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Abstract 

In this paper we study weakly sign symmetric Wss P0-matrix specifying symmetric patterns of acyclic digraphs 

of 4 vertices where necessary and sufficient conditions for a digraphs to have weakly sign symmetric P0-matrix 

completion are stated and discussed. It is shown that all symmetric patterns specifying acyclic digraphs of order 

4 with without an arc, 2 arcs and regular digraphs with 4 arcs have zero completion to weakly sign symmetric 

P0-matrix. 

Keywords: Acyclic digraphs; matrix completion; Partial matrix; Principal minor; symmetric patterns; weakly 

sign symmetric P0-matrix; Zero completion. 

1. Introduction  

In this section we define the basic concepts in linear algebra, group theory and graph theory that are commonly 

used and are fundamental in matrix completion problem. 
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Definition 1.1 A square matrix A  is a matrix that has n  rows and n  columns i.e. a nn×  matrix.  Principal 

sub-matrix ( )αA  is obtained from nn×  matrix A  by deleting all rows and columns not inα , where

{ }n,...,2,1∈α . A principal minor of A  is the determinant of a principal sub-matrix of A  [1].  A 0P -

matrix A is a matrix in which every principal minor of the matrix A  is nonnegative.  A 0P -matrix A is called a 

weakly sign symmetric 0P  -matrix if 0≥jiijaa   for all i and j . A partial matrix is a matrix in which some 

entries are specified while others are free to be chosen (from a certain set). A partial matrix is a partial weakly 

sign symmetric 0P -matrix if determinants of all fully specified principal sub-matrices are nonnegative and 

0≥jiijaa   for all specified entries [1, 2].  

Definition 1.2 A graph ( )GG EVG ,=  is a finite non-empty set of positive integers GV , whose members are 

called vertices and a set of GE (unordered) pairs { }vu,  of vertices called edges of G. Given a graph 

( )GG EVG ,=  then a graph ( )HH EVH ,=  is a sub-graph of graph G  if HV  is a subset of GV  and HE  is a 

subset of GE . A graph whose edge-set is empty is a null graph [3]. A digraph ( )DD EVD ,=  is a graph G  

with ordered pairs ( )vu,   of vertices and directed edge/arc where u the initial vertex is and v  is the terminal 

vertex. A digraph ( )HH EVH ,= ) is a sub-digraph of digraph D if DH VV ⊆  and DH EE ⊆ . The Order of 

a digraph D  denoted D  is the number of vertices of D . A digraph is complete if it includes all possible arcs 

between its vertices [3, 4]. 

Definition 1.3 A Path P  in a digraph D  is a sub-digraph of D  whose distinct vertices and arcs can be written 

in an alternating sequence. A closed path is called a cycle. A digraph that contains at least one directed cycle is 

known as a cycle digraph while an acyclic digraph if it contains no directed cycles. A degree of a vertex is the 

number of edges with that vertex as an end-point. A graph is said to be a regular graph if all its vertices have 

same degree [3]. 

Definition 1.4 A digraph ( )DD EVD ,=  is isomorphic to the digraph ( )11 ,1
DD EVD =  if there is bijective 

homomorphism 1: DD VV →φ  which is one-to-one and ( ) DEvu ∈,  if and only if ( ) ( )( ) 1, DEvu ∈θφ . Two 

digraphs are said to be isomorphic if their underlying graphs are isomorphic and the direction of the 

corresponding arcs are same [4].  

Definition 1.5 A pattern Q  for nn×  partial matrices is a list of positions of nn×  matrix that is subset of 

{ }n,...,2,1  that includes all diagonal positions. A symmetric pattern is a pattern with the property that ( )ji,  

is in the pattern if and only if ( )ij,   is in the pattern while asymmetric pattern is a pattern with the property 

that ( )ji,  is in the pattern then ( )ij,  is not in the pattern.  A partial matrix specifies a pattern if its specified 

entries lie exactly in those positions listed in the pattern [4].  
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Definition 1.6 A completion of a partial matrix is a specific choice of values for the unspecified entries so that 

the completed matrix has desired type [5]. Completion of a partial matrix is called zero completion if all the 

unspecified entries in the partial matrix are equated to zeros. A pattern has weakly sign symmetric 0P -matrix 

completion if every partial weakly sign symmetric 0P -matrix that specifies the pattern can be completed to a 

weakly sign symmetric 0P -matrix [2]. 

