Combinatorial Properties, Invariants and Structures of the Action of $S_{n} \times A_{n}$ on $X \times Y$

Amos Kituku Mutua ${ }^{\text {a }^{*}}$, Lewis Namu Nyaga ${ }^{\text {b }}$, Richard Kiriuki Gachimu ${ }^{\text {c }}$
${ }^{a}$ Amos Kituku Mutua, P.O Box 62000, Juja-00200, Kenya
${ }^{b}$ Lewis Namu Nyaga, P.O Box 62000, Juja-00200, Kenya
${ }^{c}$ Richard Kariuki Gachimu, P.O Box 62000, Juja-00200, Kenya
${ }^{a}$ Email: Amoskituku@rocketmail.com
${ }^{b}$ Email: Lnyaga@jkuat.ac.ke
${ }^{c}$ Email: Rgachimu@jkuat.ac.ke

Abstract

The transitivity, primitivity, rank and subdegrees, as well as pairing of the suborbits associated with the action of the actions of the direct product $S_{n} \times A_{n}$, of the symmetric group S_{n} by the alternating group A_{n} alternating on the Cartesian product $X \times Y$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ are disjoint sets each containing n elements is an area that has never received attention from researchers for a very long time. In this paper, we prove that the action is both transitive and imprimitive when $n \geq 3$. Also, we establish that that the rank is 6 if $n=3$, but is 4 for all $n \geq 3$. In addition, we show in this paper that the subdegrees associated with the action are $1,(n-1),(n-1),(n-1)^{2}$. Lastly, we show that all the suborbits corresponding to the action, are self-paired when $n \geq 4$.

Keywords: Direct Product; Symmetric Group; Alternating Group; Action; Rank; Subdegrees; Suborbital.

1. Notation and preliminary results

Definition 1.1. Let G be a group and X a non-empty set. Then G acts on the left of X if there exists a function $G \times X \rightarrow X$ such that $\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2}\right) x$ and $e x=x$ where e is the identity in $G, x \in X$ and $g_{1}, g_{2} \in G$. The action of G on the right of X can be defined in a similar way. In this case, X is called a G set.

[^0]Definition 1.2. Suppose a group G act on a set X. Define a relation $x \sim y$ on X iff there exist a $g \in G$ such that $y=g x$. This defines an equivalence relation on the set X.

The equivalence class containing x is called the orbit of x which is $\operatorname{Orb}_{G}(x)=\left\{g_{x} \mid g \in G\right\}$. Since any set is a disjoint union of equivalence classes under an equivalence relation, it follows that if G acts on X then X is a union of disjoint orbits.

Theorem 1.1. Let G be a finite group acting on a set X. The number of orbits of G is $\left.\frac{1}{|G|} \sum_{g \in G} \right\rvert\,$ fix $(g) \mid$ where $\operatorname{fix}(g)=\{x \in X \mid g x=x\}$.

Theorem 2.3 is called the Cauchy-Frobenius Lemma [3]

Definition 1.4. Let G act on a set X and let $x \in X$. The stabilizer in G of x denoted by $\operatorname{Stab}_{G}(x)$ is the subset $\operatorname{Stab}_{G}(x)=\{g \in G \mid g x=x\}$. In this case $\operatorname{Stab}_{G}(x)$ forms a subgroup of G called the isotropy group of x. It is also denoted by G_{x}.

Theorem 1.2. Let G be a group acting on a finite set X and $x \in X$. Then $\left|\operatorname{Orb}_{G}(x)\right|=\left|G: \operatorname{Stab}_{G}(x)\right|$

Theorem 1.2 is called the Orbit-Stabilizer Theorem [3]

Definition 1.5. The action of a group G on the set X is said to be transitive if for each pair of points $x, y \in X$, there exists $g \in G$ such that $g x=y$; in other words, if the action has only one orbit, $\operatorname{Orb}_{G}(x)=X$.

