

International Journal of Sciences:
Basic and Applied Research

(IJSBAR)

ISSN 2307-4531
(Print & Online)

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

133

Minimizing Total Tardiness in the m-Machine Flow-Shop

Problem by Heuristic Algorithms

Quang Chieu Ta*

Faculty of Information Technology, Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem,

100000 Ha Noi, Viet Nam

Email: quangchieu.ta@gmail.com

Abstract

In this work the m-machine permutation flow-shop problem has been considered. The permutation flow-shop

scheduling problem where a set of jobs have to be scheduled on a set of machines in the same order. We

propose heuristic algorithms for the flow-shop problem to minimizing the total tardiness. A new genetic and

Tabu search algorithm which initialized by the solution of EDD, NEH and EN algorithm. Computational

experiments are performed on benchmark instances and the results show the good performances of these

methods. Finally, some future research directions are given.

Keywords: Flowshop; Tardiness; Tabu search; Scheduling; Heuristic; Genetic algorithm.

1. Introduction

We consider in this paper the permutation flow-shop scheduling problem, one of the most famous scheduling

problems. We consider that there is a set J = {J1, ..., Jn} of n jobs to schedule on a set M = {M1, ..., Mm} of m

machines. A machine can process only one job at a time and we assume that the machines are immediately

available. All the jobs have the same routing, they are processed in the same order, i.e. on machine M1 first and

then on machine M2, M3, etc. Also we assume that the sequence of jobs on each machine is the same. We denote

by pi,j the processing time of Jj on machine Mi and dj is the due date of Jj. Variable Cj denotes the completion

time of job Jj and variable Tj its tardiness, dened by Tj = max(Cj - dj, 0), ∀j , 1 ≤ j ≤ n.

--

* Corresponding author.

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

134

The objective is to minimize the total tardiness denoted by ∑𝑇𝑇𝑗𝑗 = ∑ 𝑇𝑇𝑗𝑗𝑛𝑛
𝑗𝑗=1 . The problem is classically denoted

by 𝐹𝐹|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|∑𝑇𝑇𝑗𝑗 [1], where prmu indicates a “permutation flow-shop" (same sequence on each machine). This

problem is known to be NP-hard in the ordinary sense when there is a single machine and NP-hard in the strong

sense for m ≥ 2 [2, 3].

The literature contains a lot of papers dealing with this problem, some of them dealing with the particular case

of two machines. In the case of two machines, some exact methods have been proposed such as branch-and-

bound algorithms [4–6]. In [7], instances with up to 24 jobs can be solved to optimality, which shows the diculty

to solve this problem with only two machines. Some heuristic approaches have been proposed, such as greedy

heuristics using priority rules or inspired by NEH algorithm [8], and a shifting bottleneck procedure [9]. Some

metaheuristics have also been proposed in the literature, such as simulated annealing [10], tabu search

algorithms [11–15], genetic algorithms [16], particle swarm optimization [17, 18]. Della Croce and his

colleagues [19] and Ta and his colleagues [20], the authors propose a matheuristic method for this problem, etc.

For the m-machine flow-shop scheduling problem, Onwubolu and Mutingi propose in [16] a genetic algorithm

minimizing a combination of the total tardiness and the number of tardy jobs. In the survey of Vallada, Ruiz and

Minella [21], a lot of algorithms are implemented and compared. A neighborhood search algorithm based on the

permutation of blocks of consecutive jobs seems to be one of the most ecient methods. In [22], the authors

propose three genetic algorithms including advanced techniques such as path relinking, local search, and a

procedure to control the diversity of the population. Victor Ferrnadez-Viagas and his colleagues [23] propose

several tie-breaking mahanisms for the NEH to solve the problem. We do not mention the wide literature

concerning flow-shop problems with total completion time minimization (equivalent to the total tardiness if due

dates are all equal to 0), but a lot of exact and approximate methods have also been proposed. The interested

reader can find a more complete state-of-the art survey on the m-machine flow-shop problem with total

tardiness and makespan minimization in [21, 24].

In this paper, we propose several genetic and Tabu search algorithms which initialized by the solution of a EDD,

NEH algorithm. The solutions of the Tabu search algorithm are compared to the solutions of the genetic

algorithm. For the evaluation, 108 benchmark instances proposed in [21] have been used. The rest of the paper

is organized as follows. In Section 2, the resolution methods are described. In Section 3 reports the settings of

the methods and the computational results. A conclusion and some future research directions are proposed in

Section 4.

