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Abstract 

In most of the probabilistic problems Markov chain models are used and the random walk models are one of the 

most essential class of the Markov chains. A random walk model appears in many real world problems such as a 

gambling problem, the motion of a certain particle, the price change in a stock exchange market and the real-

time change in a network traffic.  In this present study a simple random walk {Xn} is defined and probability 

distribution function is obtained. After that, the mean, the second moment and the variance of this simple walk 

is obtained.  Also the autocorrelation function RX is given. Furthermore the mean and variance of the increment 

Xm − Xn are calculated.  
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1. Introduction  

In most of the probabilistic problems Markov chain models are used and the random walk models are one of the 

most essential class of the Markov chains. A random walk model appears in many real world problems such as a 

gambling problem, the motion of a certain particle, the price change in a stock exchange market and the real-

time change in a network traffic. In [1], random walks on integers is studied. A simple random walk 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 +

𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛;  𝑛𝑛 ≥ 1; 𝑆𝑆0 = 0 and the first time (𝑁𝑁) that this random walk visits the state 1 is given by [2].  
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A brief study on random walk processes is given in [3]. Upper and lower bounds on the speed of a one 

dimensional excited random walk is studied by [4]. In [5] random walk in a high density dynamic random 

environment is studied. In this present study a simple random walk {𝑋𝑋𝑛𝑛} is defined and probability distribution 

function is obtained. After that, the mean, the second moment and the variance of this simple walk is obtained.  

Also the autocorrelation function 𝑅𝑅𝑋𝑋 is given. Furthermore the mean and variance of the increment 𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛 are 

calculated. 

2. Random Walk 

Suppose that we make a one-dimensional random walk on the real line. We start at a given initial position 𝑋𝑋0 on 

the 𝑥𝑥 −axis at time 𝑡𝑡 = 0. At time 𝑡𝑡 = 1 we jump to position 𝑋𝑋1.So that the step size 𝑆𝑆1 = 𝑋𝑋1 − 𝑋𝑋0 is a random 

variable with some distribution 𝐹𝐹(𝑠𝑠). By time 𝑡𝑡 = 2 we jump by another amount 𝑆𝑆2, that 𝑆𝑆2 is independent of 𝑆𝑆1 

but has the same distribution 𝐹𝐹(𝑠𝑠). Proceeding this way, our position after 𝑛𝑛 jumps, or at time 𝑡𝑡 = 𝑛𝑛, is thus 

given by as following 

𝑋𝑋𝑛𝑛 = 𝑋𝑋0 + 𝑆𝑆1 + 𝑆𝑆2 + ⋯+ 𝑆𝑆𝑛𝑛                                                                                                   (1) 

where {𝑆𝑆𝑖𝑖} is a set of independently and identically distributed random variables with a common distribution 

𝐹𝐹(𝑠𝑠). The discrete time sequence {𝑋𝑋𝑛𝑛} is called a one-dimensional random walk [7]. 

2.1. The Simple Random Walk  

A simple random walk is defined as a special case of the random walk model, in which only two values are 

possible for each step 𝑆𝑆𝑖𝑖, either +1 or −1. Thus the position at time 𝑡𝑡 = 𝑛𝑛 is: 

𝑋𝑋𝑛𝑛 = 𝑋𝑋0 + �𝑆𝑆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, 𝑛𝑛 = 1, 2, 3, …                                                                                     (2) 

The simple random walk {𝑋𝑋𝑛𝑛} has the following properties [8]: 

1. Spatial homogeneity: 

𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑘𝑘|𝑋𝑋0 = 𝑎𝑎) = 𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑘𝑘 + 𝑏𝑏|𝑋𝑋0 = 𝑎𝑎 + 𝑏𝑏)                                                        (3) 

that is, the distribution of 𝑋𝑋𝑛𝑛 − 𝑋𝑋0 does not depend on the initial value of 𝑋𝑋0 

 

