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Abstract 

In this paper, we introduce the notions of 𝐴𝐼 -invariant convergence, 𝐴𝐼
∗
-invariant convergence with respect to a 

sequence of modulus functions and establish some basic theorems. Furthermore, we give some properties of  𝐴𝐼𝜎 

-Cauchy sequence and  𝐴𝐼𝜎
∗

 -Cauchy sequence. We basically study some connections between 𝐴𝐼 -invariant 

statistical convergence and 𝐴𝐼 -invariant lacunary statistical convergence with respect to a sequence of modulus 

functions and between strongly 𝐴𝐼 -invariant convergence and 𝐴𝐼 -invariant lacunary statistical convergence with 

respect to a sequence of modulus functions. Also, we establish some inclusion relations between new concepts of 

𝐼𝜎 − λ statistically convergence and 𝐴𝐼 –invariant statistically convergence with respect to a sequence of modulus 

functions. 

Keywords: Lacunary invariant statistical convergence; Invariant statistical convergence; modulus function. 

1. Introduction   

The notion of statistical convergence of sequences of numbers was introduced by Fast [12]. Later on, statistical 

convergence turned out to be one of the most active areas of research in summability theory after the works of 

[15,29].  
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The concept of lacunary statistical convergence was defined by [16]. Also, they gave the relationships between the 

lacunary statistical convergence and the Cesàro summability. Freedman and his colleagues established the 

connection between the strongly Cesàro summable sequences space 𝜎1  and the strongly lacunary summable 

sequences space 𝑁𝜃 in their work [1] published in 1978. The idea of 𝜆-statistical convergence was introduced and 

studied by [20] as an extension of the  [𝑉, 𝜆] summability of Leindler [18]. The concept of I-convergence of real 

sequences is a generalization of statistical convergence which is based on the structure of the ideal I of subsets of 

the set of natural numbers. P. Kostyrko and his colleagues [26] introduced the concept of   I-convergence of 

sequences in a metric space and studied some properties of this convergence. Several authors including 

[24,25,22,5], and some authors have studied invariant convergent sequences. Nuray and his colleagues [10], 

defined the concepts of 𝜎-uniform density of subsets A of the set ℕ, 𝐼𝜎-convergence and investigated relationships 

between 𝐼𝜎-convergence and invariant convergence also 𝐼𝜎-convergence and [𝑉𝜎]𝑝 -convergence. The concept of 

strongly 𝜎-convergence was defined by [21].  Reference [7] introduced the concepts of 𝜎-statistical convergence 

and lacunary 𝜎-statistical convergence and gave some inclusion relations. Recently, the concept of strongly 𝜎-

convergence was generalized by [5]. Reference [30] investigated lacunary I-invariant convergence and lacunary I-

invariant Cauchy sequence of real numbers. The notion of a modulus function was introduced by Nakano [11]. We 

recall that a modulus f is a function from  [0,∞)  to  [0,∞) such that (i) 𝑓(𝑥) = 0  if and only if 𝑥 = 0,  (ii) 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for 𝑥, 𝑦 ≥ 0, (iii) f   is increasing and (iv) f  is continuous from the right at 0. It follows 

that f must be continuous on [0,∞). Connor [17,28,14,3,27,31] used a modulus function to construct sequence 

spaces. Now let 𝒮 be the space of sequence of modulus function  𝐹 = (𝑓𝑘)  such that lim
𝑥→0+

𝑠𝑢𝑝𝑘𝑓𝑘(𝑥) = 0 . 

Throughout the paper we take  𝐴 = (𝑎𝑘𝑖)  as an infinite matrix of complex numbers and  the set of all modulus 

functions determined by F and it will be denoted by  𝐹 = (𝑓𝑘) ∈ 𝒮  for every  𝑘 ∈ ℕ. First we recall some of the 

basic concepts which we will be used in this paper. A number sequence 𝑥 = (𝑥𝑘)  is said to be statistically 

convergent to the number L if for every 𝜀 > 0,    

lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝐿| ≥ 𝜀}| = 0. 

In this case we write 𝑠𝑡 − 𝑙𝑖𝑚𝑥𝑘 = 𝐿. By a lacunary sequence we mean an increasing integer sequence 𝜃 = {𝑘𝑟} 

such that 𝑘0 = 0 and  ℎ𝑟 = 𝑘𝑟 − 𝑘𝑟−1 → ∞ as 𝑟 → ∞.  Throughout this paper the intervals determined by 𝜃 will 

be denoted by 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟]. 

A sequence 𝑥 = (𝑥𝑘) is said to be lacunary statistically convergent to the number L if for every 𝜀 > 0, 

lim
𝑟→∞

1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: |𝑥𝑘 − 𝐿| ≥ 𝜀}| = 0. 

In this case we write 𝑆𝜃 − 𝑙𝑖𝑚𝑥𝑘 = 𝐿  or 𝑥𝑘 → 𝐿(𝑆𝜃). The strongly lacunary summable sequences space 𝑁𝜃, which 

is defined by 

𝑁𝜃 = {(𝑥𝑘): lim
𝑟→∞

1

ℎ𝑟
∑|𝑥𝑘 − 𝐿| = 0

𝑘∈𝐼𝑟

}. 
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Let 𝜆 = (𝜆𝑛) be a non-decreasing sequence of positive real numbers tending to infinity such that  𝜆1 = 1 and 

𝜆𝑛+1 ≤ 𝜆𝑛 + 1.   

A sequence  𝑥 = (𝑥𝑘) is said to be 𝜆-statistically convergent or 𝑆𝜆-convergent to L if for every 𝜀 > 0,   

lim
𝑛→∞

1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: |𝑥𝑘 − 𝐿| ≥ 𝜀}| = 0, 

where  𝐼𝑛 = [𝑛 − 𝜆𝑛 + 1, 𝑛]  for n=1,2,…. 

