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Abstract

In this paper, we introduce the notions of A’ -invariant convergence, A’ -invariant convergence with respect to a
sequence of modulus functions and establish some basic theorems. Furthermore, we give some properties of Als
-Cauchy sequence and A’s -Cauchy sequence. We basically study some connections between A -invariant
statistical convergence and A’ -invariant lacunary statistical convergence with respect to a sequence of modulus
functions and between strongly A’ -invariant convergence and A’ -invariant lacunary statistical convergence with
respect to a sequence of modulus functions. Also, we establish some inclusion relations between new concepts of
1, — A statistically convergence and A’ —invariant statistically convergence with respect to a sequence of modulus

functions.
Keywords: Lacunary invariant statistical convergence; Invariant statistical convergence; modulus function.
1. Introduction

The notion of statistical convergence of sequences of numbers was introduced by Fast [12]. Later on, statistical
convergence turned out to be one of the most active areas of research in summability theory after the works of
[15,29].
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The concept of lacunary statistical convergence was defined by [16]. Also, they gave the relationships between the
lacunary statistical convergence and the Cesaro summability. Freedman and his colleagues established the
connection between the strongly Cesaro summable sequences space g; and the strongly lacunary summable
sequences space N? in their work [1] published in 1978. The idea of A-statistical convergence was introduced and
studied by [20] as an extension of the [V, 2] summability of Leindler [18]. The concept of I-convergence of real
sequences is a generalization of statistical convergence which is based on the structure of the ideal | of subsets of
the set of natural numbers. P. Kostyrko and his colleagues [26] introduced the concept of I-convergence of
sequences in a metric space and studied some properties of this convergence. Several authors including
[24,25,22,5], and some authors have studied invariant convergent sequences. Nuray and his colleagues [10],
defined the concepts of a-uniform density of subsets A of the set N, I,-convergence and investigated relationships
between I,-convergence and invariant convergence also I,-convergence and [V, ], -convergence. The concept of
strongly o-convergence was defined by [21]. Reference [7] introduced the concepts of o-statistical convergence
and lacunary o-statistical convergence and gave some inclusion relations. Recently, the concept of strongly o-
convergence was generalized by [5]. Reference [30] investigated lacunary I-invariant convergence and lacunary I-
invariant Cauchy sequence of real numbers. The notion of a modulus function was introduced by Nakano [11]. We
recall that a modulus f is a function from [0, ) to [0, ) such that (i) f(x) = 0 if and only if x =0, (ii)
flx+y)=fx)+ f(y) forx,y = 0, (iii) f isincreasing and (iv) f is continuous from the right at 0. It follows
that f must be continuous on [0, ). Connor [17,28,14,3,27,31] used a modulus function to construct sequence

spaces. Now let § be the space of sequence of modulus function F = (f;) such that 1ir(r)1+ sup fr(x) = 0.
X—

Throughout the paper we take A = (ay;) as an infinite matrix of complex numbers and the set of all modulus
functions determined by F and it will be denoted by F = (f;) € § for every k € N. First we recall some of the
basic concepts which we will be used in this paper. A number sequence x = (x;) is said to be statistically

convergent to the number L if for every € > 0,

1
lim —|{k < n:|x, —L| > €}| = 0.
n-oon

In this case we write st — limx;, = L. By a lacunary sequence we mean an increasing integer sequence 8 = {k,.}
such thatk, = 0and h, =k, — k,_; - o0 asr — co. Throughout this paper the intervals determined by 6 will
be denoted by I, = (k,_4, k).

A sequence x = (x;,) is said to be lacunary statistically convergent to the number L if for every € > 0,
1
lim—|{k €l.:|x;, —L| =¢}| =0.
r—o00 hr

In this case we write Sy — limx, = L or x; — L(S). The strongly lacunary summable sequences space N ¢, which

is defined by

1
No =1 s lim— > Jx, — L] = 0.
T

kel
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Let A = (4, be a non-decreasing sequence of positive real numbers tending to infinity such that A, = 1 and
Apg1 S A + 1.