2. Resolution methods

In this section, we propose several heuristics and metaheuristic algorithms. Two basic heuristic algorithms, EDD

and NEH, that run in O(n log n) time. We present two metaheuristics developed for solving our problem. The

first is a genetic algorithm, the second is a Tabu search. We give some basic notions on algorithms and then we

describe our implementation.

2.1. EDD algorithm

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

135

EDD (Earliest Due Date): jobs are sorted in the due date non decreasing order, i.e. d[1] ≤ d[2] ≤ ... ≤ d[n] where

d[k] is the due date of the job in position k. The algorithm is described in Table 1

Table 1: EDD algorithm

Algorithm 1: EDD algorithm

1: Input: S = a set of jobs,

2: Sorted: the jobs by non decreasing order of dj ,

3: Output: A set of jobs sorted in non decreasing order of dj

2.2. NEH algorithm

In [8], the authors develop NEH heuristic for m-machine flow-shop scheduling problem with makespan

minimization. We propose and apply the method for minimizing the total tardiness for the m-machine

permutation flow shop scheduling problem. NEH algorithm is described in details for the problem below (see

Table 2).

Table 2: NEH algorithm

Algorithm 2: NEH algorithm
1: Input: S = jobs sorted in the decreasing order of Pj,
2: where 𝑃𝑃𝑗𝑗 = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗𝑚𝑚

𝑖𝑖=1 ,∀𝑗𝑗 = 1, … ,𝑛𝑛
3: Consider the partial sequence with minimum total tardiness and minimum makespan in case of ties among
{(S[1], S[2]), (S[2], S[1])}
4: for k = 3 to n do
5: Test the insertion of S[k] at any possible position in S’ from 1 to k + 1
6: Keep the best insertion, i.e. the insertion with minimum ΣTj , and the insertion with minimum makespan
 in case of ties.
7: end for

2.3. Genetic algorithm

• Principles of a genetic algorithm

Genetic algorithms (GA) have been originally proposed by Holland [25]. This is a general search technique

where a population composed by individuals evolves following nature inspired mechanisms called “genetic

operators”. The population is composed by individuals that are valuated by a fitness, which is often related to

the objective function.

Starting from an initial population, new solutions are generated by selecting some “parents” randomly, but with

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

136

a probability growing with fitness, and by applying genetic operators such as selection, crossover and mutation,

which introduces random modifications. Some existing solutions are randomly selected for crossover, some

solutions are selected for mutation, and a new population of the same size is obtained. The process is repeated

until a given stopping criterion is reached, e.g. a time limit or when a sufficiently satisfactory solution has been

found.

Genetic algorithms have been largely used for solving scheduling problems. According to [26], the main steps

of a genetic algorithm are:

1. Generation of the initial population P0,

2. Evaluation of the fitness of each individual,

3. Selection of the individual couples in population Pk-1,

4. Application of the crossover operator: with a probability ρc, two individuals of Pk-1 will be crossed to

create two new individuals in a set Ck,

5. Application of the mutation operator: with a probability ρm, each individual is modied by a mutation and

inserted in a set Mk,

6. Replace population Pk-1 by population Pk: Pk contains the PopSize best individuals of Pk-1 ∪ Mk ∪ Ck.

7. Repeat the process at step 2 until a stopping condition is satisfied.

A genetic algorithm is designed by several parameters of high importance. First of all, there are several ways for

coding a solution. In our scheduling problem, solving the problem is equivalent to finding a sequence of jobs,

and it is generally convenient to consider that an individual is exactly this sequence. This is called in the

litterature “direct encoding” because an individual corresponds to a solution without ambiguity. For more

complicated scheduling problems such as job-shop or parallel machine problems, an individual may represent a

list of jobs, but an algorithm has to be used to determine the corresponding solution. This is called in the

literature “undirect encoding” because an individual does not correspond “immediately” to a solution.