The generalized de la Valee-Pousin mean is defined by 

𝑡𝑛(𝑥) =
1

𝜆𝑛
∑ 𝑥𝑘
𝑘∈𝐼𝑛

 

where  𝐼𝑛 = [𝑛 − 𝜆𝑛 + 1, 𝑛]. 

A sequence 𝑥 = (𝑥𝑘)  is said to be (𝑉, 𝜆)-summable to a number L if lim
𝑛→∞

𝑡𝑛(𝑥) = 𝐿. If 𝜆𝑛 = 𝑛, then  (𝑉, 𝜆)- 

summability reduces to  (𝐶, 1)-summability.  

By an ideal on a set X we mean a non-empty family of subsets of X closed under taking finite unions and subsets 

of its elements. In other words, a non-empty set  𝐼 ⊂ 2ℕ is called an ideal on ℕ if;  

(i) For each 𝐴, 𝐵 ∈ 𝐼 we have 𝐴 ∪ 𝐵 ∈ 𝐼,  

(ii) For each 𝐴 ∈ 𝐼 and each AB we have 𝐵 ∈ 𝐼.   

If ℕ ∉ 𝐼 then we say that this ideal is a proper ideal. Similarly an ideal is proper and also contains all finite subsets 

then we say that this ideal is admissible. Similarly, a non-empty set  ℱ ⊂ 2ℕ  is called a filter on ℕ if; 

(i) For each  𝐴, 𝐵 ∈ ℱ we have 𝐴 ∩ 𝐵 ∈ ℱ,  

(ii) (ii) For each  𝐴 ∈ ℱ  and each BA we have 𝐵 ∈ ℱ.    

Proposition 1.1. If I is a non-trivial ideal in ℕ, then the family of sets 

ℱ(𝐼) = {𝑀 ⊂ ℕ: (∃𝐴 ∈ 𝐼), (𝑀 = 𝑋 ∖ 𝐴)} 

is a filter in ℕ and it is called the filter associated with the ideal. Filter is a dual notion of ideal and generally we 

will use ideals in our proofs but if the notion is more familiar for filters, we will use the notion of filter. Let 𝑥 =

(𝑥𝑘) be a real sequence. This sequence is said to be I-convergent to 𝐿 ∈ ℝ if for each 𝜀 > 0 the set 

𝐴𝜀 = {𝑘 ∈ ℕ: |𝑥𝑘 − 𝐿| ≥ 𝜀} 
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belongs to I. In this definition the number L is I-limit of the 𝑥. An admissible ideal  𝐼 ⊂ 2ℕ  is said to have the 

property (AP) if for any sequence {𝐴1, 𝐴2, . . }  of mutually disjoint sets of I, there is sequence {𝐵1, 𝐵2, … } of sets 

such that each symmetric difference 𝐴𝑖∆𝐵𝑖  (𝑖 = 1,2, … ) is finite and ⋃ 𝐵𝑖
∞
𝑖=1 ∈ 𝐼. Let 𝜎 be a one-to-one mapping 

of the set of positive integers into itself such that  𝜎𝑚(𝑛) = (𝜎𝑚−1(𝑛)),   𝑚 = 1,2, … . A continuous linear 

functional on 𝑙∞, the space of real bounded sequences, is said to be an invariant mean or a 𝜎 mean, if and only if, 

(i)  ϕ(𝑥) ≥ 0 , for all sequences 𝑥 = (𝑥𝑛)  with 𝑥𝑛 ≥ 0  for all n; (ii)  ϕ(𝑒) = 1 , where e=(1,1,1,…); (iii) 

ϕ(𝑥𝜎(𝑛)) = ϕ(𝑥) for all  𝑥 ∈ 𝑙∞ . The mapping ϕ are assumed to be one-to-one such that  𝜎𝑚(𝑛) ≠ 𝑛 for all 

positive integers n and m, where  𝜎𝑚(𝑛) denotes the m.th iterate of the mapping 𝜎 at n.  Thus, ϕ extends the limit 

functional on c, the space of convergent sequences, in the sense that ϕ(𝑥) = 𝑙𝑖𝑚𝑥, for all 𝑥 ∈ 𝑐. In case 𝜎 is 

translation mapping 𝜎(𝑛) = 𝑛 + 1, the 𝜎 mean is often called a Banach limit and  𝑉𝜎  , the set of bounded 

sequences all of whose invariant means are equal, is the set of almost convergent sequences. It can be shown that 

𝑉𝜎 = {𝑥 = (𝑥𝑛) ∈ 𝑙∞: lim
𝑚→∞

1

𝑚
∑𝑥𝜎𝑘(𝑚)

𝑚

𝑘=1

= 𝐿} , uniformly in 𝑚. 

A bounded sequence )( kxx   is said to be strongly 𝜎 -convergent to L if 

lim
𝑛→∞

1

𝑛
∑|𝑥𝜎𝑘(𝑚) − 𝐿| = 0,

𝑛−1

𝑘=0

 uniformly in 𝑚. 

In this case we write  𝑥𝑘 → 𝐿[𝑉𝜎]. By [𝑉𝜎], we denote the set of all strongly 𝜎 -convergent sequences. 

A sequence )( kxx   is 𝜎-statistically convergent to L if for every 𝜀 > 0, 

lim
𝑚→∞

1

𝑚
|𝑘 ≤ 𝑚: |𝑥𝜎𝑘(𝑛) − 𝐿| ≥ 𝜀| , uniformly in 𝑛. 

In this case, we write  𝑆𝜎 − 𝑙𝑖𝑚𝑥 = 𝐿 or 𝑥𝑘 → 𝐿(𝑆𝜎). 

Nuray and his colleagues [10]  introduced the concepts of 𝜎 -uniform density and  𝐼𝜎  -convergence. 

Let  𝐴 ⊂ ℕ and 

𝑠𝑛 = min
𝑚
|𝐴 ∩ {𝜎(𝑚), 𝜎2(𝑚), … , 𝜎𝑛(𝑚)}| 

and 

𝑆𝑛 = max
𝑚
|𝐴 ∩ {𝜎(𝑚), 𝜎2(𝑚), … , 𝜎𝑛(𝑚)}|. 