A sequence x = (x;) is said to be A-statistically convergent or S;-convergent to L if for every € > 0,
1
lim—I|{k €l,:|xy,— L =¢€}|=0,
n—oo ﬂ,n

where I, = [n— 1, +1,n] forn=12,....
The generalized de la VValee-Pousin mean is defined by

1

%@=Z2n

kEly
where I, = [n—1,, + 1,n].

A sequence x = (x;) is said to be (V,1)-summable to a number L if lim t,(x) = L. If 4, = n, then (V,1)-
n—-oo

summability reduces to (C, 1)-summability.

By an ideal on a set X we mean a non-empty family of subsets of X closed under taking finite unions and subsets

of its elements. In other words, a non-empty set I < 2N is called an ideal on N if;

(i Foreach A,B € Iwehave AUB €1,

(i) Foreach A € I andeach B < Awe have B € I.

If N ¢ I then we say that this ideal is a proper ideal. Similarly an ideal is proper and also contains all finite subsets

then we say that this ideal is admissible. Similarly, a non-empty set F < 2N is called a filter on N if;

Q) Foreach A, B € Fwehave ANB € F,
(ii) (ii) Foreach A € F and each A < Bwe have B € F.

Proposition 1.1. If I is a non-trivial ideal in N, then the family of sets
FH)={McN:@AeD),(M=X\A)}

is a filter in N and it is called the filter associated with the ideal. Filter is a dual notion of ideal and generally we
will use ideals in our proofs but if the notion is more familiar for filters, we will use the notion of filter. Let x =

(x;) be areal sequence. This sequence is said to be I-convergent to L € R if for each £ > 0 the set

A, ={k eN:|x, — L| = ¢}
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belongs to 1. In this definition the number L is I-limit of the x. An admissible ideal I c 2N is said to have the
property (AP) if for any sequence {4, 4,,..} of mutually disjoint sets of |, there is sequence {B;, B, ... } of sets
such that each symmetric difference 4;AB; (i = 1,2,...) is finite and U2, B; € I. Let o be a one-to-one mapping
of the set of positive integers into itself such that ¢™(n) = (am‘l(n)), m = 1,2,.... A continuous linear
functional on [, the space of real bounded sequences, is said to be an invariant mean or a o mean, if and only if,
(i) d(x) =0, for all sequences x = (x,) with x, =0 for all n; (ii) d(e) =1, where e=(1,1,1,...); (iii)
¢(xa(n)) = ¢(x) for all x € . The mapping ¢ are assumed to be one-to-one such that ¢™(n) # n for all
positive integers n and m, where ¢™(n) denotes the m.th iterate of the mapping o at n. Thus, ¢ extends the limit
functional on c, the space of convergent sequences, in the sense that ¢(x) = limx, for all x € c. In case ¢ is
translation mapping o(n) = n + 1, the ¢ mean is often called a Banach limit and V, , the set of bounded

sequences all of whose invariant means are equal, is the set of almost convergent sequences. It can be shown that

m
1 . .
Vo = {x = (x,) € looirlllirgoaz Xok(my = L},umformly in m.
k=1

A bounded sequence x = (x, ) is said to be strongly o -convergent to L if

n-1

Z|Xuk(m) — L| = 0, uniformly in m.
k=0

1
lim —
n-oon

In this case we write x; — L[V;]. By [V, ], we denote the set of all strongly ¢ -convergent sequences.

A sequence x = (x,) is o-statistically convergent to L if for every ¢ > 0,

1
J}f&% |k <m: |Xak(n) — L| > s|,uniform1y in n.

In this case, we write S, — limx = L or x;, = L(S,).
Nuray and his colleagues [10] introduced the concepts of o -uniform density and I, -convergence.
Let A c Nand
S, = n}'inlA N {o(m),s?(m), ...,c"(m)}|
and

S, = mn?x|A N {o(m),s?(m), ..., a"(m)}|.

If the following limits exists
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. sn I7 . Sn
V(4) = lim —,V(4) = lim —
- n-oo N n—-oco N
then they are called a lower and an upper o-uniform density of the set A, respectively. If V(4) = V(A), then
V(A) = V(A) = V(A) is called the o -uniform density of A.
Denote by I, theclassofall A ¢ N with V(4) = 0.