Definition 1.6. Let G act transitively on a set X and let Y be a subset of X such that $|Y|$ is a factor of $|X|$. Then if $g Y=Y$ or $g Y \cap Y=\emptyset$ for all $g \in G$, then Y is called a block of the action. Clearly \emptyset, the set X and the singleton subsets of X form blocks, called the trivial blocks. If these are the only blocks, then G is said to act primitively on X; otherwise G acts imprimitively.

Definition 1.7. Suppose G is a group acting transitively on a set X and let G_{x} be the stabilizer in G of a point $x \in X$. The orbits $\Delta_{0}=\{x\}, \Delta_{1}, \Delta_{2}, \ldots, \Delta_{(r-1)}$ of G_{x} on X are known as suborbits of G. In this case r is called the rank of G while the sizes $n_{i}=\left|\Delta_{i}\right|(i=0,1, \ldots, r-1)$, often called the lengths of the suborbits, are known as the subdegrees of G. It can be shown that both r and the cardinality of the suborbits $\Delta_{i}(i=0,1, \ldots, r-1)$ are independent of the choices of $x \in X$

Definition 1.8. Let G be a group acting transitively on a set X and let Δ be an orbit of G_{x} on X. Define
$\Delta^{*}=\{g x \mid g \in G, x \in g \Delta\}$. Then Δ^{*} is also an orbit of G_{x} and is called the G_{x}-orbit (or G-suborbit) paired with Δ [2]. Clearly, $|\Delta|=\left|\Delta^{*}\right|$ and $\Delta^{* *}=\Delta$. If $\Delta^{*}=\Delta$, then Δ is said to be self-paired.

Definition 1.9. Suppose G acts on X. Then G acts on $X \times X$ also by $g(x, y)=(g x, g y), g \in G, x, y \in X$. If $O \subseteq X \times X$ is a G-orbit, then for a fixed $x \in X, \Delta=\{y \in X \mid(x, y) \in O\}$ is a G_{x}-orbit. Conversely, if $\Delta \subseteq X$ is a G_{x}-orbit, then $O=\{(g x, g y) \mid g \in G, y \in \Delta\}$ is a G-orbit on $X \times X$. In this case Δ is said to correspond to O.

The G-orbits on $X \times X$ are called suborbitals.

Definition 1.10. Let $O_{i} \subseteq X \times X,(i=0,1,2, \ldots, r-1)$ be a suborbital. A suborbital graph Γ_{i} is formed by taking X as the points of Γ_{i} and including a directed line from x to $y(x, y \in X)$ if and only if $(x, y) \in O_{i}$. Thus each suborbital O_{i} determines a suborbital graph Γ_{i}. Now $O_{i}^{*}=\left\{(x, y) \mid(y, x) \in O_{i}\right\}$ is also a G-orbit.

Definition 1.11. Let G be transitive on X and let Γ be the suborbital graph corresponding to the suborbit Δ. Then Γ is undirected if Δ is self-paired and directed otherwise [1].

2. Transitivity and primitivity of the action of $G=S_{n} \times A_{n} \quad$ on $X \times Y$

Theorem 2.1. The action of $S_{n} \times A_{n}$ on $X \times Y$ is transitive if and only if $n \geq 3$.

Proof. Consider the action of a group $G=S_{2} \times A_{2}$ on the set $X \times Y$ where $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$ so that $X \times Y=\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{2}, y_{3}\right)\right\}$. In this case $S_{2} \times A_{2}=\left\{\left(e_{X}, e_{Y}\right),\left(\left(x_{1} x_{2}\right), e_{Y}\right)\right\}$ where e_{X} is the identity element in S_{2} and e_{Y} is the identity in A_{2}. Clearly, $H=\operatorname{Stab}_{G}\left(x_{1}, y_{1}\right)=\left\{\left(e_{X}, e_{Y}\right)\right\}$ and by Theorem 1.2

$$
\begin{aligned}
&\left|\operatorname{Orb}_{G}\left(x_{1}, y_{1}\right)\right|=|G: H| \\
&=\frac{|G|}{|H|} \\
&=\frac{2}{1} \\
& \neq|X \times Y|
\end{aligned}
$$

Therefore, the action is intransitive for $n=2$.