If the following limits exists 
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𝑉(𝐴) = lim
𝑛→∞

𝑠𝑛
𝑛
, 𝑉(𝐴) = lim

𝑛→∞

𝑆𝑛
𝑛
  

then they are called a lower and an upper 𝜎-uniform density of the set A, respectively. If 𝑉(𝐴) = 𝑉(𝐴), then   

𝑉(𝐴) =  𝑉(𝐴) = 𝑉(𝐴)  is called the 𝜎 -uniform density of  A. 

Denote by  𝐼𝜎   the class of all  𝐴 ⊂ ℕ  with 𝑉(𝐴) = 0.  

A sequence )( kxx  is 𝐼𝜎- convergent to the number L if for every 𝜀 > 0, 

𝐴𝜀 = {𝑘: |𝑥𝑘 − 𝐿| ≥ 𝜀} ∈ 𝐼𝜎 , 

that is  𝑉(𝐴𝜀) = 0.  In this case, we write  𝐼𝜎 − 𝑙𝑖𝑚𝑥 = 𝐿. 

Let 𝐴 = (𝑎𝑘𝑖) be an infinite matrix of complex numbers. We write 𝐴𝑥 = (𝐴𝑘(𝑥)),  if   

𝐴𝑘(𝑥) = ∑ 𝑎𝑘𝑖𝑥𝑘
∞
𝑖=1  converges for each k. 

In [19], the notion of 𝐴𝐼 − [𝑉, 𝜆] summability and  𝐴𝐼 − 𝜆 statistical convergence with respect to a sequence of 

modulus functions were introduced and some connections between  𝐴𝐼 − 𝜆  statistical convergence and  𝐴𝐼  -

statistically convergence were studied. 

2. Main Results   

In this section, we will give some new concepts, give the relationship between them and establish some basic 

theorems.  

Definition 2.1 The sequence (𝑥𝑘) is said to be 𝐴𝐼-invariant convergent to L with respect to a sequence of modulus 

functions if for every 𝜀 > 0 the set, 

𝐵(𝜀, 𝑥) = {𝑘: 𝑓𝑘(|𝐴𝑘(𝑥) − 𝐿|) ≥ 𝜀} 

belongs to 𝐼𝜎 . In this case, we write 𝑥𝑘 → 𝐿(𝐼𝜎
𝐴, 𝐹).  

Definition 2.2 The sequence (𝑥𝑘)  is said to be invariant convergent to L with respect to a sequence of modulus 

functions if 

lim
𝑛→∞

1

𝑛
∑𝑓𝑘 (𝐴𝑘(𝑥𝜎𝑘(𝑚)))

𝑛

𝑘=1

= 𝐿, 

uniformly in  m. In this case, we write (𝑥𝑘) → 𝐿(𝑉𝜎
𝐴, 𝐹).  

Theorem 2.1 Let  (𝑥𝑘) is bounded sequence. If (𝑥𝑘) is 𝐴𝐼 -invariant convergent to L with respect to a sequence of 

modulus functions, then (𝑥𝑘) is invariant convergent to L with respect to a sequence of modulus functions.  
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Proof Let  𝑚, 𝑛 ∈ ℕ  be arbitrary and every 𝜀 > 0. For each  𝑥 ∈ 𝑋, we estimate 

𝑡(𝑚, 𝑛, 𝑥) ≔ |
𝑓𝑘 (𝐴𝑘(𝑥𝜎(𝑚))) + 𝑓𝑘 (𝐴𝑘(𝑥𝜎2(𝑚))) + ⋯+ 𝑓𝑘 (𝐴𝑘(𝑥𝜎𝑛(𝑚)))

𝑛
− 𝐿|. 

Then, for each  𝑥 ∈ 𝑋  we have 𝑡(𝑚, 𝑛, 𝑥) ≤ 𝑡1(𝑚, 𝑛, 𝑥) + 𝑡2(𝑚, 𝑛, 𝑥), where 

𝑡1(𝑚, 𝑛, 𝑥): =
1

𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| )

𝑛

𝑘,𝑗=1

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)
)−𝐿| )≥𝜀

 

and 

𝑡2(𝑚, 𝑛, 𝑥): =
1

𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ).

𝑛

𝑘,𝑗=1

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)
)−𝐿| )<𝜀

 

Therefore, we have 𝑡2(𝑚, 𝑛, 𝑥) < 𝜀, for each  𝑥 ∈ 𝑋  and for every  m=1,2,… . The boundedness of  (𝑥𝑘) is implies 

that there exist M>0 such that for each 𝑥 ∈ 𝑋, 

𝑓𝑘 (|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ≤ 𝑀, (𝑗 = 1,2, … ;𝑚 = 1,2, … )), 

for all  𝑘 ∈ ℕ. This implies that 

𝑡1(𝑚, 𝑛, 𝑥) ≤
𝑀

𝑛
|{1 < 𝑗 < 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ) ≥ 𝜀}|

≤ 𝑀.
𝑚𝑎𝑥𝑚|{1 < 𝑗 < 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ) ≥ 𝜀}|

𝑛
= 𝑀

𝑆𝑛
𝑛
. 

Hence,  (𝑥𝑘)  is invariant convergent to L with respect to a sequence of modulus functions. 

Definition 2.3 A sequence  𝑥 = (𝑥𝑘)    is said to be  𝐴𝐼
∗
-invariant convergent to  𝐿 ∈ 𝑋  with respect to a sequence 

of modulus functions, if there exists a set 𝑀 = {𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘 < ⋯ } ∈ ℱ(𝐼𝜎)  such that 

lim
𝑘→∞

𝑓𝑘 (𝐴𝑘(𝑥𝑚𝑘)) = 𝐿. 