2. Temporal homogeneity: 

𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑘𝑘|𝑋𝑋0 = 𝑎𝑎) = 𝑃𝑃(𝑋𝑋𝑛𝑛+𝑚𝑚 = 𝑘𝑘|𝑋𝑋𝑚𝑚 = 𝑎𝑎)                                                                  (4) 

that is, 𝑋𝑋𝑛𝑛+𝑚𝑚 − 𝑋𝑋𝑚𝑚 has the same distribution as 𝑋𝑋𝑛𝑛 − 𝑋𝑋0 for all 𝑚𝑚,𝑛𝑛 ≥ 0 
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3. Independent increments: For a set of disjoint intervals (𝑚𝑚𝑖𝑖,𝑛𝑛𝑖𝑖], 𝑖𝑖 = 1, 2, … the increments (𝑋𝑋𝑛𝑛𝑖𝑖 − 𝑋𝑋𝑚𝑚𝑖𝑖) are 

independent.  

4. Markov property: The sequence {𝑋𝑋𝑛𝑛} is a simple Markov chain: 

𝑃𝑃(𝑋𝑋𝑛𝑛+𝑚𝑚 = 𝑘𝑘|𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) = 𝑃𝑃(𝑋𝑋𝑛𝑛+𝑚𝑚 = 𝑘𝑘|𝑋𝑋𝑛𝑛), 𝑚𝑚 ≥ 0                                       (5) 

2.1.1. Obtaining the mean, second moment and variance of simple random walk 

Because the simple random walk is spatially homogeneous (first property given by equation 3), let us assume 

𝑋𝑋0 = 𝑎𝑎 = 0. 

Suppose that out of 𝑛𝑛 random steps, 𝑛𝑛1 steps are taken to the right (+1) and 𝑛𝑛2 steps are to the left (−1).  It is 

obvious that these steps are independent. Now let us assume the following probabilities: 

𝑆𝑆𝑖𝑖 = �+1 , with probability p
−1 , with probability 𝑞𝑞 = 1 − 𝑝𝑝                                                                      (6) 

Let the position after 𝑛𝑛  steps be 𝑋𝑋𝑛𝑛 = 𝑛𝑛1 − 𝑛𝑛2 ≡ 𝑘𝑘 . Since 𝑛𝑛1 + 𝑛𝑛2 = 𝑛𝑛  we have 𝑛𝑛1 = (𝑛𝑛 + 𝑘𝑘) 2⁄  and 𝑛𝑛1 =

(𝑛𝑛 − 𝑘𝑘) 2⁄ . Hence, 

𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑘𝑘) = �
𝑛𝑛

𝑛𝑛 + 𝑘𝑘
2

�𝑝𝑝(𝑛𝑛+𝑘𝑘) 2⁄ 𝑞𝑞(𝑛𝑛−𝑘𝑘) 2⁄   ,    𝑘𝑘 = −𝑛𝑛,−𝑛𝑛 + 2, … ,𝑛𝑛 − 2,𝑛𝑛                (7) 

Notice that both (𝑛𝑛 + 𝑘𝑘)  and (𝑛𝑛 − 𝑘𝑘)  are even. So that for any state 𝑘𝑘 , 𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑘𝑘) = 0 for all 𝑛𝑛  such that 

(𝑛𝑛 + 𝑘𝑘) is odd. Hence, {𝑋𝑋𝑛𝑛} is a Markov chain with period 𝑑𝑑 = 2.  

The mean, second moment and variance of 𝑋𝑋𝑛𝑛 are calculated respectively, as following 

𝐸𝐸(𝑋𝑋𝑛𝑛) = �𝐸𝐸(𝑆𝑆𝑖𝑖) = 𝑛𝑛𝑛𝑛(𝑆𝑆𝑖𝑖) = 𝑛𝑛(𝑝𝑝 − 𝑞𝑞)
𝑛𝑛

𝑖𝑖=1

                                                                          (8) 