Definition 1.6 A pattern Q  is permutation similar to a pattern R  if there is a permutation φ  of { }n,...,2,1   

such that ( ) ( )( ) ( ){ }QjijiR ∈= ,:,φφ . Relabeling the vertices of a digraph diagram, which performs a 

digraph isomorphism, corresponds to performing a permutation similarity on the pattern [6]. 

Lemma 1.7[1] weakly sign symmetric 0P -matrices are closed under permutation similarity  

Since the class of weakly sign symmetric 0P -matrices is closed under permutation similarity, we are free to 

relabel digraphs as desired, this implies that the two isomorphic digraphs will have same completion since the 

determinant is not affected by a permutation similarity. 

2. Acyclic digraphs of order 4 

In this section, different symmetric patterns for acyclic non-isomorphic digraphs of order 4 are analyzed. 

Throughout this section we will consider id  as diagonal entries, ija  as specified entry and ijx  as unspecified 

entry as entries of a partial matrix.  We work out the principal minors and apply zero completion i.e. assign all 

the unspecified entries ijx s to zero and determine if it can be completed to a weakly sign symmetric 0P -matrix. 

2.1 Digraph D of order 4 without an arc 

Case 2.1.1: Consider a symmetric pattern ( ) ( ) ( ) ( ){ }4,4,3,3,2,2,1,1=Q  of a digraph of 4 vertices without an 

arc given by 

 

Figure 1: Digraph D  of order 4 without an arc 
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 The matrix that specifies the above digraph D  is 



















=

4434241

3433231

2423221

1413121

dxxx
xdxx
xxdx
xxxd

A  

By definition of partial 0 PWss -matrix 0,0,0,0 4321 ≥≥≥≥ dddd  

Determinants of Principal Sub-matrices 

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]41324231234134331242343322114

41324231244134314242243242113

4134331244134314234334432112

42343322442343242343344321

4234332244234324234334432

4134331144134314134334431

4124221144124214124224421

3123221133123213123223321

433443

422442

322332

411441

311331

211221

4

3

2

1

       
       
        
det

4,3,2det
4,3,1det
4,2,1det
3,2,1det

4,3det
4,2det
3,2det
4,1det
3,1det
2,1det

4det
3det
2det
1det

xxxxxxdxxdxdxxxx
xxxxxxxxddxxxdxx
xdxxxxxxdxxxddxx
xdxxxxxxdxxxddddA

xdxxxxxxdxxxddd
xdxxxxxxdxxxddd
xdxxxxxxdxxxddd

xdxxxxxxdxxxddd
xxdd
xxdd
xxdd
xxdd
xxdd
xxdd

d
d
d
d

−+−−−−
−+−−−+
−+−−−−
−+−−−=
−+−−−=

−+−−−=
−+−−−=
−+−−−=

−=
−=
−=
−=
−=
−=

=
=
=
=

 

Zero Completion 

Setting all unspecified entries of A  to zero 

0434241343231242321141312 ============ xxxxxxxxxxxx , gives 

( ) ( ) ( ) ( ) 04det     ,03det    ,02det     ,01det 4321 ≥=≥=≥=≥= dddd  

( ) ( ) ( )
( ) ( ) ( ) 04,3det     ,04,2det    ,03,2det

04,1det       ,03,1det     ,02,1det

434232

413121

≥=≥=≥=
≥=≥=≥=

dddddd
dddddd
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( ) ( )
( ) ( )

0det
    ,04,3,2det    ,04,3,1det

,04,2,1det    ,03,2,1det

4321

432431

421321

≥=
≥=≥=
≥=≥=

ddddA
dddddd
dddddd

 

Since all the determinants nonnegative then the partial matrix is completed to 0 PWss -matrix. Hence it has a 

zero completion into a 0 PWss -matrix. 