In this case, we write 𝑥𝑘 → 𝐿(𝐼𝜎
∗𝐴, 𝐹). 
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Theorem 2.2 If a sequence  x = (xk) is 𝐴𝐼
∗
-invariant convergent to L, then this sequence is 𝐴𝐼-invariant convergent 

to L with respect to a sequence of modulus functions.  

Proof. By assumption, there exists a set 𝐻 ∈ 𝐼𝜎 such that for 𝑀 = 𝑁 ∖ 𝐻 = {𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘 < ⋯ } ∈ ℱ(𝐼𝜎)  

we have 

lim
𝑘→∞

𝑓𝑘 (𝐴𝑘(𝑥𝑚𝑘)) = 𝐿,        (2.2.1) 

Let  𝜀 > 0.  By (2.2.1), there exists 𝑘0 ∈ ℕ  such that 

𝑓𝑘(|𝐴𝑘(𝑥𝑚𝑘) − 𝐿|) < 𝜀, 

for each  𝑘 > 𝑘0. Then, obviously 

{𝑘 ∈ ℕ: 𝑓𝑘|𝐴𝑘(𝑥) − 𝐿| ≥ 𝜀} ⊂ 𝐻 ∪ {𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘0}.              (2.2.2) 

Since 𝐼𝜎  is admissible, the set on the right-hand side of (2.2.2) belongs to 𝐼𝜎 .  So 𝑥 = (𝑥𝑘)  is 𝐴𝐼 -invariant 

convergent to L with respect to a sequence of modulus functions. 

Theorem 2.3 Let  𝐼𝜎   be an admissible ideal with property (AP).  If a sequence  x = (xk) is 𝐴𝐼-invariant convergent 

to L, then this sequence is 𝐴𝐼
∗
-invariant convergent to  L  with respect to a sequence of modulus functions. 

 Proof. Suppose that 𝐼𝜎  satisfies condition (AP). Let  x = (xk) is 𝐴𝐼 -invariant convergent to L.  Then  

{𝑘 ∈ ℕ: 𝑓𝑘(|𝐴𝑘(𝑥) − 𝐿|) ≥ 𝜀} ∈ 𝐼𝜎 . 

for each 𝜀 > 0.  Put 

𝐸1 = {𝑘 ∈ ℕ: 𝑓𝑘(|𝐴𝑘(𝑥) − 𝐿|) ≥ 1} 

and  

𝐸𝑛 = {𝑘 ∈ ℕ:
1

𝑛
≤ 𝑓𝑘(|𝐴𝑘(𝑥) − 𝐿|) <

1

𝑛 − 1
} 

for  𝑛 ≥ 2 and  𝑛 ∈ ℕ.  Obviously 𝐸𝑖 ∩ 𝐸𝑗 = ∅ for 𝑖 ≠ 𝑗. By condition (AP) there exists a sequence of sets  

{𝐹𝑛}𝑛∈ℕ  such that  𝐸𝑗∆𝐹𝑗  are finite sets for  𝑗 ∈ ℕ and  
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𝐹 =⋃𝐹𝑗 ∈ 𝐼𝜎 .

∞

𝑗=1

 

It is sufficient to prove that for  𝑀 = ℕ ∖ ℱ,𝑀 = {𝑚 = (𝑚𝑖):𝑚𝑖 < 𝑚𝑖+1, 𝑖 ∈ ℕ} ∈ ℱ(𝐼𝜎) we have 

lim
𝑘→∞

𝑓𝑘 (𝐴𝑘(𝑥𝑚𝑘)) = 𝐿, 𝑘 ∈ 𝑀.          (2.3.1) 

Let 𝜆>0. Choose  𝑛 ∈ ℕ such that  
1

𝑛+1
< 𝜆 . Then 

{𝑛 ∈ ℕ: 𝑓𝑘(|𝐴𝑘(𝑥) − 𝐿|) ≥ 𝜆} ⊂⋃𝐸𝑗

𝑘+1

𝑗=1

 

Since 𝐸𝑗∆𝐹𝑗,  j=1,2,…,n+1 are finite sets, there exists  𝑘0 ∈ ℕ such that  

(⋃𝐹𝑗

𝑘+1

𝑗=1

) ∩ {𝑘 ∈ ℕ: 𝑘 > 𝑘0} = (⋃𝐸𝑗

𝑘+1

𝑗=1

) ∩ {𝑘 ∈ ℕ: 𝑘 > 𝑘0}        (2.3.2) 

If  𝑘 > 𝑘0and 𝑘 ∉ 𝐹,  then  j

n

j

Fk
1

1





   and by  (2.3.2)  j

n

j

Ek
1

1





  .  

But then 𝑓𝑘(|𝐴𝑘(𝑥) − 𝐿|) <
1

𝑛+1
< 𝜆; so (2.3.1) holds and we have  lim

𝑘→∞
𝑓𝑘 (𝐴𝑘(𝑥𝑚𝑘)) = 𝐿. 

Now, we define the concepts of I-invariant Cauchy sequence and 𝐼∗-invariant Cauchy sequence of real numbers 

with respect to a sequence of modulus functions.  

Definition 2.4 Let 𝐼𝜎  be an admissible ideal in ℕ. A sequence (xk) is said to be  𝐼𝜎-Cauchy sequence if for each 𝜀 >

0, there exists a number  N = N(ε)  such that  

𝐴(𝑥, 𝜀) = {𝑘: |𝑓𝑘(𝐴𝑘(𝑥𝑘)) − 𝑓𝑘(𝐴𝑘(𝑥𝑁))| ≥ 𝜀} 

belongs to 𝐼𝜎 . 

Definition 2.5 Let 𝐼𝜎  be an admissible ideal in ℕ. A sequence (xk)  is said to be 𝐼𝜎
∗-Cauchy sequence if there exists 

a set  𝑀 = {𝑚 = (𝑚𝑖):𝑚𝑖 < 𝑚𝑖+1, 𝑖 ∈ ℕ} ∈ ℱ(𝐼𝜎), such that 

lim
𝑘,𝑝→∞

|𝑓𝑘 (𝐴𝑘(𝑥𝑚𝑘)) − 𝑓𝑘 (𝐴𝑘 (𝑥𝑚𝑝))| = 0. 

