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Abstract 

In this paper, convergence analysis of a finite difference method for the linear second order boundary value 

ordinary differential equation is determined by investigating basic key concepts such as consistency and stability 

by using the maximum norm. 
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1. Introduction  

A differential equation involving derivatives with respect to single independent variable is called an ordinary 

differential equation (ODE) [1]. An ODE is known as linear if the derivative of the dependent variable is one 

and also the power of the dependent variable is one and the coefficient of the dependent variable are constants or 

independent variables [2]. A differential equation to be satisfied over a region together with a set of boundary 

conditions is said to be boundary value differential equation. Boundary value problems occur very frequently in 

various fields of science and engineering such as mechanics, quantum physics, electro hydro dynamics, and 

theory of thermal expansions [3]. There are different ways of arriving at different approximations for the 

solution of differential equations. The best method is the one which gives best approximation for the solution, 

i.e. which have minimum error.   
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2. Finite Difference Approximations 

Methods involving finite differences for solving BVPs replace each of the derivatives in the differential equation 

with an appropriate difference-quotient approximation [4]. We shall consider the linear two-point ordinary 

boundary value problem (BVP) of the form 

𝑦𝑦"(𝑥𝑥) + 𝑝𝑝(𝑥𝑥)𝑦𝑦′ + 𝑞𝑞(𝑥𝑥)𝑦𝑦 = 𝑟𝑟(𝑥𝑥), 𝑦𝑦(𝑎𝑎) = 𝑦𝑦0, 𝑦𝑦(𝑏𝑏) = 𝑦𝑦𝑛𝑛                                   (1.1) 

satisfies the following conditions to assure the existence of unique solution, 𝑝𝑝(𝑥𝑥), 𝑞𝑞(𝑥𝑥), and 𝑟𝑟(𝑥𝑥) are continuous 

on [𝑎𝑎, 𝑏𝑏], and 𝑞𝑞(𝑥𝑥) < 0 on [𝑎𝑎, 𝑏𝑏](for positive 𝑞𝑞(𝑥𝑥) the BVP may not possess a solution [5]). For the sake of 

convenience, we shall employ equal increments in the independent variable. Then 𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are the interior 

mesh points of the interval [𝑎𝑎, 𝑏𝑏] related as 𝑥𝑥𝑖𝑖 = 𝑥𝑥0 + 𝑖𝑖ℎ for 𝑖𝑖 = 0, 1, … , 𝑛𝑛 and ℎ is the step size with ℎ = (𝑏𝑏 −

𝑎𝑎)/𝑛𝑛. Methods involving finite differences for solving boundary-value problems replace each of the derivatives 

in the differential equation by an appropriate difference-quotient approximation [6]. The particular difference 

quotient and step size ℎ are chosen to maintain a specified order of truncation error. However, ℎ cannot be too 

small becomes of the general instability of the derivative approximation [4]. If 𝑦𝑦𝑦𝑦ℂ4[𝑎𝑎, 𝑏𝑏], then by replacing the 

derivatives in (1.1) by the following central differences which are derived from Taylor’s theorem can be 

obtained as follows. 

𝑦𝑦′(𝑥𝑥𝑖𝑖) =
𝑦𝑦(𝑥𝑥𝑖𝑖+1) − 𝑦𝑦(𝑥𝑥𝑖𝑖−1)

2ℎ
−
ℎ2

6
𝑦𝑦(3)(𝜂𝜂𝑖𝑖)𝑦𝑦′′(𝑥𝑥𝑖𝑖) =

𝑦𝑦(𝑥𝑥𝑖𝑖+1) − 2𝑦𝑦(𝑥𝑥𝑖𝑖) + 𝑦𝑦(𝑥𝑥𝑖𝑖−1)
ℎ2

−
ℎ2

12
𝑦𝑦(4)(𝜉𝜉𝑖𝑖) 

for some 𝜂𝜂𝑖𝑖 and 𝜉𝜉𝑖𝑖 in the interval (𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1). 

Let 𝑦𝑦𝑖𝑖  denote the numerical approximate and 𝑦𝑦(𝑥𝑥𝑖𝑖) the exact(analytical) values for (1.1) respectively. Then with 

truncation error, the approximate difference equations becomes  

𝑦𝑦′𝑖𝑖 ≈
𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖−1

2ℎ
 and 𝑦𝑦′′𝑖𝑖 ≈

𝑦𝑦𝑖𝑖+1−2𝑦𝑦𝑖𝑖+𝑦𝑦𝑖𝑖−1
ℎ2

 

Substituting these in equation (1.1) with 𝑝𝑝(𝑥𝑥𝑖𝑖) = 𝑝𝑝𝑖𝑖 , 𝑞𝑞(𝑥𝑥𝑖𝑖) = 𝑞𝑞𝑖𝑖  and 𝑟𝑟(𝑥𝑥𝑖𝑖) = 𝑟𝑟𝑖𝑖 the BVP becomes 