A sequence x = (x, ) is I,- convergent to the number L if for every e > 0,

A ={k:|x, —L| = e} €1,
thatis V(A4,) = 0. In this case, we write I, — limx = L.

Let A= (ay) be an infinitt matrix of complex numbers. We write Ax=(Ak(x)), if

A (x) = X2 agix;, converges for each k.

In [19], the notion of A’ — [V, 2] summability and A’ — A statistical convergence with respect to a sequence of
modulus functions were introduced and some connections between A’ — A statistical convergence and A’ -

statistically convergence were studied.

2. Main Results

In this section, we will give some new concepts, give the relationship between them and establish some basic
theorems.

Definition 2.1 The sequence (x;,) is said to be A’-invariant convergent to L with respect to a sequence of modulus

functions if for every € > 0 the set,
B(e,x) = {k: fi (1A, (x) — L]) = €}

belongs to I,. In this case, we write x;, > L(I,*, F).

Definition 2.2 The sequence (x;) is said to be invariant convergent to L with respect to a sequence of modulus

functions if

1
lim —

n
nawnZ fk (Ak(xak(m))) = L'
k=1

uniformly in m. In this case, we write (x;) - L(V,*, F).

Theorem 2.1 Let (x,) is bounded sequence. If (x;) is A’ -invariant convergent to L with respect to a sequence of

modulus functions, then (x;,) is invariant convergent to L with respect to a sequence of modulus functions.
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Proof Let m,n € N be arbitrary and every € > 0. For each x € X, we estimate

o [ ) ) o)

Then, for each x € X we have t(m,n,x) < t'(m,n, x) + t2(m, n,x), where

n
1
t'(m,n,x): = - Z fk('Ak(xaj(m)) ~1|)
=1

fk(|Ak(xaj(m))_L| )25

and

n

1
t?(m,n,x): = - z fk(|Ak(ng(m)) ~L[).

K,j=1
P[4 (% iy )2 ) <2

Therefore, we have t2(m,n, x) < ¢, foreach x € X and for every m=1,2,... . The boundedness of (x;) is implies

that there exist M>0 such that for each x € X,

fe(JAGeiom) — LIS M, G =12.5m=12,.))

for all k € N. This implies that

M
t'(m,n,x) < ;|{1 <j< n:fk(|Ak(xUj(m)) —L|) =&}

y maxm|{1 <j< n:fk(|Ak(xUj(m)) - L| ) = s}| 3 MS"
- n T

Hence, (x;) isinvariant convergent to L with respect to a sequence of modulus functions.

Definition 2.3 A sequence x = (x;) issaid to be A’ -invariant convergentto L € X with respect to a sequence

of modulus functions, if there existsa set M = {m; <m, < --- <my < ---} € F(,) such that
lim £, (Ak(xmk)> = L.

In this case, we write x, > L(I;%,F).
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Theorem 2.2 If a sequence x = (xy) is A’ -invariant convergent to L, then this sequence is A’-invariant convergent

to L with respect to a sequence of modulus functions.

Proof. By assumption, there existsaset H € I; suchthatfor M = N\ H={m; <m, <--<my < --} € F(l,)

we have

lim f, (A(xm)) =1 @21)
Let € > 0. By (2.2.1), there exists k, € N such that
fe(lAi(m) = L]) <&,
for each k > k. Then, obviously
{k € N: filAy() — LI = e} c HU{my <m, < - <my}. (2.2.2)

Since I, is admissible, the set on the right-hand side of (2.2.2) belongs to I,. So x = (x;) is A’ -invariant

convergent to L with respect to a sequence of modulus functions.