We give following theorems which show relationships between 𝐼𝜎 -convergence, 𝐼𝜎 -Cauchy sequence and 𝐼𝜎
∗ - 

Cauchy sequence.  

Theorem 2.4 If a sequence (xk) is 𝐼𝜎-convergent, then   (xk) is an 𝐼𝜎-Cauchy sequence.  

Theorem 2.5 If a sequence (xk) is  𝐼𝜎
∗  -Cauchy sequence, then  (xk) is 𝐼𝜎-Cauchy sequence. 
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Theorem 2.6 Let 𝐼𝜎  has property (AP). Then the concepts  𝐼𝜎
∗  -Cauchy sequence and 𝐼𝜎  -Cauchy sequence 

coincides.  

 

Definition 2.6 The sequence (xk) is said to be p-strongly invariant convergent to L with respect to a sequence of 

modulus functions, if for each 𝑥 ∈ 𝑋, 

lim
𝑛→∞

1

𝑛
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|

𝑝
)

𝑛

𝑘=1

= 0, 

uniformly in m, where 0<p<∞. In this case, we write (𝑥𝑘) → 𝐿[𝑉𝜎
𝐴, 𝐹]𝑝. 

Theorem 2.7 Let 𝐼𝜎  be an admissible ideal and 0<p<∞.  

i. If  (𝑥𝑘) → 𝐿[𝑉𝜎
𝐴, 𝐹]𝑝,  then (𝑥𝑘) → 𝐿(𝐼𝜎

𝐴, 𝐹). 

ii. If  𝑥 ∈ 𝑚(𝑋), the space of all bounded sequences of  X and  (𝑥𝑘) → 𝐿(𝐼𝜎
𝐴, 𝐹),  then  (𝑥𝑘) → 𝐿[𝑉𝜎

𝐴, 𝐹]𝑝 . 

iii. If  𝑥 ∈ 𝑚(𝑋), then (𝑥𝑘)  is  𝐼𝜎
𝐴 -convergent if and only if  (𝑥𝑘) → 𝐿[𝑉𝜎

𝐴, 𝐹]𝑝. 

Proof. (i) Let 𝜀 > 0 and (𝑥𝑘) → 𝐿[𝑉𝜎
𝐴, 𝐹]𝑝.  Then we can write 

∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|
𝑝
)

𝑛

𝑗=1

≥ ∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|
𝑝
)

𝑛

𝑗=1

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)
)−𝐿| )≥𝜀

≥ 𝜀𝑝. |{𝑗 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ) ≥ 𝜀}| ≥ 𝜀
𝑝.𝑚𝑎𝑥𝑚|{𝑗 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ) ≥ 𝜀}|, 

and 

∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|
𝑝
)

𝑛

𝑗=1

≥ 𝜀𝑝.
𝑚𝑎𝑥𝑚|{1 < 𝑗 < 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ) ≥ 𝜀}|

𝑛
= 𝜀𝑝.

𝑆𝑛
𝑛

 

for every  m=1,2,…. This implies lim
𝑛→∞

𝑆𝑛

𝑛
= 0 and so  (𝑥𝑘) → 𝐿(𝐼𝜎

𝐴, 𝐹).   

(ii) Suppose that  𝑥 ∈ 𝑚(𝑋) and (𝑥𝑘) → 𝐿(𝐼𝜎
𝐴, 𝐹).  Let 𝜀 > 0. Since (𝑥𝑘) is bounded,  (𝑥𝑘)  implies that there exist 

M>0 such that for each  𝑥 ∈ 𝑋,  

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ) ≤ 𝑀, 

for all j  and m. Then, we have 
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1

𝑛
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|

𝑝
)

𝑛

𝑗=1

=
1

𝑛

(

  
 

∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿|
𝑝
)

𝑛

𝑗=1

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)
)−𝐿| )≥𝜀

+ ∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿|
𝑝
)

𝑛

𝑗=1

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)
)−𝐿| )<𝜀 )

  
 

≤ 𝑀.
𝑚𝑎𝑥𝑚|{1 < 𝑗 < 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑗(𝑚)) − 𝐿| ) ≥ 𝜀}|

𝑛
+ 𝜀𝑝 < 𝑀.

𝑆𝑛
𝑛
+ 𝜀𝑝, 

for each  .Xx   

Hence, for each 𝑥 ∈ 𝑋 we obtain 

lim
𝑛→∞

1

𝑛
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|

𝑝
)

𝑛

𝑘=1

= 0,  

uniformly in m. 

 (iii) This is immediate consequence of (i) and (ii).  

Definition 2.7 A sequence  𝑥 = (𝑥𝑘)  is said to be  𝐴𝐼 -invariant lacunary statistically convergent to  L ∈ X  with 

respect to a sequence of modulus functions, for each  ε > 0 and  δ > 0,  

{𝑟 ∈ ℕ:
1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿} ∈ 𝐼𝜎 , uniformly in 𝑚. 

Definition 2.8. A sequence  x = (xk) is said to be strongly  𝐴𝐼 -invariant lacunary convergent to L ∈ X   with respect 

to a sequence of modulus functions, if, for each  ε > 0, 

{𝑟 ∈ ℕ:
1

ℎ𝑟
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀

𝑘∈𝐼𝑟

} ∈ 𝐼𝜎 , uniformly in 𝑚.  