The other key points in a genetic algorithm are the crossover and the mutation operators. The literature contains

a lot of definitions, strongly related to the coding definition. For classical scheduling problems, the most famous

crossover operators are 1-point crossover up to k-point crossover. Mutation generally consists in changing

arbitrarily an element of an individual. Fixing the probabilities ρc of crossover and ρm of mutation is not an easy

task. It is generally done after some preliminary computational experiments on a subset of the data set. A survey

of the applications of genetic algorithms to scheduling problems can be found in [27].

• Genetic operators

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

137

Coding: The crucial step in designing a Genetic algorithm is to de ne an encoding, i.e. a way to represent a

solution. In the case of the m-machine permutation flow shop scheduling problem with n jobs indexed from 1 to

n, an individual is represented by a permutation.

Initial population: The initial population P0 contains PopSize individuals. One individual is obtained by

sequencing the jobs according to a given rule. The other individuals are randomly generated. The way that the

first individual is generated leads to different versions of the algorithm. If the first individual is given by EDD

rule (see Table 1), the method is called in the following GAEDD. If the initial sequence is given by applying an

adaptation of NEH algorithm [8] (described in Table 2), the method is called in the following GANEH. Finally, if

one initial sequence is given by the best among EDD and NEH, the method is called GAEN.

Fitness: The fitness of an individual S is the value of the objective function ΣTj (S) of the corresponding

sequence.

Crossover: Severla crossover operators are used: the one-point crossover (X1) [28] and the linear order

crossover (LOX) [28], the Similar Job Order Crossover or (SJOX), the Similar Block Order Crossover or

(SBOX) and the Similar Block 2-Point Order Crossover or (SB2OX) [29]. The operators are described the

follow:

- X1: One crossover point is randomly generated. Let A = A1 // A2 and B = B1 // B2 be the two parents. Two

offsprings are calculated. Offspring 1 denoted by O1 contains the jobs of A1 in the order of A and the jobs of A2

in the order of B. Offspring 2 denoted by O2 contains the jobs of B1in the order of B and the jobs of B2 in the

order of A.

Figure 1: Illustration of two crossover operators

- LOX: Two different crossover points are randomly generated. Let A = A1 // A2 // A3 and B = B1 // B2 // B3

be the two parents. Two offsprings are calculated. Offspring 1 denoted by O1 contains in the middle the jobs of

A2 in the order of A. The jobs of A1 ∪ A3 in the order of B fill the first and the last part of A. Offspring 2

denoted by O2 contains in the middle the jobs of B2 in the order of B. The jobs of B1 ∪ B3 in the order of A fill

the first and the last part of B. The two crossover operators are illustrated in Figure 1

In our genetic algorithm, the crossover operator is chosen randomly, with equal probability.

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

138

Mutation: We denote by S the current sequence. The mutation operators applied to S = S1/ S[i] / S2 / S[j] / S3 with

S1, S2 and S3 three subsequences of S and S[i] and S[j] the jobs in positions i and j in S (i < j), two positions i and j

(j > i) are randomly choosen. The mutation operators [30], [31] be created as follows (see Figure 2):

- SWAP: A neighbor of S is created by interchanging the jobs in position i and j, leading to sequence S’ = S1 /

S[j] / S2 / S[i] / S3.

- EBSR (Extraction and Backward Shifted Re-insertion): A neighbor of S is created by extracting S[j] and re-

inserting S[j] backward just before S[i], leading to sequence S’ = S1 / S[j] / S[i] / S2 / S3.

- EFSR (Extraction and Forward Shifted Re-insertion): A neighbor of S is created by extracting S[i] and re-

inserting it forward immediately after S[j], leading to a sequence S’ = S1 / S2 / S[j] / S[i] / S3.

- Inversion: A neighbor of S is created by inserting S[j] / 𝑆𝑆2′ / S[i] between S1 and S3, where 𝑆𝑆2′ is the inverse of

sequence S2.

Figure 2: Illustration of mutation operators

Selection and generational scheme: At iteration k, two parents are randomly selected in population Pk-1. The two

crossover operators are applied on the two parents, generating four offsprings, inserted into population set Ck.

The process is repeated until CrossSize offsprings have been generated. The mutation operator is applied on

randomly selected individuals of population Pk-1. The new individuals constitute a population Mk of size

MutSize. The PopSize best individuals of Pk-1 ∪ Ck ∪ Mk constitute population Pk.

Stopping criterion: The process iterates until a given time limit has been reached. This time limit is denoted by

TimeLimGA.