Theorem 2.3 Let I, be an admissible ideal with property (AP). If a sequence x = (xy) is A!-invariant convergent

to L, then this sequence is A -invariant convergent to L with respect to a sequence of modulus functions.
Proof. Suppose that I, satisfies condition (AP). Let x = (x;) is A’ -invariant convergent to L. Then

{k € N: fir (A (x) — L]) = €} € I
for each e > 0. Put

Ey ={k eN: fi (|14 (x) — L]) = 1}

and

E —{kEN-1<f(|A ) - L) < —— }
n p T RN n—1

for n>2and n € N. Obviously E; n E; = @ for i # j. By condition (AP) there exists a sequence of sets

{F.nen suchthat E;AF; are finite sets for j € N and
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F= UF}EIU.
j=1

It is sufficient to prove that for M = N\ F,M = {m = (m;): m; < my,,,i € N} € F(I,) we have
lim f, (A(xm)) = LkeM.  (231)

Let 2>0. Choose n € N such that ﬁ < A.Then
k+1
renflaw-1znc| 5

j=1

Since E;AF;, j=1,2,...,n+1 are finite sets, there exists k, € N such that

k+1 k+1
UFj N{keN:k> ko) = UE,- NikeN:k>k) (232)
j=1 j=1

n+l n+1l

If k>koandk ¢ F, then kK& UF; andby (23.2) k& UE;.
j=1 j=1

1 .
But then fi (|4, (x) — LI) < - < 4; 50 (2.3.1) holds and we have lim f; (Ak(xmk)) =1L

Now, we define the concepts of I-invariant Cauchy sequence and I*-invariant Cauchy sequence of real numbers

with respect to a sequence of modulus functions.

Definition 2.4 Let I, be an admissible ideal in N. A sequence (xy) is said to be I,-Cauchy sequence if for each £ >

0, there exists a number N = N(g) such that

Ax, &) = {k: | fi (A (x1)) — fie(Ax(xn))| = €}

belongs to /.

Definition 2.5 Let I, be an admissible ideal in N. A sequence (xy) is said to be I;-Cauchy sequence if there exists

aset M = {m = (m;):m; < m;,,,i € N} € F(I;), such that

tim i (4 (Gmy)) ~ fi (Ak (xmp))| — 0.

k,p—wo

We give following theorems which show relationships between I, -convergence, I,-Cauchy sequence and I} -

Cauchy sequence.
Theorem 2.4 If a sequence (xy) is I-convergent, then (x) is an I-Cauchy sequence.

Theorem 2.5 If a sequence (xy) is I -Cauchy sequence, then (xy) is I,-Cauchy sequence.
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Theorem 2.6 Let I, has property (AP). Then the concepts I; -Cauchy sequence and I, -Cauchy sequence
coincides.

Definition 2.6 The sequence (xy) is said to be p-strongly invariant convergent to L with respect to a sequence of
modulus functions, if for each x € X,

1
lim —
n-con

n
p
D el prgm) — L") = 0,
k=1
uniformly in m, where 0<p<co. In this case, we write (x;) = L[V,*, F],.

Theorem 2.7 Let I; be an admissible ideal and 0<p<co.

i If (x) = LIVA Flp, then (x) — L(IZ, F).
ii. If x € m(X), the space of all bounded sequences of Xand (x,) = L(IZ,F), then (x;) = L[V, F], .

iii. If x € m(X), then (x;) is IZ -convergentifand only if (x;) = L[V, F],.

Proof. (i) Let e > 0 and (x;) = L[V,*, F],. Then we can write

n

PN AR LD W A (LN R

=1
Pl sy )] )22

>eP|{j < n:fk(|Ak(xU,-(m)) —L|) = ¢}| = eP.max,|{j < n: fk(|Ak(xgj(m)) —L|) =€},

and

< 1<j<nfi(|A(epiom) —L| ) = S
ka(|Ak(xgk(m)) ~L[") 2 e”.mame < el (i) = L) 2 €] =eP. 2
=1

n n

S,

for every m=1,2,.... This implies lim : =0andso (x;) - L2 F).

n-oo

(i) Suppose that x € m(X) and (x;) — L(I2,F). Let e > 0. Since (x;) isbounded, (x;) implies that there exist
M>0 such that for each x € X,

fk(|Ak(xo-]'(m)) - L| )<M,

for all j and m. Then, we have
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1 n
> il AErgmy) — L")
j=1

[ e

| A )
\fk(|Ak(xa.j(m))—L| )ze
" Z fil(lACeoiemy) = LP))

fk(lAk(xaj(m))_Ll )<€

. max,|{1<j < n:fk(|Ak(ij(m)) —L|) =&}
=M. "

Sn
+ P < M.;+£p,

foreach X e X.