We shall denote by  𝑆𝜎𝜃
𝐴 (𝐼, 𝐹) ,  𝑁𝜎𝜃

𝐴 (𝐼, 𝐹)  the collections of all  𝐴𝐼 -invariant lacunary statistically convergent and 

strongly  𝐴𝐼 –invariant lacunary convergent sequences, respectively.  
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Theorem 2.8 Let  A = (aki) be an infinite matrix of complex numbers,  θ = {kr} be a lacunary sequence and F =

(fk)  be a sequence of modulus function in .S  

i. If  xk → L(𝑁𝜎𝜃
𝐴 (𝐼, 𝐹))   then 𝑥𝑘 → 𝐿 (𝑆𝜎𝜃

𝐴 (𝐼, 𝐹)).  

ii. If  x ∈ m(X), the space of all bounded sequences of  X  and  𝑥𝑘 → 𝐿 (𝑆𝜎𝜃
𝐴 (𝐼, 𝐹))  then  xk → L(𝑁𝜎𝜃

𝐴 (𝐼, 𝐹)).  

iii. 𝑆𝜎𝜃
𝐴 (𝐼, 𝐹) ∩ 𝑚(𝑋) = 𝑁𝜎𝜃

𝐴 (𝐼, 𝐹) ∩ 𝑚(𝑋).  

Proof.  (i)  Let  𝜀 > 0 and  xk → L(𝑁𝜎𝜃
𝐴 (𝐼, 𝐹)).  Then we can write 

∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑟

≥ ∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)
𝑘∈𝐼𝑟

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚))−𝐿|)≥𝜀

≥ 𝜀. |{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|. 

  So for given  𝛿 > 0,   

1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿 ⤇

1

ℎ𝑟
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀

𝑘∈𝐼𝑟

. 𝛿, 

i.e. 

{𝑟 ∈ ℕ:
1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿} ⊂ {𝑟 ∈ ℕ:

1

ℎ𝑟
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀. 𝛿

𝑘∈𝐼𝑟

}. 

Since  xk → L(𝑁𝜎𝜃
𝐴 (𝐼, 𝐹)), the set on the right-hand side belongs to 𝐼𝜎  and so it follows that 𝑥𝑘 → 𝐿 (𝑆𝜎𝜃

𝐴 (𝐼, 𝐹)).  

(ii)  Suppose that  x ∈ m(X)  and  𝑥𝑘 → 𝐿 (𝑆𝜎𝜃
𝐴 (𝐼, 𝐹)).  

Then we can assume that  

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿| ) ≤ 𝑀 

for each  𝑥 ∈ 𝑋 and all k. Given  𝜀 > 0,  we get 
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1

ℎ𝑟
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑟

=
1

ℎ𝑟

(

  
 

∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)
𝑘∈𝐼𝑟

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚))−𝐿|)≥𝜀

+ ∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)
𝑘∈𝐼𝑟

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚))−𝐿|)<𝜀 )

  
 
≤
𝑀

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| + 𝜀. 

Note that 

𝐴(𝜀) = {𝑟 ∈ ℕ:
1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥

𝜀

𝑀
} 

belongs to 𝐼𝜎 . If  𝑟 ∈ (𝐴(𝜀))
𝑐
  then 

1

ℎ𝑟
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) < 2𝜀.

𝑘∈𝐼𝑟

 

Hence 

{𝑟 ∈ ℕ:
1

ℎ𝑟
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 2𝜀

𝑘∈𝐼𝑟

} ⊂ 𝐴(𝜀) 

and so belongs to  𝐼𝜎 . This shows that  xk → L(𝑁𝜎𝜃
𝐴 (𝐼, 𝐹)). This completes the proof. (iii)  This is an immediate 

consequence of (i) and (ii).  

Definition 2.9 The sequence (𝑥𝑘) is 𝐴𝐼 –invariant statistically convergent to L if for each  𝜀 > 0,  for each  𝑥 ∈ 𝑋 

and 𝛿 > 0,  

{𝑛 ∈ ℕ:
1

𝑛
|{𝑘 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿} 

belongs to 𝐼𝜎 .  (denoted by 𝑥𝑘 → 𝐿(𝑆(𝐼𝜎
𝐴, 𝐹)) ).  

 Theorem 2.9 If 𝜃 = {𝑘𝑟}  be a lacunary sequence with lim 𝑖𝑛𝑓𝑟 𝑞𝑟 > 1,  then  

 𝑥𝑘 → 𝐿(𝑆(𝐼𝜎
𝐴, 𝐹)) ⤇  𝑥𝑘 → 𝐿 (𝑆𝜎𝜃

𝐴 (𝐼, 𝐹)). 

Proof. Suppose first that  lim 𝑖𝑛𝑓𝑟 𝑞𝑟 > 1, then there exists a 𝛼 > 0 such that  𝑞𝑟 ≥ 1 + 𝛼  for sufficiently large r, 
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which implies that 
ℎ𝑟

𝑘𝑟
≥

𝛼

1+𝛼
. 

If   𝑥𝑘 → 𝐿(𝑆(𝐼𝜎
𝐴, 𝐹)),  then for every 𝜀 > 0,  for each  𝑥 ∈ 𝑋  and for sufficiently large r, we have 

1

𝑘𝑟
|{𝑘 ≤ 𝑘𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥

1

𝑘𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

≥
𝛼

1 + 𝛼
.
1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|; 

Then for any  𝛿 > 0, we get 

{𝑟 ∈ ℕ:
1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿}

⊆ {𝑟 ∈ ℕ:
1

𝑘𝑟
|{𝑘 ≤ 𝑘𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥

𝛿𝛼

1 + 𝛼
} 

belongs to  𝐼𝜎 .  This completes the proof.  

For the next result we assume that the lacunary sequence 𝜃 satisfies the condition that for any set  𝐶 ∈ ℱ(𝐼𝜎),  

⋃{𝑛: 𝑘𝑟−1 < 𝑛 ≤ 𝑘𝑟 , 𝑟 ∈ 𝐶} ∈ ℱ(𝐼𝜎). 

Theorem 2.10 If  θ = {kr}   be a lacunary sequence with lim 𝑠𝑢𝑝𝑟 𝑞𝑟 < ∞, then  

 𝑥𝑘 → 𝐿 (𝑆𝜎𝜃
𝐴 (𝐼, 𝐹)) ⤇  𝑥𝑘 → 𝐿(𝑆(𝐼𝜎

𝐴, 𝐹)). 