2.2 Digraph D of order 4 and 2 arcs 

Case 2.2.1: Consider a symmetric pattern ( ) ( ) ( ) ( ) ( ) ( ){ }4,4,3,3,2,2,1,2,2,1,1,1=Q  of a digraph of 4 vertices 

and 2 arcs given by 

 

Figure 2: Digraph D  of order 4 with 2 arcs 

The matrix that specifies the above digraph D  is 



















=

4434241

3433231

2423221

1413121

dxxx
xdxx
xxda
xxad

A  

By definition of partial 0 PWss -matrix 0,0,0,0 4321 ≥≥≥≥ dddd  

Determinants of Principal Sub-matrices 
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( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]41324231234134331242343322114

41324231244134314242243242113

4134331244134314234334432112

42343322442343242343344321

4234332244234324234334432

4134331144134314134334431

4124221144124214124224421

3123221133123213123223321

433443

422442

322332

411441

311331

211221

4

3

2

1

       
       
        
det

4,3,2det
4,3,1det
4,2,1det
3,2,1det

4,3det
4,2det
3,2det
4,1det
3,1det
2,1det

4det
3det
2det
1det

xxxxxxdxxdxdxxax
xxxxxxxxddxxxdax
xdxxxxxxdxxxddaa
xdxxxxxxdxxxddddA

xdxxxxxxdxxxddd
xdxxxxxxdxxxddd
xdxaxxxadaxxddd
xdxaxxxadaxxddd

xxdd
xxdd
xxdd
xxdd
xxdd
aadd

d
d
d
d

−+−−−−
−+−−−+
−+−−−−
−+−−−=
−+−−−=

−+−−−=
−+−−−=
−+−−−=

−=
−=
−=
−=
−=
−=

=
=
=
=

 

Zero Completion 

Setting all unspecified entries of A  to zero  

043424134323124231413 ========== xxxxxxxxxx , gives 

( ) ( ) ( ) ( ) 04det     ,03det    ,02det     ,01det 4321 ≥=≥=≥=≥= dddd  

( )  ,02,1det 211221 ≥−= aadd (Since ( )1,2  is fully specified) 

( ) ( )
( ) ( ) ( ) 04,3det     ,04,2det    ,03,2det

04,1det     ,03,1det

434232

4131

≥=≥=≥=
≥=≥=

dddddd
dddd

 

( ) ( ) ,03,2,1det 211221321123321 ≥−=−= aadddaadddd (Since ( )1,2  is fully specified) 

( ) ( ) ,04,2,1det 211221421124421 ≥−=−= aadddaadddd (Since ( )1,2  is fully specified) 

( ) ( )   ,04,3,2det    ,04,3,1det 432431 ≥=≥= dddddd  



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 37, No  1, pp 112-121 

 

118 
 

( ) ,0det 211221432112434321 ≥−=−= aaddddaaddddddA  (Since ( )1,2  is fully specified) 

Since all the determinants nonnegative then the partial matrix is completed to 0 PWss -matrix. Hence it has a 

zero completion into a 0 PWss -matrix. 

2.3 Digraph D of order 4 and 4 arcs 

Case 2.3.1: Consider a symmetric pattern ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }4,4,3,3,2,3,3,2,2,2,1,2,2,1,1,1=Q  of a digraph 

of 4 vertices and 4 arcs given by 

 

Figure 3: Digraph D  of order 4 with 4 arcs 

The matrix that specifies the above digraph D  is 



















=

4434241

3433231

2423221

1413121

dxxx
xdax
xada
xxad

A  

By definition of partial 0 PWss -matrix 0,0,0,0 4321 ≥≥≥≥ dddd  

Similar to case 2.1.1 and 2.2.1 finding the determinants of Principal Sub-matrices and performing zero 

completion; Setting all unspecified entries of A  to zero, 04342413431241413 ======== xxxxxxxx ,  

gives 

( ) ( ) ( ) ( ) 04det     ,03det    ,02det     ,01det 4321 ≥=≥=≥=≥= dddd  

( )  ,02,1det 211221 ≥−= aadd (Since ( )1,2  is fully specified) 
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( ) ( ) 04,1det     ,03,1det 4131 ≥=≥= dddd  

( )   ,03,2det 322332 ≥−= aadd (Since ( )2,3  is fully specified) 

( ) ( ) 04,3det     ,04,2det 4342 ≥=≥= dddd  

( ) ( )  ,3,2,1det 3223121122132112332231321 aadaadddaadaadddd −−=−−=  

( ) ( ) ,04,2,1det 211221421124421 ≥−=−= aadddaadddd (Since ( )1,2  is fully specified) 

( )   ,04,3,1det 431 ≥= ddd  

( ) ( )  ,04,3,2det 322332432234432 ≥−=−= aadddaadddd (Since ( )2,3  is fully specified) 

( ) 322341211221432112433223414321det aaddaaddddaaddaaddddddA −−=−−=  

Since all the determinants are not nonnegative then the partial matrix cannot be completed to a 0 PWss -matrix. 