Hence, for each x € X we obtain

o1
lim —
n-on

D Fel(Aeepigm) = L") = 0,
k=1

uniformly in m.
(iii) This is immediate consequence of (i) and (ii).

Definition 2.7 A sequence x = (x;) is said to be A’ -invariant lacunary statistically convergent to L € X with

respect to a sequence of modulus functions, for each € > 0 and § > 0,
1 . :
{r € N:h_r |{k € Ir:fk(|Ak(Xak(m)) - L|) = €}| = 5} € I;, uniformly in m.

Definition 2.8. A sequence x = (xy) issaid to be strongly A’ -invariant lacunary convergentto L € X with respect

to a sequence of modulus functions, if, for each € > 0,

1
rE N:h—z fk(|Ak(xJk(m)) - L|) > ¢ ¢ € I, uniformly in m.
T

kel

We shall denote by S2,(I,F), N2, (I,F) the collections of all A’ -invariant lacunary statistically convergent and

strongly A’ —invariant lacunary convergent sequences, respectively.
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Theorem 2.8 Let A = (ay;) be an infinite matrix of complex numbers, 8 = {k.} be a lacunary sequence and F =

(f) be a sequence of modulus function in S.

i I x> LN (L F)) thenxy, — L (S25(1,F)).
ii. If x € m(X), the space of all bounded sequences of X and x, — L (Sg‘e a, F)) then x, > L(NZ (I, F)).

i.  S4,F) nmX) = NAJ,F) nmX).

Proof. (i) Let £ > 0and x, > L(NZ%(I,F)). Then we can write

P ACHCHSEY) ERD S A (A V)

kEL, kel
Pl (% ey )2 22

> e.|{k € L: fi(|Ax (k) — L]) = €}].

So for given & > 0,

1 1
h—r|{k € I fi(|A(tgkimy) — L)) 2 e} 2 6 & h—rz fie(|A(x gk my) — L]) 2 €.6,

kel

kel

1 1
{r € N:h—|{k € I fi(| Ak (gremy) — L|) 2 €} = 5} c {r € N:h—z fie(|Ax(xgkmy) — L|) = &. 5}.
Since xy — L(Ng“e (1, F)), the set on the right-hand side belongs to I, and so it follows that x; — L (5;‘9 ({1, F)).
(ii) Suppose that x € m(X) and x;, — L (5;‘6 a{, F)).
Then we can assume that
fie(|Ax Cegegmy) = L) < M

for each x € X and all k. Given ¢ > 0, we get
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o D FellAurr) ~ L)

kely

_hirl/ ; Fie(|Ar (g my) = L)
\fk( .

|Ak(xa_k(m))—L|)2£

M
+ > fiel A (xokm) = L) | < - [k € b fi(lAk(xorom) = LI) 2 €] +&.

kel,
fk(|Ak(xak(m))_L|)<g

Note that
1 €
A(e) = {r EN: A |{k € Ir:fk(|Ak(xJk(m)) —L)=¢}| = M}

belongs to I,.. If 7 € (A(¢)) then

1
EZ Fel( Ak (X prgmy) = L]) < 2.

kel

Hence

1
{r € N:h—z fk(|Ak(xak(m)) L)) = 28} c A(e)

T kel

and so belongs to I,. This shows that xj — L(N(fg (1, F)). This completes the proof. (iii) This is an immediate

consequence of (i) and (ii).

Definition 2.9 The sequence (x;,) is A’ —invariant statistically convergent to L if for each & > 0, foreach x € X
and§ >0,

fne N:%Hk < il Ae(grin) — L) = €} = 5}
belongs to I,. (denoted by x;, - L(S(4,F)) ).
Theorem 2.9 If 8 = {k,.} be a lacunary sequence with lim inf, g, > 1, then
xe = L(SULF)) & 2 L(S&4ULF))

Proof. Suppose first that lim inf, g, > 1, then there exists a @ > 0 such that g, = 1 + a for sufficiently large r,
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which implies that 2= > %
ky 1+a
If x, - L(S(I;;‘,F)), then for every € > 0, for each x € X and for sufficiently large r, we have

1 1
o e = e fi(| A Oy ) = L) 2 e}l 2 [k € b fi(J A Cogim ) = L) 2 e

a 1
1+ah,

v

|V € B fie(l Ak (xokmy) = L]) = €}

Then forany & > 0, we get

fr e ne[fk € b ful|Au(rgen) — L) = €} = 6}

1 Sa
c{re N e = e 1A Ceny) — 2D 2 ] 2 15 |

belongs to 1. This completes the proof.