A lot of parameters and operators have been tested for the genetic algorithms, it concerns: the generation on the

initial population, the crossover operators, the mutation operators.

2.4. Tabu search algorithm

Tabu search (TS) has been initially proposed by Glover [32,33]. TS is a metaheuristic local search algorithm

that begins with an initial solution and successively moves to the best solution in the neighborhood of the

Inversion

’

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

139

current solution. The algorithm maintains a list of forbidden solutions, to prevent the algorithm from visiting

solutions already examined (these solutions are called tabu). The elements of our TS algorithm are described

below.

• Initial solution

The proposed tabu search algorithm starts from an initial solution. This initial solution is classically generated

by using simple heuristic methods, such as EDD, SPT, NEH, etc. In this paper, we propose different initial

solutions are considered. If the initial solution is given by EDD rule in Table 1, the method is denoted by TSEDD.

If the initial sequence is given by applying an adaptation of NEH algorithm (see Table 2), the method is denoted

by TSNEH. Finally, if the initial sequence is given by the best solution beetween EDD and NEH, the method is

denoted by TSEN.

• Neighborhood definition

We denote by S the current sequence. We denote by N(S) the set of all neighbors of S which can be created by

SWAP, EBSR, EFSR, Inversion operators (see Figure 2).

• Moves and selecting the best neighbor

The objective function is the total tardiness. The best neighbor in the candidate list is the non-tabu sequence

which generates the smallest total tardiness. The move strategy which is applied to the list is the first-in-first-out

(FIFO) strategy. Old attributes are deleted as new attributes are inserted.

• Tabu list

The size of the tabu list is a very important parameter, which can be either fixed or variable. In [32,33], the

author provided some general methods of tabu list implementions.

In [12] the authors generate a tabu list by storing attributes of the visited permutations, defined by certain pair of

adjacent jobs. Our tabu list contains pairs of positions (i, j), corresponding to the neighborhood definition and

the size of the tabu list is fixed.

• Stopping condition

The algorithm is stopped when the time limit has been reached. This time limit is denoted by TimeLimitTS.

• Detailed algorithm

The detailed TS algorithm is given in Table 3. FlagSwap, FlagNB with NB ∈ {EBSR, EFSR, Inversion} allow

to make a selection of the neighbors. LimitSwap, LimitNB allow to limit the size of the neighborhood. Del(T)

deletes the upper element of the Tabu list and Add(T, (k, j)) adds element (k, j) to the Tabu list.

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

140

Table 3: Tabu Search algorithm

Algorithm 3: Tabu Search algorithm
1: Initialization
2: S0 = initial solution, S = current solution
3: S’ = S0 // best solution of N(S)
4: S* = S0 // best solution of N(S) and non-tabu
5: f* = f(S0) // f* value of S* and f(S0) value of S0
6: T = ∅; // T is the tabu list
7: while (CPU ≤ TimeLimitTS) do
8: f(S’) = ∞,
9: for k = 0 to n - 1 do
10: for j = k + 1 to n do
11: if (FlagSwap = 1) and (j - k ≤ LimitSwap) then
12: S = S’, f(S) = f(S’), SWAP(S, (k, j)),
13: if ((k, j) ∉ T) then
14: Calculate(f(S)),
15: if (f(S) < f(S’)) then S’ = S, f(S’) = f(S), move = (k, j), end if
16: end if
17: end if
18: if (j ≠ k + 1) and (FlagNB = 1) and (j - k ≤ LimitNB) then
19: S = S’, f(S) = f(S’), NB(S, (k, j)),
20: if ((k, j) ∉ T) then
21: Calculate(f(S)),
22: if (f(S) < f(S’)) then S’ = S, f(S’) = f(S), move = (k, j), end if
23: end if
24: end if
25: end for
40: end for
41: if (f(S’) < f*) then S* = S’, f* = f(S), end if
42: if (SizeTabu ≥ TabuMax) then Del(T) end if
43: Add(T, (k, j))
44: end while

3. Computational experiments

The algorithms have been tested on a PC Intel coreTMi5 CPU 2.4GHz. 108 benchmark instances proposed in