𝐸𝐸�𝑋𝑋𝑛𝑛2� = �𝐸𝐸(𝑆𝑆𝑖𝑖2)
𝑛𝑛

𝑖𝑖=1

+ ��𝐸𝐸(𝑆𝑆𝑖𝑖)
𝑗𝑗𝑖𝑖≠𝑗𝑗

𝐸𝐸�𝑆𝑆𝑗𝑗� = 𝑛𝑛 + (𝑛𝑛2 − 𝑛𝑛)(𝑝𝑝 − 𝑞𝑞)2                         (9) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑛𝑛) = 𝐸𝐸�𝑋𝑋𝑛𝑛2� − [𝐸𝐸(𝑋𝑋𝑛𝑛)]2 = 4𝑝𝑝𝑝𝑝𝑝𝑝                                                                          (10) 

As stated in property 3, the simple random walk is a process  with independent increments. The mean of the 

increment 𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛 is : 

𝐸𝐸[𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛] = (𝑚𝑚 − 𝑛𝑛)(𝑝𝑝 − 𝑞𝑞)                                                                                            (11) 
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On the other hand, the autocorrelation function 𝑅𝑅𝑋𝑋(𝑚𝑚,𝑛𝑛) = 𝐸𝐸(𝑋𝑋𝑚𝑚𝑋𝑋𝑛𝑛), 𝑚𝑚 ≥ 𝑛𝑛 is obtained as: 

𝑅𝑅𝑋𝑋(𝑚𝑚,𝑛𝑛) = 𝐸𝐸[(𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛 + 𝑋𝑋𝑛𝑛)𝑋𝑋𝑛𝑛] = 𝐸𝐸[𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛]𝐸𝐸[𝑋𝑋𝑛𝑛] + 𝐸𝐸�𝑋𝑋𝑛𝑛2� 

= (𝑚𝑚 − 𝑛𝑛)𝑛𝑛(𝑝𝑝 − 𝑞𝑞)2 + 𝑛𝑛2(𝑝𝑝 − 𝑞𝑞)2 + 4𝑝𝑝𝑝𝑝𝑝𝑝       

= 𝑚𝑚𝑚𝑚(𝑝𝑝 − 𝑞𝑞)2 + 4𝑝𝑝𝑝𝑝𝑝𝑝, 𝑚𝑚 ≥ 𝑛𝑛                                                                        (12) 

Since the autocorrelation function is symmetric we have, whether 𝑚𝑚 ≥ 𝑛𝑛 or not, 

𝑅𝑅𝑋𝑋(𝑚𝑚,𝑛𝑛) = 𝑚𝑚𝑚𝑚(𝑝𝑝 − 𝑞𝑞)2 + 4𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑚𝑚,𝑛𝑛]                                                          (13) 

Thus, finally we obtain the covariance between 𝑋𝑋𝑚𝑚 and 𝑋𝑋𝑛𝑛 as: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑚𝑚,𝑋𝑋𝑛𝑛) = 𝑅𝑅𝑋𝑋(𝑚𝑚,𝑛𝑛) − 𝐸𝐸[𝑋𝑋𝑚𝑚]𝐸𝐸[𝑋𝑋𝑛𝑛] = 4𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑚𝑚,𝑛𝑛]                 (14) 

and the variance of the increment as: 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑚𝑚] + 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑛𝑛] − 2𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑚𝑚,𝑋𝑋𝑛𝑛) 

= 4𝑝𝑝𝑝𝑝(𝑚𝑚 + 𝑛𝑛 − 2𝑛𝑛) = 4𝑝𝑝𝑝𝑝(𝑚𝑚 − 𝑛𝑛), 𝑚𝑚 ≥ 𝑛𝑛.                         (15) 

3. Conclusion and Discussion 

In this present study a simple random walk {𝑋𝑋𝑛𝑛} is defined and probability distribution function is obtained. 

After that, the mean, the second moment and the variance of this simple walk is obtained.  Also the 

autocorrelation function 𝑅𝑅𝑋𝑋  is given. Furthermore the mean and variance of the increment 𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛  are 

calculated.  For further studies probabilistic characteristics of various simple random walk problems can be 

obtained. 
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