Now, let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ for $n \geq 3$. In this case $|G|=\frac{n!n!}{2}$ and $|X \times Y|=n^{2}$. Suppose $H=\operatorname{Stab}_{G}\left(x_{1}, y_{1}\right)=\left\{\left(g, g^{\prime}\right) \in S_{n} \times A_{n} \mid g x_{1}=x_{1}, g^{\prime} y_{1}=y_{1}\right\}$. Clearly, $g \in S_{n}$ fixes $x_{1} \in X$ if and only if x_{1} belongs to a 1 -cycle of g so that $\left\{g \in S_{n} \mid g x_{1}=x_{1}\right\} \cong S_{n-1}$. Also, $\left\{g^{\prime} \in A_{n} \mid g^{\prime} y_{1}=y_{1}\right\} \cong A_{n-1}$.

Thus, $H \cong S_{n-1} \times A_{n-1}$ and it follows that $H=\frac{(n-1)!(n-1)!}{2}$. Now, by Theorem 1.2,

$$
\begin{aligned}
\left|\operatorname{Orb}_{G}\left(x_{1}, y_{1}\right)\right| & =|G: H| \\
& =\frac{|G|}{|H|}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{n!n!}{2}}{\frac{(n-1)!(n-1)!}{2}} \\
& =n^{2} \\
& =|X \times Y|
\end{aligned}
$$

Therefore, the action is transitive for all $n \geq 3$.

Theorem 2.2. The action of $G=S_{n} \times A_{n}$ on $X \times Y$ is imprimitive for $n \geq 3$.

Proof. Consider the subset $X^{\prime} \times Y^{\prime}=\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right), \ldots,\left(x_{1}, y_{n}\right)\right\}$ of $X \times Y$ where $\left|X^{\prime} \times Y^{\prime}\right|=n$ which divides $|X \times Y|=n^{2}$. Suppose $g=(g x, g y) \in G$ such that $g x \in \operatorname{Stab}_{S_{n}}\left(x_{1}\right)$. Then, g either fixes an element of $X^{\prime} \times Y^{\prime}$ or moves one element of $X^{\prime} \times Y^{\prime}$ to another so that $g\left(X^{\prime} \times Y^{\prime}\right)=X^{\prime} \times Y^{\prime}$. Any other $g \in G$ takes an element of $X^{\prime} \times Y^{\prime}$ to an element not in $X^{\prime} \times Y^{\prime}$ so that $g\left(X^{\prime} \times Y^{\prime}\right) \cap\left(X^{\prime} \times Y^{\prime}\right)=\emptyset$. Thus, $X^{\prime} \times Y^{\prime}$ is a non-trivial block for the action. Therefore, the action imprimitive.

3. Rank and subdegrees of $S_{\boldsymbol{n}} \times A_{\boldsymbol{n}}$ on $X \times Y$

Lemma 3.1. The group $G=S_{3} \times A_{3}$ acts on $X \times Y$ with rank 6 and subdegrees 1,1,1,2,2,2.

The Stabilizer for the action is $\operatorname{Stab}_{G}\left(x_{1}, y_{1}\right)=\left\{\left(e_{X}, e_{Y}\right),\left(\left(x_{2} x_{3}\right), e_{Y}\right)\right\}$. The number of elements in $X \times Y$ fixed by the elements of H is given in the Table below.