[34] have been used for the evaluation. Nine instances of these benchmark instances are used for each

combination of n and m, with n ∈ {50, 150, 250, 350} and m ∈ {10, 30, 50}. In these instances, the processing

times are uniformly distributed between 1 and 99. The due dates are generated with an uniform distribution

between P(1 - τ - ρ/2) and P(1 - τ - ρ/2) following the method of Potts and VanWassenhove [35] with P a lower

bound of the makespan and τ and ρ two parameters called tardiness factor and due date range, which take the

following values: τ ∈ {0.2, 0.4, 0.6}, ρ ∈ {0.2, 0.6, 1}. The first instance (among five) of [34] for each tuple (n,

m, τ, ρ) has been used for the tests, which gives the108 instances. In all tables, each line summarizes the results

for 9 instances and of course, the methods may return solutions with the same quality, so the total per line of

‘Best’ may exceed 9.

3.1. Comparison of the genetic algorithms

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

141

The time limit of the GA is fixed to TimeLimGA = (n(m/2) x 90)/1000 seconds (as dened in [21]). For the

genetic algorithms, a lot of preliminary experiments have been conducted for the parameters settings. At the

end, two parameters sets seem to lead to the best results, denoted case 1 and case 2.

Table 4: The two case of parametres

For the same instance, the genetic algorithm has been executed ten times and it returns quite always solutions

with the same quality. The average relative deviation between ten runs is less than 3%.

∆G=
GAx(G)- min�GAx(EDD), GAx(NEH), GAx(EN)�

GAx(G) (1)

The several GA methods are compared in terms of quality. In Table 5 and Table 6, column ‘Best’ for ‘GAx(G)’

with (x ∈ {1, 2}), (G ∈ EDD, NEH, EN) indicates the number of times the method GAx(G) outperforms the

other methods, column Cpu(s) indicates the average computation time of GAx(G) per nine instances, column

`∆G' indicates the average deviation between GAx(G) and the best method between GAx(EDD), GAx(NEH) and

GAx(EN).

Table 5: Comparison of genetic algorithms of case 1

 case1 case2

PopSize = |Pk| 150 150

CrossSize = |Ck| 200 600

MutSize = |Mk| 100 360

n × m
GA1(EDD) GA1(NEH) GA1(EN)

Best Cpu(s) ∆GA1EDD Best Cpu(s) ∆GA1NEH Best Cpu(s) ∆GA1EH

50 × 10 5 22.00 0.79% 5 22.00 2.78% 3 22.00 3.83%

50 × 30 3 67.01 2.76% 3 67.00 2.70% 3 67.00 3.92%

50 × 50 5 112.01 1.22% 0 112.01 2.62% 4 112.01 1.61%

150 × 10 6 67.02 0.49% 5 67.02 4.35% 2 67.02 6.58%

150 × 30 7 202.04 1.53% 2 202.02 3.46% 2 202.05 4.70%

150 × 50 3 337.05 1.39% 2 337.03 5.81% 3 337.05 1.93%

250 × 10 8 112.03 0.08% 3 112.04 4.60% 4 112.07 5.76%

250 × 30 7 337.05 0.23% 2 337.05 7.09% 4 597.56 5.40%

250 × 50 5 562.08 1.07% 3 562.06 5.21% 3 562.06 2.15%

350 × 10 8 157.09 0.58% 2 157.03 17.13% 4 157.07 4.47%

350 × 30 8 472.13 0.06% 1 472.06 15.83% 3 472.10 4.20%

350 × 50 6 787.09 0.23% 1 787.11 6.22% 4 787.14 3.00%

Sum/avg 71 269.55 0.87% 29 269.54 6.48% 39 291.26 3.96%

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

142

Table 6: Comparison of genetic algorithms of case 2

Table 7: Comparison of best genetic algorithms of case 1 and case 2

In Table 7, column ‘Best’ for ‘GAx(EDD)’ (x ∈ {1, 2}) indicates the number of times the method GAx(EDD)

outperforms the other methods, column Cpu(s) indicates the average computation time of GAx(EDD) per nine

instances, column ‘∆x’ indicates the average deviation between GAx(EDD) and the best method between

n × m
GA1(EDD) GA2(EDD)