For the next result we assume that the lacunary sequence 6 satisfies the condition that for any set C € F(1,),
U{n: k_,<n<k,reCleF(U,.
Theorem 2.10 If 6 = {k,} be a lacunary sequence with lim sup,. q, < oo, then

X, > L (S,;*g a F)) B x - L(SUA,F)).

Proof. If lim sup, q, < co then without any loss of generality we can assume that there existsa 0 < M < oo such

that g, < M forall r > 1.

Suppose that x, — L (S;,“g ({, F)) and for ¢, 8,8, > 0 define the sets

1
¢ = {r e N [{k € b fulAn (i) — L) = )] < 8}

and

1
7= {n e N |k < (|4 Crpem) - L) 2 2} < 8.}

It is obvious from our assumption that C € F(I,), the filter associated with the ideal I,. Further observe that
1
K = |k € b fullAuxorgn) = L) 2 2] < 8
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forall j € C.Let n € N besuch that k,_; <n < k, for some r € C.

Now we have

1 1
o e = e fi(jAcCeoem) = L) 2 el < [k < ks fu(l Ak (rgieemy ) = L) 2 €}

1 1
0 € 1R Ctp) = L) 2 4 [ € el ) 1) 2 2

1
+ +k—1 |{k E [r:fk(|Ak(xo_k(m)) - L|) 2 €}|
r—

- 2 L e Asnn) ~ 1) 2 )
k, —k; 1
2k 1h_|{k612fk(|Ak(xa'k(m))_L|) 2€}|+"‘
r—1 2
ky—k._; 1
+——= —|{k € Lt fi (|4 (xpremy) — L]) = £}
ke—y  hy
_ kl k2 B kl kr B kr—l kr
= kr_llKl + kr_l Ky + e+ T.Kr < {supjecl(j}.m < Mé.

Choosing 6; = %and in view of the fact that U{n: k,_; <n < k,,r € C} c T where C € F(I,).

It follows from our assumption on @ that the set T also belongs to F(I;) and this completes the proof of the

theorem. Combining Theorem 2.9 and Theorem 2.10 we have,

Theorem 2.11 If 6 = {k,} be a lacunary sequence with 1 < liminf,q, < limsup,q, < o, then
X, > L( A, F)) o x, - L(SUA F)).

Proof. This is an immediate consequence of Theorem 2.9 and Theorem 2.10.

Definition 2.10 The sequence x = (x;) is said to be strongly Cesaro I, -summable to L with respect to a sequence

of modulus functions, if for each £ > 0,
1 n
{n € N;z fk(|Ak(xa.k(m)) - L|) 2 &
k=1

belongs to I,. (denoted by (x;) - L[CAU,, F)]).

Definition 2.11 The sequence x = (x;) is said to be strongly A, -invariant convergent to L with respect to a

sequence of modulus functions, if for each € > 0,
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MN—Z&W@%QHPS

kelp
belongs to I, where I, = [n — A,, + 1,n]. (denoted by (x;) - L (V,{‘(IU, F)).
Theorem 2.12 If (x) - L (Vf(lg, F)) isthen (x) = L[C{(,, F)]).

Proof Assume that (x,) — L (V{‘(IU,F)) and € > 0. Then,

ka(lAk(x com) — L) == ka(mk(x ) =D+ 3 AllAtge) ~ L)
%Z (14 (om) = L|)+—ka(|Ak(x com) — L)

;z (14 () ~ L)

and so,

{nEN ka |Ak(x k(m)) L|) >g}c n€N: —ka |Ak(x k(m)) LD 2; €l,.

kel
Hence (xy) - L[C{ (I, F)]).