Table 1: Elements of H and Corresponding Number of Fixed Points

By Theorem 1.1, the number of orbits of suborbits of G on $X \times Y$ is

$$
\frac{1}{|H|} \sum_{(g X, g Y)} \left\lvert\, f i x(g X, g Y)=\frac{1}{2}[9+3]=\frac{12}{2}=6\right.
$$

The six suborbits of G are

$$
\Delta_{0}=\operatorname{Orb}_{\left(x_{1}, y_{1}\right)}\left(x_{1}, y_{1}\right)=\left\{\left(x_{1}, y_{1}\right)\right\}
$$

$$
\begin{aligned}
& \Delta_{1}=\operatorname{Orb}_{\left(x_{1}, y_{1}\right)}\left(x_{1}, y_{2}\right)=\left\{\left(x_{1}, y_{2}\right)\right\} \\
& \Delta_{2}=\operatorname{Orb}_{\left(x_{1}, y_{1}\right)}\left(x_{1}, y_{3}\right)=\left\{\left(x_{1}, y_{3}\right)\right\} \\
& \Delta_{3}=\operatorname{Orb}_{\left(x_{1}, y_{1}\right)}\left(x_{2}, y_{1}\right)=\left\{\left(x_{2}, y_{1}\right),\left(x_{3}, y_{1}\right)\right\}, \\
& \Delta_{4}=\operatorname{Orb}_{\left(x_{1}, y_{1}\right)}\left(x_{2}, y_{2}\right)=\left\{\left(x_{2}, y_{2}\right),\left(x_{3}, y_{2}\right)\right\}, \\
& \Delta_{5}=\operatorname{Orb}_{\left(x_{1}, y_{1}\right)}\left(x_{2}, y_{3}\right)=\left\{\left(x_{2}, y_{3}\right),\left(x_{3}, y_{3}\right)\right\}
\end{aligned}
$$

So, the action has rank 6 and subdegrees $1,1,1,2,2,2$.

Theorem 3.1. The action of $G=S_{n} \times A_{n}$ on $X \times Y$ has rank 4 and subdegrees $1,(n-1),(n-1),(n-1)^{2}$ for all $n \geq 4$.

Proof. Let $H=\operatorname{Stab}_{G}\left(x_{1}, y_{1}\right)$ be as defined in Theorem 2.1 above. Then the orbits of H on $X \times Y$ are

$$
\begin{gathered}
\Delta_{0}=\operatorname{Orb}_{G_{\left(x_{1}, y_{1}\right)}}\left(x_{1}, y_{1}\right)=\left\{\left(x_{1}, y_{1}\right)\right\} \text {, where }\left|\Delta_{0}\right|=1 \\
\Delta_{1}=\operatorname{Orb}_{G_{\left(x_{1}, y_{1}\right)}}\left(x_{1}, y_{2}\right)=\left\{\left(x_{1}, y_{2}\right),\left(x_{1}, y_{3}\right), \ldots,\left(x_{1}, y_{n}\right)\right\} \text {, where }\left|\Delta_{1}\right|=n-1 \\
\Delta_{2}=\operatorname{Orb}_{G_{\left(x_{1}, y_{1}\right)}}\left(x_{2}, y_{1}\right)=\left\{\left(x_{2}, y_{1}\right),\left(x_{3}, y_{1}\right), \ldots,\left(x_{n}, y_{1}\right)\right\} \text {, where }\left|\Delta_{2}\right|=n-1 \\
\Delta_{3}=\operatorname{Orb}_{G_{\left(x_{1}, y_{1)}\right)}\left(x_{2}, y_{2}\right)=\left\{\left(x_{2}, y_{2}\right),\left(x_{2}, y_{3}\right), \ldots,\left(x_{2}, y_{n}\right),\right.} \\
\left(x_{3}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{3}, y_{n}\right), \\
\left(x_{4}, y_{2}\right),\left(x_{4}, y_{3}\right), \ldots,\left(x_{4}, y_{n}\right), \\
\left(x_{5}, y_{2}\right),\left(x_{5}, y_{3}\right), \ldots,\left(x_{5}, y_{n}\right), \\
\left.\ldots,\left(x_{n}, y_{2}\right),\left(x_{n}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}, \text { with }\left|\Delta_{3}\right|=(n-1)^{2} .
\end{gathered}
$$

To prove that these are the only suborbits of G, it suffices to show that $P=\left\{\Delta_{0}, \Delta_{1}, \Delta_{2}, \Delta_{3}\right\}$ is a partition of $X \times Y$.