Best Cpu(s) ∆1EDD Best Cpu(s) ∆2EDD

50 × 10 6 22,00 2,79% 5 22,03 2,79%

50 × 30 3 67,01 1,48% 6 67,11 1,48%

50 × 50 2 112,01 0,12% 7 112,04 0,12%

150 × 10 6 67,02 1,29% 5 67,12 1,29%

150 × 30 4 202,04 0,49% 6 202,09 0,49%

150 × 50 2 337,05 0,07% 7 337,15 0,07%

250 × 10 6 112,03 1,33% 6 112,19 1,33%

250 × 30 6 337,05 1,86% 4 337,18 1,86%

250 × 50 6 562,08 2,57% 4 562,26 2,57%

350 × 10 9 157,09 9,90% 2 157,21 9,90%

350 × 30 6 472,13 1,61% 5 472,24 1,61%

350 × 50 6 787,09 2,04% 4 787,39 2,04%

Sum/avg 62 269,67 1,39% 61 269,55 2,96%

n × m
GA2(EDD) GA2(NEH) GA2(EN)

Best Cpu(s) ∆GA2EDD Best Cpu(s) ∆GA2NEH Best Cpu(s) ∆GA2EH

50 × 10 7 22.03 0.23% 4 22.02 2.66% 4 22.03 2.66%

50 × 30 5 67.11 1.71% 4 67.04 2.00% 4 67.05 2.00%

50 × 50 6 112.04 0.67% 3 112.04 2.25% 3 112.05 2.25%

150 × 10 7 67.12 0.59% 2 67.09 12.10% 2 67.16 6.67%

150 × 30 8 202.09 0.16% 2 202.13 4.49% 3 202.14 3.78%

150 × 50 6 337.15 0.49% 3 337.17 5.83% 3 337.14 2.59%

250 × 10 8 112.19 0.15% 2 112.38 21.08% 3 112.32 7.47%

250 × 30 7 337.18 9.95% 2 337.35 6.30% 2 337.21 16.18%

250 × 50 6 562.26 0.23% 3 638.75 4.36% 3 562.36 2.68%

350 × 10 8 157.21 0.78% 2 157.62 24.84% 2 157.35 14.29%

350 × 30 8 472.24 0.23% 2 472.27 6.29% 1 472.45 17.59%

350 × 50 7 787.39 0.70% 1 787.43 7.01% 1 787.76 5.47%

Sum/avg 83 269.66 1.32% 30 276.10 8.27% 31 269.75 6.97%

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

143

GA1(EDD) and GA2(EDD). We can see that the genetic algorithm (GA1(EDD)) with the initial population given

by EDD rule and the parameters of case 1 (see Table 4) leads to the best results. The average deviation between

the solutions returned by this method and the best solutions is 1,39%. This value is around 2,96% for

GA2(EDD). Algorithm GA1(EDD) has been used in the following for the comparisons with the Tabu search

algorithms.

∆x(EDD)=
GAx(EDD)- min�GA1(EDD), GA2(EDD)�

GAx(EDD) (2)

3.2. Comparison of Tabu search algorithms

For the Tabu search algorithms, a lot of preliminary experiments have conducted to the following parameters

settings. The time limit of TS is TimeLimTS = (n(m/2) x 90)/1000 seconds. The TS methods have been executed

with four Tabu list parameters λ ∈ {20, 40, 60, 120} and the initial solutions EDD, NEH or EN rule. The

parameter (λ = 40) leads to the best results all three initial solutions.The three best TS methods are compared in

terms of quality. In Table 8, column ‘Best’ for ‘TSλ(T)’ (with λ is a number element of Tabu list (λ = 40), T is

an initial solution (T ∈ {EDD, EN, NEH}) which indicates the number of times the method TSλ(T) outperforms

the other methods, column Cpu(s) indicates the average computation time of TSλ(T) per nine instances, column

‘∆T’ indicates the average deviation between TSλ(T) and the best method between TS40(EDD), TS40(EN) and

TS40(NEH).