Hence it has no zero completion into a 0 PWss -matrix. 

Case 2.3.2: Consider a symmetric pattern ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }4,4,3,4,4,3,3,3,2,2,1,2,2,1,1,1=Q  of a digraph 

of 4 vertices and 4 arcs given by 

 

Figure 4: Digraph D  of order 4 with 4 arcs 

The matrix that specifies the above digraph D  is 



















=

4434241

3433231

2423221

1413121

daxx
adxx
xxda
xxad

A  

By definition of partial 0 PWss -matrix 0,0,0,0 4321 ≥≥≥≥ dddd  
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Finding the determinants of Principal Sub-matrices and performing zero completion; Setting all unspecified 

entries of A  to zero, 04241323124231413 ======== xxxxxxxx , gives 

( ) ( ) ( ) ( ) 04det     ,03det    ,02det     ,01det 4321 ≥=≥=≥=≥= dddd  

( )  ,02,1det 211221 ≥−= aadd (Since ( )1,2  is fully specified) 

( ) ( ) 04,1det     ,03,1det 4131 ≥=≥= dddd  

( ) ( )  04,2det    ,03,2det 4232 ≥=≥= dddd  

( ) ,04,3det 433443 ≥−= aadd (Since ( )4,3  is fully specified) 

( ) ( ) ,03,2,1det 211221321123321 ≥−=−= aadddaadddd  (Since ( )1,2  is fully specified) 

( ) ( ) ,04,2,1det 211221421124421 ≥−=−= aadddaadddd (Since ( )1,2  is fully specified) 

( ) ( ) ,04,3,1det 433443143341431 ≥−=−= aadddaadddd (Since ( )4,3  is fully specified) 

( ) ( ) ,04,3,2det 433443243342432 ≥−=−= aadddaadddd (Since ( )4,3  is fully specified) 

( )( ) ,0det 433443211221433421122112434334214321 ≥−−=+−−= aaddaaddaaaaaaddaaddddddA
(Since ( )1,2  and ( )4,3  are fully specified) 

Since all the determinants are nonnegative then the partial matrix can be completed to a 0 PWss -matrix. Hence 

it has a zero completion into a 0 PWss -matrix. 

2.4 Digraph D of order 4 and 6 arcs 

The symmetric patterns of acyclic digraphs of order 4 and 6 arcs are: 

Case 2.4.1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }4,4,3,4,4,3,3,3,2,3,3,2,2,2,1,2,2,1,1,11 =Q  

Case 2.4.2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }4,4,2,4,3,3,2,3,4,2,3,2,2,2,1,2,2,1,1,12 =Q  

The matrices that specifies 1Q  and  2Q  are: 
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=

4434241

3433231

2423221

1413121

1

daxx
adax
xada
xxad

A  and  



















=

4434241

3433231

2423221

1413121

2

dxax
xdax
aada
xxad

A  respectively.  

Finding the determinants of the principal sub-matrices and performing zero completion shows that all the 

determinants are not nonnegative then the partial matrix cannot be completed to a 0 PWss -matrix. Hence it both 

cases of the patterns have no zero completion into a 0 PWss -matrix. 

3. Conclusion and Recommendation 

In this paper, it was concluded that all  symmetric patterns specifying acyclic digraphs of order 4 without an arc 

(null graph), 2 arcs and regular acyclic digraphs with 4 arcs have a zero completion into a weakly sign 

symmetric 0 PWss -matrix.  Similar research should be done for symmetric patterns specifying cyclic digraphs 

and even those patterns that are neither symmetric nor asymmetric patterns which are specifying acyclic or 

cyclic digraphs of order 4 
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