Proof. If  lim 𝑠𝑢𝑝𝑟 𝑞𝑟 < ∞  then without any loss of generality we can assume that there exists a 0 < 𝑀 < ∞ such 

that  𝑞𝑟 < 𝑀 for all  𝑟 ≥ 1.  

Suppose that   𝑥𝑘 → 𝐿 (𝑆𝜎𝜃
𝐴 (𝐼, 𝐹)) and for 𝜀, 𝛿, 𝛿1 > 0  define the sets 

𝐶 = {𝑟 ∈ ℕ:
1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| < 𝛿} 

and 

𝑇 = {𝑛 ∈ ℕ:
1

𝑛
|{𝑘 < 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| < 𝛿1}. 

It is obvious from our assumption that  𝐶 ∈ ℱ(𝐼𝜎), the filter associated with the ideal 𝐼𝜎 . Further observe that  

𝐾𝑗 =
1

ℎ𝑗
|{𝑘 ∈ 𝐼𝑗 : 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| < 𝛿 
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for all  𝑗 ∈ 𝐶. Let  𝑛 ∈ ℕ  be such that 𝑘𝑟−1 < 𝑛 ≤ 𝑘𝑟 for some  𝑟 ∈ 𝐶.  

Now we have 

1

𝑛
|{𝑘 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≤

1

𝑘𝑟−1
|{𝑘 ≤ 𝑘𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

=
1

𝑘𝑟−1
|{𝑘 ∈ 𝐼1: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| +

1

𝑘𝑟−1
|{𝑘 ∈ 𝐼2: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

+ ⋯+
1

𝑘𝑟−1
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

=
𝑘1
𝑘𝑟−1

.
1

ℎ1
|{𝑘 ∈ 𝐼1: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

+
𝑘2 − 𝑘1
𝑘𝑟−1

.
1

ℎ2
|{𝑘 ∈ 𝐼2: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| + ⋯

+
𝑘𝑟 − 𝑘𝑟−1
𝑘𝑟−1

.
1

ℎ𝑟
|{𝑘 ∈ 𝐼𝑟: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

=
𝑘1
𝑘𝑟−1

. 𝐾1 +
𝑘2 − 𝑘1
𝑘𝑟−1

. 𝐾2 +⋯+
𝑘𝑟 − 𝑘𝑟−1
𝑘𝑟−1

. 𝐾𝑟 ≤ {𝑠𝑢𝑝𝑗∈𝐶𝐾𝑗}.
𝑘𝑟
𝑘𝑟−1

< 𝑀𝛿. 

Choosing 𝛿1 =
𝛿

𝑀
 and in view of the fact that ⋃{𝑛: 𝑘𝑟−1 < 𝑛 ≤ 𝑘𝑟 , 𝑟 ∈ 𝐶} ⊂ 𝑇 where  𝐶 ∈ ℱ(𝐼𝜎).  

It follows from our assumption on 𝜃 that the set T also belongs to  ℱ(𝐼𝜎) and this completes the proof of the 

theorem. Combining Theorem 2.9 and Theorem 2.10 we have, 

 Theorem 2.11 If  𝜃 = {𝑘𝑟}  be a lacunary sequence with 1 < 𝑙𝑖𝑚𝑖𝑛𝑓𝑟𝑞𝑟 < 𝑙𝑖𝑚𝑠𝑢𝑝𝑟𝑞𝑟 < ∞, then  

 𝑥𝑘 → 𝐿 (𝑆𝜎𝜃
𝐴 (𝐼, 𝐹)) ⇔  𝑥𝑘 → 𝐿(𝑆(𝐼𝜎

𝐴, 𝐹)). 

 Proof. This is an immediate consequence of Theorem 2.9 and Theorem 2.10.  

Definition 2.10 The sequence 𝑥 = (𝑥𝑘)  is said to be strongly Cesàro 𝐼𝜎  -summable to L with respect to a sequence 

of modulus functions, if for each  𝜀 > 0,  

{𝑛 ∈ ℕ:
1

𝑛
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀

𝑛

𝑘=1

} 

belongs to 𝐼𝜎 . (denoted by (𝑥𝑘) → 𝐿[𝐶1
𝐴(𝐼𝜎 , 𝐹)]). 

Definition 2.11 The sequence 𝑥 = (𝑥𝑘)  is said to be strongly 𝜆𝐼  -invariant convergent to L with respect to a 

sequence of modulus functions, if for each  𝜀 > 0, 
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{𝑛 ∈ ℕ:
1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀

𝑘∈𝐼𝑛

} 

belongs to 𝐼𝜎 , where  𝐼𝑛 = [𝑛 − 𝜆𝑛 + 1, 𝑛]. (denoted by (𝑥𝑘) → 𝐿 (𝑉𝜆
𝐴(𝐼𝜎 , 𝐹)).  

Theorem 2.12 If  (xk) → L (Vλ
A(𝐼𝜎 , 𝐹))  is then  (𝑥𝑘) → 𝐿[𝐶1

𝐴(𝐼𝜎 , 𝐹)]). 

Proof Assume that  (xk) → L (Vλ
A(𝐼𝜎 , 𝐹))  and  𝜀 > 0.  Then, 

1

𝑛
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) =

𝑛

𝑘=1

1

𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) +

1

𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

𝑛−𝜆𝑛

𝑘=1

≤
1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) +

1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

𝑛−𝜆𝑛

𝑘=1

≤
2

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

 

and so,  

{𝑛 ∈ ℕ:
1

𝑛
∑𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑛

𝑘=1

≥ 𝜀} ⊆ {𝑛 ∈ ℕ:
1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

≥
𝜀

2
} ∈ 𝐼𝜎 . 

Hence  (𝑥𝑘) → 𝐿[𝐶1
𝐴(𝐼𝜎 , 𝐹)]).  

