 139-148 

147 
 

and time analysis, unlike the Fourier transformation the wavelet transformation is yielding both representations 

of frequency and time components of the signal. The main efficient difference achieved from the wavelet 

analysis is the freedom of choosing the window over the time domain by performing the convolution concept. 

More effective frequency and time resolutions in the results can be gained from this method. The applications of 

wavelet transformation are huge due to the ability to perform the analytical solutions with easier fashion by 

using the numerical methods those employing the wavelet transformation.   
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