Table 8: Comparison of Tabu search algorithms

We can alsosee from Table 8, that the Tabu search algorithm where the initial solution is given by EDD rule

n × m
TS40(EDD) TS40(NEH) TS40(EN)

Best Cpu(s) ∆EDD Best Cpu(s) ∆NEH Best Cpu(s) ∆EH

50 × 10 6 22,01 0,23% 4 22,00 0,72% 5 22,01 0,63%

50 × 30 7 67,02 0,15% 2 67,03 1,93% 0 67,06 1,81%

50 × 50 7 112,04 0,28% 1 112,06 1,14% 2 112,05 1,12%

150 × 10 5 67,18 1,53% 6 67,02 0,88% 2 67,22 6,26%

150 × 30 8 202,28 2,60% 1 202,62 5,74% 2 202,74 2,11%

150 × 50 8 337,78 0,01% 1 338,18 8,30% 0 337,72 0,69%

250 × 10 7 112,67 0,75% 4 112,74 1,83% 4 113,10 1,51%

250 × 30 7 338,47 0,05% 3 339,38 3,93% 4 339,10 3,97%

250 × 50 7 565,79 0,22% 3 566,30 2,15% 2 565,65 4,73%

350 × 10 9 159,00 0,00% 4 158,28 2,20% 2 159,08 3,88%

350 × 30 6 476,29 1,30% 3 478,27 5,30% 2 475,08 4,06%

350 × 50 8 793,20 0,08% 2 797,05 4,94% 2 799,20 6,33%

Sum/avg 85 271,14 1,43% 34 271,74 4,09% 27 271,33 4,76%

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

144

leads to the best results. On average, the deviation between the solutions returned by this method and the best

solutions is 1,43%. These values are around 4,09% for TS40(EN) and 4,76% for TS40(NEH).

∆T =
TSλ(T)-min(TS40(EDD), TS40(NEH), TS40(EN))

TS40(G) (3)

3.3. Comparison of the best algorithm among GA and TS

 Now, the best algorithms GA and TS are compared. The results are presented in Table 9. Column ‘Best’ for

‘Algo’ with Algo ∈ {GA1(EDD) TS40(EDD)} which indicates the number of times the method Algo outperforms

the other methods, column Cpu(s) indicates the average computation time of Algo per nine instances, column

‘∆Algo’ indicates the average deviation between GA1(EDD) and TS40(EDD).

Table 9: Comparison of the best GA and TS algorithm

∆Algo=
Algo-min(GA1(EDD), TS40(EDD))

Algo
 (4)

The best results are given by the Tabu search initialized by EDD rule. The average deviation between

TS40(EDD) and the best solution is 1,03%, the average computation time of TS40(EDD) per 108 instances is

271,17 seconds. These values are 7,09% and 269,55 seconds for GA1(EDD).

4. Conclusion

We consider in this paper the m-machine flow shop scheduling problem, with the objective to minimize the total

tardiness. We propose two greedy algorithms (EDD and NEH), GA and TS algorithms which are initiated by

n × m
GA1(EDD) TS40(EDD)

Best Cpu(s) ∆1EDD Best Cpu(s) ∆2EDD

50 × 10 2 22.00 7.54% 9 22.01 0.00%

50 × 30 0 67.01 8.94% 9 67.02 0.00%

50 × 50 0 112.01 4.60% 9 112.04 0.00%

150 × 10 2 67.02 10.93% 9 67.18 0.00%

150 × 30 2 202.04 6.49% 8 202.28 0.01%

150 × 50 0 337.05 13.00% 9 337.78 0.00%

250 × 10 3 112.03 5.02% 9 112.67 0.00%

250 × 30 3 337.05 1.89% 8 338.47 0.13%

250 × 50 3 562.08 1.57% 7 565.79 0.67%

350 × 10 2 157.09 17.76% 9 159.35 0.00%

350 × 30 2 472.13 4.18% 8 476.19 11.11%

350 × 50 2 787.09 3.19% 8 793.20 0.38%

Sum/avg 21 269.55 7.09% 102 271.17 1.03%

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

145

EDD, NEH, EN solution. The neighborhood operators have also applied for the GA and TS method. The

algorithms are tested and evaluated from 108 benchmark instances of Vallada and his colleagues [21]. Many

parameters for each method have been tested. The results obtained by the proposed algorithms show that TS

method outperforms GA. The algorithms initiated by EDD heuristic are always better than the algorithms

initiated by EN or NEH. Several research directions can be considered for a future work. The first idea is to

embed the resolution of the MILP (Mixed Integer Linear Programming) model into the GA, TS or into another

metaheuristic, as a new neighborhood operator. A second idea is to find better crossover and mutation operators,

in order to improve the genetic algorithm. A third idea is to propose a simulated annealing algorithm to be

compared to the GA, TS algorithms for m-machine permutation flow shop scheduling problem. Finally, the

metaheuristic methods that are proposed here can be used for minimizing the total tardiness in more complicated

scheduling problems such as an integrated flow shop scheduling and vehicle routing problem.