𝑦𝑦𝑖𝑖+1 − 2𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖−1
ℎ2

+ 𝑝𝑝𝑖𝑖
𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖−1

2ℎ
+ 𝑞𝑞𝑖𝑖𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖,             

𝑖𝑖 = 1, 2, … , 𝑛𝑛 − 1                (1.2) 

Multiplying the difference equation (1.2) by ℎ2 and rearranging the result gives the following equation 

�1 + ℎ
2
𝑝𝑝𝑖𝑖� 𝑦𝑦𝑖𝑖−1 + (2 + ℎ2𝑞𝑞𝑖𝑖)𝑦𝑦𝑖𝑖 − �1 − ℎ

2
𝑝𝑝𝑖𝑖� 𝑦𝑦𝑖𝑖+1 = ℎ2𝑟𝑟𝑖𝑖                                    (1.3) 

This is a finite difference equation which is an approximation to the differential equation (1.1) at the interior 

mesh point 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛−1 of the interval [𝑎𝑎, 𝑏𝑏]. By replacing 𝑖𝑖 = 1, 2, … , 𝑛𝑛 − 1 in (1.3), this gives 𝑛𝑛 − 1 linear 
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equations with the unknowns 𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛−1 which can be solved using Gaussian elimination method with back 

substitution. 

3. Convergence Analysis of the Method 

To be equation (1.3) a convergent solution for (1.1), we need to estimate the maximum error for the appropriate 

selection of ℎ. 

Without truncating the error term, equation (1.2) becomes 

𝑦𝑦(𝑥𝑥𝑖𝑖+1)−2𝑦𝑦(𝑥𝑥𝑖𝑖)+𝑦𝑦(𝑥𝑥𝑖𝑖−1)
ℎ2

− ℎ2

12
𝑦𝑦(4)(𝜉𝜉𝑖𝑖) + 𝑝𝑝𝑖𝑖

𝑦𝑦(𝑥𝑥𝑖𝑖+1)−𝑦𝑦(𝑥𝑥𝑖𝑖−1)
2ℎ

− ℎ2

6
𝑦𝑦(3)(𝜂𝜂𝑖𝑖) + 𝑞𝑞𝑖𝑖𝑦𝑦(𝑥𝑥𝑖𝑖) = 𝑟𝑟(𝑥𝑥𝑖𝑖)                           (1.4) 

As it is stated in [6], if we subtract (1.2) from (1.4) and using 𝑒𝑒𝑖𝑖 = 𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖, the result is  

𝑒𝑒𝑖𝑖+1 − 2𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑖𝑖−1
ℎ2

+ 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖+1 − 𝑒𝑒𝑖𝑖−1

2ℎ
+ 𝑞𝑞𝑖𝑖𝑒𝑒𝑖𝑖 = ℎ2𝑔𝑔𝑖𝑖 

Where 𝑒𝑒𝑖𝑖 is the global error and 

𝑔𝑔𝑖𝑖 =
1

12
𝑦𝑦(4)(𝜉𝜉𝑖𝑖) +

1
6
𝑦𝑦(3)(𝜂𝜂𝑖𝑖) 

From this result, one can observe that ℎ2𝑔𝑔𝑖𝑖 is the local truncation error of the method. As the value of ℎ close to 

0, the truncation error vanishes and hence the finite difference method (1.3) becomes consistent. 

After collecting like terms and multiplying both sides  of (1.5) by ℎ2 gives the following equation 

�1 + ℎ
2
𝑝𝑝𝑖𝑖� 𝑒𝑒𝑖𝑖−1 + (2 + ℎ2𝑞𝑞𝑖𝑖)𝑒𝑒𝑖𝑖 − �1 − ℎ

2
𝑝𝑝𝑖𝑖� 𝑒𝑒𝑖𝑖+1 = ℎ4𝑔𝑔𝑖𝑖                                            (1.6) 

To measure the magnitude of this vector we must use some norm, for instance the max-norm because it is used 

to measure grid functions and it is easy to bound. 

  ‖𝑒𝑒‖∞ = max1≤𝑖𝑖≤𝑛𝑛|𝑒𝑒𝑖𝑖| = max1≤𝑖𝑖≤𝑛𝑛|𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖| 

