On Some Characteristics of a Simple Random Walk

Erdinç Yücesoy ${ }^{\text {a }}$, Pelin Kasap ${ }^{\text {b }}$ *
${ }^{a}$ Ordu University, Department of Mathematics, 52200, Ordu, Turkey
${ }^{b}$ Ondokuz Mayls University, Department of Statistics, 55200, Samsun, Turkey
${ }^{a}$ Email: erdinc.yucesoy@omu.edu.tr
${ }^{b}$ Email: pelin.kasap@omu.edu.tr

Abstract

In most of the probabilistic problems Markov chain models are used and the random walk models are one of the most essential class of the Markov chains. A random walk model appears in many real world problems such as a gambling problem, the motion of a certain particle, the price change in a stock exchange market and the realtime change in a network traffic. In this present study a simple random walk $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is defined and probability distribution function is obtained. After that, the mean, the second moment and the variance of this simple walk is obtained. Also the autocorrelation function R_{X} is given. Furthermore the mean and variance of the increment $\mathrm{X}_{\mathrm{m}}-\mathrm{X}_{\mathrm{n}}$ are calculated.

Keywords: Markov chain; random walk; simple random walk; variance; autocorrelation function; covariance.

1. Introduction

In most of the probabilistic problems Markov chain models are used and the random walk models are one of the most essential class of the Markov chains. A random walk model appears in many real world problems such as a gambling problem, the motion of a certain particle, the price change in a stock exchange market and the realtime change in a network traffic. In [1], random walks on integers is studied. A simple random walk $S_{n}=X_{1}+$ $X_{2}+\cdots+X_{n} ; n \geq 1 ; S_{0}=0$ and the first time (N) that this random walk visits the state 1 is given by [2].

[^0]A brief study on random walk processes is given in [3]. Upper and lower bounds on the speed of a one dimensional excited random walk is studied by [4]. In [5] random walk in a high density dynamic random environment is studied. In this present study a simple random walk $\left\{X_{n}\right\}$ is defined and probability distribution function is obtained. After that, the mean, the second moment and the variance of this simple walk is obtained. Also the autocorrelation function R_{X} is given. Furthermore the mean and variance of the increment $X_{m}-X_{n}$ are calculated.

2. Random Walk

Suppose that we make a one-dimensional random walk on the real line. We start at a given initial position X_{0} on the x-axis at time $t=0$. At time $t=1$ we jump to position X_{1}. So that the step size $S_{1}=X_{1}-X_{0}$ is a random variable with some distribution $F(s)$. By time $t=2$ we jump by another amount S_{2}, that S_{2} is independent of S_{1} but has the same distribution $F(s)$. Proceeding this way, our position after n jumps, or at time $t=n$, is thus given by as following

$$
\begin{equation*}
X_{n}=X_{0}+S_{1}+S_{2}+\cdots+S_{n} \tag{1}
\end{equation*}
$$

where $\left\{S_{i}\right\}$ is a set of independently and identically distributed random variables with a common distribution $F(s)$. The discrete time sequence $\left\{X_{n}\right\}$ is called a one-dimensional random walk [7].

2.1. The Simple Random Walk

A simple random walk is defined as a special case of the random walk model, in which only two values are possible for each step S_{i}, either +1 or -1 . Thus the position at time $t=n$ is:

$$
\begin{equation*}
X_{n}=X_{0}+\sum_{i=1}^{n} S_{i}, \quad n=1,2,3, \ldots \tag{2}
\end{equation*}
$$

The simple random walk $\left\{X_{n}\right\}$ has the following properties [8]:

1. Spatial homogeneity:

$$
\begin{equation*}
P\left(X_{n}=k \mid X_{0}=a\right)=P\left(X_{n}=k+b \mid X_{0}=a+b\right) \tag{3}
\end{equation*}
$$

that is, the distribution of $X_{n}-X_{0}$ does not depend on the initial value of X_{0}

2. Temporal homogeneity:

$$
\begin{equation*}
P\left(X_{n}=k \mid X_{0}=a\right)=P\left(X_{n+m}=k \mid X_{m}=a\right) \tag{4}
\end{equation*}
$$

that is, $X_{n+m}-X_{m}$ has the same distribution as $X_{n}-X_{0}$ for all $m, n \geq 0$
3. Independent increments: For a set of disjoint intervals ($\left.m_{i}, n_{i}\right], i=1,2, \ldots$ the increments $\left(X_{n_{i}}-X_{m_{i}}\right.$) are independent.
4. Markov property: The sequence $\left\{X_{n}\right\}$ is a simple Markov chain:

$$
\begin{equation*}
P\left(X_{n+m}=k \mid X_{0}, X_{1}, \ldots, X_{n}\right)=P\left(X_{n+m}=k \mid X_{n}\right), \quad m \geq 0 \tag{5}
\end{equation*}
$$

2.1.1. Obtaining the mean, second moment and variance of simple random walk

Because the simple random walk is spatially homogeneous (first property given by equation 3), let us assume

$$
X_{0}=a=0
$$

Suppose that out of n random steps, n_{1} steps are taken to the right $(+1)$ and n_{2} steps are to the left (-1). It is obvious that these steps are independent. Now let us assume the following probabilities:

$$
S_{i}=\left\{\begin{array}{lc}
+1 & , \quad \text { with probability } \mathrm{p} \tag{6}\\
-1 & , \quad \text { with probability } q=1-p
\end{array}\right.
$$

Let the position after n steps be $X_{n}=n_{1}-n_{2} \equiv k$. Since $n_{1}+n_{2}=n$ we have $n_{1}=(n+k) / 2$ and $n_{1}=$ $(n-k) / 2$. Hence,

$$
\begin{equation*}
P\left(X_{n}=k\right)=\binom{n}{\frac{n+k}{2}} p^{(n+k) / 2} q^{(n-k) / 2}, \quad k=-n,-n+2, \ldots, n-2, n \tag{7}
\end{equation*}
$$

Notice that both $(n+k)$ and $(n-k)$ are even. So that for any state $k, P\left(X_{n}=k\right)=0$ for all n such that $(n+k)$ is odd. Hence, $\left\{X_{n}\right\}$ is a Markov chain with period $d=2$.