Clearly, $\Delta_{i} \neq \emptyset$ for each $i=0,1,2,3$ and $\Delta_{i} \cap \Delta_{j}=\emptyset$ if $i \neq j(i, j=0,1,2,3)$.

Now,

$$
\sum_{i=1}^{3}\left|\Delta_{i}\right|=1+2(n-1)+(n-1)^{2}
$$

$$
\begin{aligned}
& =n^{2} \\
& \quad=|X \times Y|
\end{aligned}
$$

and it follows that $\mathrm{U}_{i=1}^{3} \Delta_{i}=X \times Y$. Thus, P is a partition of $X \times Y$.

4. Pairing of the suborbits of $G=S_{n} \times A_{n}$ on $X \times Y$

Theorem 4.1. The suborbits of $G=S_{3} \times A_{3}$ on $X \times Y$ are self-paired except for a few.

Proof. The action of $G=S_{3} \times A_{3}$ on $X \times Y$ has 5 non-trivial suborbits as $\Delta_{1}, \Delta_{1}, \Delta_{3}, \Delta_{4}$ and Δ_{5}. Since $|G|$ is even, then the action has at least one self-paired suborbit. Consider $\left(x_{1}, y_{2}\right) \in \Delta_{1}$ and $g=\left(e_{X},\left(y_{1} y_{3} y_{2}\right)\right) \in G$. Then $g\left(x_{1}, y_{2}\right)=\left(x_{1}, y_{1}\right)$ and $g\left(x_{1}, y_{1}\right)=\left(x_{1}, y_{3}\right) \in \Delta_{2}$. So, $\Delta_{1}^{*}=\Delta_{2}$. Next, consider $\left(x_{2}, y_{1}\right) \in \Delta_{3}$ and also $g=\left(\left(x_{1} x_{2}\right), e_{Y}\right) \in G$. Then $g\left(x_{2}, y_{1}\right)=\left(x_{1}, y_{1}\right)$ and therefore, $g\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{1}\right) \in \Delta_{3}$. Finally, consider $\left(x_{2}, y_{2}\right) \in \Delta_{4}$. Suppose $g=\left(\left(x_{1} x_{2}\right),\left(y_{1} y_{3} y_{2}\right)\right) \in G$. Then $g\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)$ and hence it is seen that $g\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{3}\right) \in \Delta_{5}$. So, $\Delta_{4}^{*}=\Delta_{5}$.

Theorem 4.2. The suborbits of $G=S_{n} \times A_{n}$ on $X \times Y$ are self-paired for all $n \geq 4$.

Proof. From Theorem 3.2, then G has 3 non-trivial suborbits, namely Δ_{1}, Δ_{2} and Δ_{3}. Consider $\left(x_{1}, y_{2}\right) \in \Delta_{1}$ and $g=\left(e_{X},\left(y_{1} y_{3} y_{2}\right)\right) \in G$. Then we have that $g\left(x_{1}, y_{2}\right)=\left(x_{1}, y_{1}\right)$ and $g\left(x_{1}, y_{1}\right)=\left(x_{1}, y_{3}\right) \in \Delta_{1}$. So, $\Delta_{1}^{*}=\Delta_{1}$. Next, consider $\left(x_{2}, y_{1}\right) \in \Delta_{2}$ and $g=\left(\left(x_{1} x_{2}\right), e_{Y}\right) \in G$. Then $g\left(x_{2}, y_{1}\right)=\left(x_{1}, y_{1}\right)$ and therefore, it can be seen that $g\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{1}\right) \in \Delta_{2}$. So, $\Delta_{2}^{*}=\Delta_{2}$. Finally, consider $\left(x_{2}, y_{2}\right) \in \Delta_{3}$. Suppose $g=\left(\left(x_{1} x_{2}\right),\left(y_{1} y_{3} y_{2}\right)\right) \in G$. Then $g\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)$ and therefore $g\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{3}\right) \in \Delta_{3}$. So, $\Delta_{3}^{*}=\Delta_{3}$.