⇒ (2 + ℎ2𝑞𝑞𝑖𝑖)𝑒𝑒𝑖𝑖 = �1 − ℎ
2
𝑝𝑝𝑖𝑖� 𝑒𝑒𝑖𝑖+1 −�1 + ℎ

2
𝑝𝑝𝑖𝑖� 𝑒𝑒𝑖𝑖−1 + ℎ4𝑔𝑔𝑖𝑖 

⇒ |2 + ℎ2𝑞𝑞𝑖𝑖||𝑒𝑒𝑖𝑖| ≤ �1 − ℎ
2
𝑝𝑝𝑖𝑖� |𝑒𝑒𝑖𝑖+1| + �1 + ℎ

2
𝑝𝑝𝑖𝑖� |𝑒𝑒𝑖𝑖−1| + ℎ4|𝑔𝑔𝑖𝑖| 

⇒ |2 + ℎ2𝑞𝑞𝑖𝑖|‖𝑒𝑒‖∞ ≤ �1 −
ℎ
2
𝑝𝑝𝑖𝑖� ‖𝑒𝑒‖∞ + �1 +

ℎ
2
𝑝𝑝𝑖𝑖� ‖𝑒𝑒‖∞ + ℎ4‖𝑔𝑔‖∞ 

⇒ |2 + ℎ2𝑞𝑞𝑖𝑖|‖𝑒𝑒‖∞ ≤ 2‖𝑒𝑒‖∞ + ℎ4‖𝑔𝑔‖∞ 
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⇒ ℎ2|𝑞𝑞𝑖𝑖|‖𝑒𝑒‖∞ ≤ ℎ4‖𝑔𝑔‖∞ 

⇒ ‖𝑒𝑒‖∞ ≤
ℎ2‖𝑔𝑔‖∞

𝑞𝑞𝑖𝑖
 

Hence the upper bound for ‖𝑒𝑒‖∞ is 

‖𝑒𝑒‖∞ ≤ ℎ2‖𝑔𝑔‖∞
inf |𝑞𝑞(𝑥𝑥𝑖𝑖)|

                                                                                         (1.7) 

This is just the largest error over the interval. If this error (1.7) converges to zero without having ℎ2‖𝑔𝑔‖∞ 

converging to 0, the solution method (1.3) becomes stable.  Example: Consider the following BVP  

𝑦𝑦"(𝑥𝑥) = 2𝑥𝑥
1+𝑥𝑥2

𝑦𝑦′(𝑥𝑥) − 2
1+𝑥𝑥2

𝑦𝑦(𝑥𝑥) + 1, 

with 𝑦𝑦(0) = 1.25 and 𝑦𝑦(4) = −0.95 over the interval [0,4]. Both the exact and the numerical solution with step 

size ℎ = 0.2 is shown on the table below correct to 5 decimal places as it is stated in [7] and [8] with some 

modification. 

Table 1: Numerical approximation and exact solution for the differential equation 

𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖  Exact value Error(𝑒𝑒) 

0.2 1.314503 1.317350 0.002847 

0.4 1.320607 1.326505 0.005898 

0.6 1.272755 1.281762 0.009007 

0.8 1.177399 1.189412 0.012013 

1.0 1.042106 1.056886 0.014780 

1.2 0.874878 0.892086 0.017208 

1.4 0.683712 0.702947 0.019235 

1.6 0.476372 0.497187 0.020815 

1.8 0.260264 0.282184 0.021920 

2.0 0.042399 0.064931 0.022533 

2.2 -0.170616 -0.147977 0.022639 

2.4 -0.372557 -0.350325 0.022232 

2.6 -0.557565 -0.536261 0.021304 

2.8 -0.720114 -0.700262 0.019852 

3.0 -0.854988 -0.837116 0.017872 

3.2 -0.957250 -0.941888 0.015362 

3.4 -1.022221 -1.009899 0.012322 

3.6 -1.045457 -1.036709 0.008749 

3.8 -1.022727 -1.018086 0.004641 
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𝑦𝑦"(𝑥𝑥) =
2𝑥𝑥

1 + 𝑥𝑥2
𝑦𝑦′(𝑥𝑥) −

2
1 + 𝑥𝑥2

𝑦𝑦(𝑥𝑥) + 1 

From equation (1.7) we have  

ℎ2‖𝑔𝑔‖∞ ≥ ‖𝑒𝑒‖∞min |𝑞𝑞(𝑥𝑥𝑖𝑖)|                                                                     (1.8) 

From (1.8), the maximum value of local truncation error is related with ‖𝑒𝑒‖∞min |𝑞𝑞(𝑥𝑥𝑖𝑖)|. 

But from the result on table 1, the maximum error is 

‖𝑒𝑒‖∞ = 0.022639 

min|𝑞𝑞(𝑥𝑥𝑖𝑖)| =
2

1 + 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚
=

2
1 + (3.8)2

 

= 0.12953368 

⟹ ‖𝑒𝑒‖∞ min|𝑞𝑞(𝑥𝑥𝑖𝑖)| = 0.002932513 

This is closer to maximum truncation error. The remaining error 

i.e. 0.022639 − 0.002932513 = 0.01933139 

must be the error occurred by instability of the method. 

Graphically, the exact solution and the finite difference approximation is shown below. 

 

Figure 1: Numerical approximation and exact solutions for the differential equation 
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2
1 + 𝑥𝑥2
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4. Conclusion 

For the appropriate selection of step size ℎ and for the BVP of the form (1.1) having large magnitude for the 

minimum value of 𝑞𝑞(𝑥𝑥), the finite difference method becomes both consistent and stable hence the finite 

difference method (1.3) becomes  convergent. 
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