The mean, second moment and variance of X_{n} are calculated respectively, as following

$$
\begin{align*}
& E\left(X_{n}\right)=\sum_{i=1}^{n} E\left(S_{i}\right)=n E\left(S_{i}\right)=n(p-q) \tag{8}\\
& E\left(X_{n}^{2}\right)=\sum_{i=1}^{n} E\left(S_{i}^{2}\right)+\sum_{i \neq j} \sum_{j} E\left(S_{i}\right) E\left(S_{j}\right)=n+\left(n^{2}-n\right)(p-q)^{2} \tag{9}\\
& \operatorname{Var}\left(X_{n}\right)=E\left(X_{n}^{2}\right)-\left[E\left(X_{n}\right)\right]^{2}=4 p q n \tag{10}
\end{align*}
$$

As stated in property 3, the simple random walk is a process with independent increments. The mean of the increment $X_{m}-X_{n}$ is :

$$
\begin{equation*}
E\left[X_{m}-X_{n}\right]=(m-n)(p-q) \tag{11}
\end{equation*}
$$

On the other hand, the autocorrelation function $R_{X}(m, n)=E\left(X_{m} X_{n}\right), m \geq n$ is obtained as:

$$
\begin{align*}
& \quad R_{X}(m, n)=E\left[\left(X_{m}-X_{n}+X_{n}\right) X_{n}\right]=E\left[X_{m}-X_{n}\right] E\left[X_{n}\right]+E\left[X_{n}{ }^{2}\right] \\
& =(m-n) n(p-q)^{2}+n^{2}(p-q)^{2}+4 p q n \\
& =m n(p-q)^{2}+4 p q n, \quad m \geq n \tag{12}
\end{align*}
$$

Since the autocorrelation function is symmetric we have, whether $m \geq n$ or not,

$$
\begin{equation*}
R_{X}(m, n)=m n(p-q)^{2}+4 p q \min [m, n] \tag{13}
\end{equation*}
$$

Thus, finally we obtain the covariance between X_{m} and X_{n} as:

$$
\begin{equation*}
\operatorname{Cov}\left(X_{m}, X_{n}\right)=R_{X}(m, n)-E\left[X_{m}\right] E\left[X_{n}\right]=4 p q \min [m, n] \tag{14}
\end{equation*}
$$

and the variance of the increment as:

$$
\begin{align*}
\operatorname{Var}\left[X_{m}-X_{n}\right] & =\operatorname{Var}\left[X_{m}\right]+\operatorname{Var}\left[X_{n}\right]-2 \operatorname{Cov}\left(X_{m}, X_{n}\right) \\
=4 p q(m+n-2 n) & =4 p q(m-n), \quad m \geq n . \tag{15}
\end{align*}
$$

3. Conclusion and Discussion

In this present study a simple random walk $\left\{X_{n}\right\}$ is defined and probability distribution function is obtained. After that, the mean, the second moment and the variance of this simple walk is obtained. Also the autocorrelation function R_{X} is given. Furthermore the mean and variance of the increment $X_{m}-X_{n}$ are calculated. For further studies probabilistic characteristics of various simple random walk problems can be obtained.

References

[1] Elena Kosygina, Martin P. W. Zerner. "Excursions of excited random walks on integers", Electron J. Probab. (19) 2004, no 25, 1-25. ISSN: 1083-6489
[2] Kasap P. and Yücesoy E. "A study on the simple random walk", International Journal of Sciences: Basic and Applied Research (IJSBAR) (2017) Volume 34, No 3, pp 212-217.
[3] Philip L. S., Roger R. "Diffusion and Random Walk Processes", International Encyclopedia of the Social \& Behavioral Sciences, 2nd edition, Vol 6. Oxford: Elsevier. pp. 395-401. ISBN: 9780080970868.
[4] Bossen, E., Kidd, B., Levin, O., Peterson, J., Smith, J., \& Stangl, K. (2017). "Upper and Lower Bounds
on the Speed of a One Dimensional Excited Random Walk", arXiv preprint arXiv:1707.02969.
[5] den Hollander, F., Kesten, H., \& Sidoravicius, V. (2014). "Random walk in a high density dynamic random environment", Indagationes Mathematicae, 25(4), 785-799.
[6] Sidney, I. Resnick. "Adventures in Stochastic Processes", Springer Science+Business Media, New York, $3^{\text {rd }}$ printing, 2002.
[7] H. Kobayashi, B. L. Mark, W. Turin. "Probability, Random Processes and Statistical Analysis", Cambridge University Press, 2012.
[8] G. Grimmett and D. Stirzaker, "Probability and Random Processes", Oxford University Press, 2001.
[9] W. J. Stewart, "Probability, Markov Chains, Queues and Simulation: the Mathematical Basis of Performance Modeling", Princeton University Press, 2009.

[^0]: * Corresponding author.