5. Suborbital graphs of $S_{n} \times A_{n}$ on $X \times Y$

A suborbital graph of the action has $X \times Y$ as its vertex set. Since for $n \geq 4$ all the suborbits are self-paired, then the corresponding suborbital graphs are undirected. Now, the construction and properties of the three nontrivial graphs of the action are as follows:
(i) The suborbital O_{1} corresponding to the suborbit Δ_{1} is
$O_{1}=\left\{\left(\left(g_{X}, g_{Y}\right)\left(x_{1}, y_{1}\right),\left(g_{X}, g_{Y}\right)\left(x_{1}, y_{2}\right)\right) \mid\left(g_{X}, g_{Y}\right) \in G,\left(x_{1}, y_{2}\right) \in \Delta_{1}\right\}$.

Thus, the suborbital graph Γ_{1} corresponding to the suborbital O_{1} has an edge from vertex (u, v) to vertex (x, y) if and only if $u=x$ and $v \neq y$. The graph is regular of degree $(n-1)$ since vertex (u, v) is connected to all the $(n-1)$ vertices (u, w) where $v \neq w$. It is disconnected since there is no path from vertex (u, v) to vertex (x, y) if $u \neq x$. Clearly, a connected component of the graph consists of n vertices so that there are $\frac{|X \times Y|}{n}=n$ connected components in the graph. It has girth 3 since $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)$ and (x_{1}, y_{3}) form cycle in Γ_{1}.
(ii) The suborbital O_{2} corresponding to the suborbit Δ_{2} is
$O_{2}=\left\{\left(\left(g_{X}, g_{Y}\right)\left(x_{1}, y_{1}\right),\left(g_{X}, g_{Y}\right)\left(x_{2}, y_{1}\right)\right) \mid\left(g_{X}, g_{Y}\right) \in G,\left(x_{2}, y_{1}\right) \in \Delta_{2}\right\}$.

The suborbital graph Γ_{2} corresponding to the suborbital O_{2} has an edge from vertex (u, v) to vertex (x, y) if and only if $u \neq x$ and $v=y$. This graph is isomorphic to Γ_{1} and therefore, the two have the same properties.
(iii) The suborbital O_{3} corresponding to the suborbit Δ_{3} is
$O_{3}=\left\{\left(\left(g_{X}, g_{Y}\right)\left(x_{1}, y_{1}\right),\left(g_{X}, g_{Y}\right)\left(x_{2}, y_{2}\right)\right) \mid\left(g_{X}, g_{Y}\right) \in G,\left(x_{2}, y_{2}\right) \in \Delta_{3}\right\}$.

The suborbital graph Γ_{3} corresponding to the suborbital O_{3} has an edge from vertex (u, v) to vertex (x, y) if and only if $\{u, v\} \cap\{x, y\}=\emptyset$. The graph is regular of degree $(n-1)^{2}$ since vertex (u, v) is connected to all the $(n-1)^{2}$ vertices (x, y) where $\{u, v\} \cap\{x, y\}=\emptyset$. The graph is connected since there is a path between any two distinct vertices. It has girth 3 since the vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and (x_{3}, y_{3}) form cycle in Γ_{3} since the vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are pairwise adjacent.

References

[1] Sims, C. C. (1967). Graphs and finite permutation groups. Mathematische Zeitschrift, 95:76-86.
[2] Wielandt, H. (1964). Finite Permutation Groups. Academic Press New York.
[3] D. G. Higman, Characterization of Families of Rank 3 Permutation Groups by the Subdegrees I, Arch. Math., 21, No. 1 (1970), 151-156.
[4] Rose, J. S. (1978). A Course in Group Theory. Cambridge,University Press, Cambridge.
[5] C. F. Gardiner, Algebraic Structures, Ellis Horwood, England (1986).

[^0]: * Corresponding author.