Definition 2.12 The sequence x = (x) issaid to be I, — A statistically convergent to L with respect to a sequence

of modulus functions, if for each ¢ > 0, for each 6 > 0,
1
fn e N:— [k € by (|44 Crphmy) — L) = ] = 0]
n
belongs to I,,. (denoted by (x;) — L (Sf(la, F)).

Theorem 2.13 Let A= (4,) and I, is an admissible ideal in N. If (xk)—>L(V{‘(IU, F)), then (x) —

L (Sf(la, F)).

Proof Assume that (x,) - L (V{‘ I, F)) and & > 0. Then,
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D AllaCere) =t = D llACeorn) ~ L)

k€I, keln
P[22
> e.|{k € I: fil(| A (X gk (my) = L]) = €}

and so,

1 1
e Z fie(| Ak (X gkmy) — L]) 2 P |{k € Ly: fie(|Ak (% my) — L]) = €}].

kel

Then forany 6 > 0,

1 1
fne N: - [(k € Lt () — L) 2 )] 2 o} {n € N:ZZ Fell Ak prmy) — L) = 85}.

kElp

Since right hand belongs to I, then left hand also belongs to I, and this completes the proof.

Theorem 2.14 Let A € A and I, is an admissible ideal in N. If (x;) isbounded and (x;) — L (S,{‘(IU, F)) then

(0~ L(V (1o, P)).
Proof Let (x,) isbounded sequence and (x;,) — L (S,{4 (I, F)). Then there is an M such that

fie(lAk(xgkemy) = L) < M,

for all k. Foreach ¢ > 0,

T 2 FelAx k) ~ L)

k€I,

1

== > lAlrem) — LD
An keTy,

fk(|Ak(xak(m))_L|)2€

1

= > flAerm) — LD
An kel,

fk(|Ak(xak(m))_L|)<€

< M.% |{k € Lt fe(l A (xrimy) = LI) = ;}| +§

Then,
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{n € N:%Z Fie(| Ak () = L]) = g} c {n € N:%Hk € In: fie (| 4k (X prepmy) — L]) = ;}| > %} €1,

kel,

Therefore (x,) = L (V;{*(IJ, F)).

Theorem 2.15 If liminf%” >0 then (x;) > L(S4(,, F)) implies (x;) - L (Sf(IU,F)).
Proof Assume that liminf%” >0 thereexistsa § > 0 such that%" > ¢ for sufficiently large n.

For given € > 0 we have,

1 1

E{k < 1 fi(|Ak (X)) — L]) 2 €} 2 E{k € Iy: fi(| Ak (X gie(my) — L) = €}
Therefore,

1 1
L < fil(JAk(egrem) = L) = e} 2 [k € I fi(Ai (i m)) = L]) 2 €}

Ay 1 1
> f.ZHk € In: fi (A (xpkemy) — L) 2 €}| 2 6.Z|{k € In: fie(|Ak (x5 my) — L) = €}

then for any n>0 we get
1 1
fn e N [(k € bt (|4 (rprmy) — L) = )] = ) € { € N [fle < i (1A G my) — L) = )] 2 ]
n
el,

and this completes the proof.
Theorem 2.16 If A = (1,)) € A be such that lim %" =1, then S{'(I,, F) c SA(l,, F).
n—-oo

Proof Let & > 0 be given. Since lim In 1, we can choose M € N such that ’ln—" —

n-oo

)
1| <5, for all n > m.

Now observe that, for £ > 0,
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1
e = nfie(JAk(Xprgm) = L) 2 €]

1 1
= e < n = A fie(|ArCeorimy) = LI) = e} + 2 [{k € It fi(|Ak(Xpmy) = L) 2 €]

n—A4,

1
<l € A Crgen) — L) 2 )

1) 1
< 1= (1=2)+ 2 |{k € b oA (o) — L) 2 &)

5§ 1
=5+ [k € I fi(|4k(xgremy) — L) 2 €}

for all n = m. Hence

fn € N[k < Al A (i) — 1) = €} = 8]

1 )
c {n € N:/1—|{k € In: fi(|Ak(x k) — L) = €}] = E} u{12,..,mh
n

If (x)is I, — A statistically convergent to L, then the set on the right hand side belongs to I, and so the set on

the left hand side also belongs to I,;. This shows that (x;) is I, -statistically convergentto L.
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