Definition 2.12 The sequence x = (xk)  is said to be  𝐼𝜎 − λ statistically convergent to L with respect to a sequence 

of modulus functions, if for each 𝜀 > 0, for each  𝛿 > 0, 

{𝑛 ∈ ℕ:
1

𝜆𝑛
|𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀| ≥ 𝛿} 

belongs to 𝐼𝜎 . (denoted by (𝑥𝑘) → 𝐿 (𝑆𝜆
𝐴(𝐼𝜎 , 𝐹)). 

Theorem 2.13 Let λ = (𝜆𝑛)  and 𝐼𝜎 is an admissible ideal in ℕ. If  (xk) → L (Vλ
A(Iσ, F)),  then (𝑥𝑘) →

𝐿 (𝑆𝜆
𝐴(𝐼𝜎 , 𝐹)).  

Proof Assume that  (xk) → L (Vλ
A(𝐼𝜎 , F)) and  𝜀 > 0. Then, 
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∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

≥ ∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)
𝑘∈𝐼𝑛

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚))−𝐿|)≥𝜀

≥ 𝜀. |{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| 

and so,  

1

𝜀. 𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

≥
1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|. 

Then for any 𝛿 > 0,  

{𝑛 ∈ ℕ:
1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿} ⊆ {𝑛 ∈ ℕ:

1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

≥ 𝜀𝛿}. 

Since right hand belongs to  𝐼𝜎   then left hand also belongs to  𝐼𝜎   and this completes the proof. 

Theorem 2.14 Let  λ ∈ ⋀   and  𝐼𝜎  is an admissible ideal in ℕ. If (𝑥𝑘)  is bounded and  (𝑥𝑘) → 𝐿 (𝑆𝜆
𝐴(𝐼𝜎 , 𝐹))  then  

(xk) → L (Vλ
A(Iσ, F)). 

Proof Let  (𝑥𝑘)  is bounded sequence and  (𝑥𝑘) → 𝐿 (𝑆𝜆
𝐴(𝐼𝜎 , 𝐹)).  Then there is an M such that  

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿| ) ≤ 𝑀, 

for all  k.  For each  𝜀 > 0, 

 

1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

=
1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)
𝑘∈𝐼𝑛

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚))−𝐿|)≥𝜀

+
1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)
𝑘∈𝐼𝑛

𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚))−𝐿|)<𝜀

≤ 𝑀.
1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥

𝜀

2
}| +

𝜀

2
 

Then,  
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{𝑛 ∈ ℕ:
1

𝜆𝑛
∑ 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|)

𝑘∈𝐼𝑛

≥ 𝜀} ⊆ {𝑛 ∈ ℕ:
1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥

𝜀

2
}| ≥

𝜀

2𝑀
} ∈ 𝐼𝜎 . 

Therefore  (xk) → L (Vλ
A(𝐼𝜎 , 𝐹)). 

Theorem 2.15 If 𝑙𝑖𝑚𝑖𝑛𝑓
𝜆𝑛

𝑛
> 0  then  (𝑥𝑘) → 𝐿(𝑆

𝐴(𝐼𝜎 , 𝐹))  implies  (𝑥𝑘) → 𝐿 (𝑆𝜆
𝐴(𝐼𝜎 , 𝐹)). 

Proof Assume that  𝑙𝑖𝑚𝑖𝑛𝑓
𝜆𝑛

𝑛
> 0    there exists a  𝛿 > 0 such that 

𝜆𝑛

𝑛
≥ 𝛿  for sufficiently large n.  

 For given  𝜀 > 0  we have, 

1

𝑛
{𝑘 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀} ⊇

1

𝑛
{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}. 

Therefore, 

1

𝑛
|{𝑘 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥

1

𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

≥
𝜆𝑛
𝑛
.
1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿.

1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| 

then for any 𝜂>0  we get 

{𝑛 ∈ ℕ:
1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝜂} ⊆ {𝑛 ∈ ℕ:

1

𝑛
|{𝑘 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝜂𝛿}

∈ 𝐼𝜎  

and this completes the proof.  

Theorem 2.16 If 𝜆 = (𝜆𝑛) ∈ ∆  be such that  lim
𝑛→∞

𝜆𝑛

𝑛
= 1,  then 𝑆𝜆

𝐴(𝐼𝜎 , 𝐹) ⊂ 𝑆
𝐴(𝐼𝜎 , 𝐹).  

Proof Let  𝛿 > 0 be given. Since   lim
𝑛→∞

𝜆𝑛

𝑛
= 1, we can choose 𝑀 ∈ ℕ   such that  |

𝜆𝑛

𝑛
− 1| <

𝛿

2
,  for all  𝑛 ≥ 𝑚.  

Now observe that, for  𝜀 > 0,  
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1

𝑛
|{𝑘 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

=
1

𝑛
|{𝑘 ≤ 𝑛 − 𝜆𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| +

1

𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

≤
𝑛 − 𝜆𝑛
𝑛

+
1

𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

≤ 1 − (1 −
𝛿

2
) +

1

𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|

=
𝛿

2
+
1

𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}|, 

for all  𝑛 ≥ 𝑚. Hence 

{𝑛 ∈ ℕ:
1

𝑛
|{𝑘 ≤ 𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥ 𝛿}

⊂ {𝑛 ∈ ℕ:
1

𝜆𝑛
|{𝑘 ∈ 𝐼𝑛: 𝑓𝑘(|𝐴𝑘(𝑥𝜎𝑘(𝑚)) − 𝐿|) ≥ 𝜀}| ≥

𝛿

2
} ∪ {1,2, … ,𝑚}. 

If  (𝑥𝑘) is  𝐼𝜎 − λ statistically convergent to L, then the set on the right hand side belongs to  𝐼𝜎  and so the set on 

the left hand side also belongs to  𝐼𝜎 . This shows that  (𝑥𝑘)  is  𝐼𝜎  -statistically convergent to  L.  
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