Acknowledgements

The authors gratefully acknowledge the financial support of the project (T17-41) from Ha Noi University of

Mining and Geology, Viet Nam. We would like to thank to Professor Jean-Charles Billaut of University of

Tours, France who provided insight and expertise that greatly assisted the research.

References

[1] M. L. Pinedo, Scheduling: Theory, algorithms, and systems. Springer 2008.

[2] J. Du and J. Y. T. Leung, “Minimizing total tardiness on one machine is NP-hard,” Mathematics of

Operations Research, vol. 19, pp. 483–495, 1990.

[3] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of machine scheduling problems,”

Annals of Discrete Mathematics, vol. 1, pp. 343–362, 1977.

[4] Y. D. Kim, “A new branch and bound algorithm for minimizing mean tardiness in two-machine

flowshops,” Computers & Operations Research, vol. 20(4), pp. 391–401, 1993.

[5] J. C.-H. Pan and E.-T. Fan, “Two-machine flowshop scheduling to minimize total tardiness,”

International Journal of Systems Science, vol. 28, no. 4, pp. 405–414, 1997.

[6] T. Sen, P. Dileepan, and J. N. D. Gupta, “The two-machine flowshop scheduling problem with total

tardiness,” Computers & Operations Research, vol. 16(4), pp. 333–340, 1989.

[7] J. C. H. Pan, J. S. Chen, and C. M. Chao, “Minimizing tardiness in a two-machine flow-shop,”

Computers & Operations Research, vol. 29, pp. 869–885, 2002.

[8] M. Nawaz, E. Enscore, and I. Ham, “A heuristic algorithm for the m-machine n-job flow shop

sequencing problem,” Omega, vol. 11, pp. 91–95, 1983.

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

146

[9] C. Koulamas, “A guaranteed accuracy shifting bottleneck algorithm for the two-machine flowshop

total tardiness problem,” Computers & Operations Research, vol. 25, pp. 83–89, 1998.

[10] I. Osman and C. Potts, “Simulated annealing for permutation flow-shop scheduling,” Omega, vol. 17,

no. 6, pp. 551–557, 1989.

[11] J. Grabowski and M. Wodecki, “A very fast tabu search algorithm for the permutation flow shop

problem with makespan criterion,” Computers & Operations Research, vol. 31, pp. 1891–1909, 2004.

[12] E. Nowicki and C. Smutnicki, “A fast tabu search algorithm for the permutation flowshop problem,”

European Journal of Operational Research, vol. 91, pp. 160–175, 1996.

[13] V. A. Armentano and D. P. Ronconi, “Tabu search for total tardiness minimization in flowshop

scheduling problems,” Computers & Operations Research, vol. 26, pp. 219–235, 1999.

[14] M. Ben-Daya and M. Al-Fawzan, “A tabu search approach for the flow shop scheduling problem,”

European Journal of Operational Research, vol. 109, pp. 88–95, 1998.

[15] J. Brandão and A. Mercer, “A tabu search algorithm for the multi-trip vehicle routing and scheduling

problem,” European Journal of Operational Research, vol. 100, pp. 180–191, 1997.

[16] G. C. Onwubolu and M. Mutingi, “Genetic algorithm for minimizing tardiness in flow-shop

scheduling,” Production Planning and Control, vol. 10, pp. 462–471, 1999.

[17] C.-J. Liao, Chao-Tang Tseng, and P. Luarn, “A discrete version of particle swarm optimization for

flowshop scheduling problems,” Computers & Operations Research, vol. 34, no. 10, pp. 3099–3111,

2007.

[18] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, and G. Gencyilmaz, “A particle swarm optimization

algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing

problem,” European Journal of Operational Research, vol. 177, no. 3, pp. 1930–1947, 2007.

[19] F. Della Croce, A. Grosso, and F. Salassa, “A matheuristic approach for the total completion time two-

machines permutation flow shop problem,” Lecture Notes in Computer Science, 6622 LNCS, pp. 38–

47, 2011.

[20] Q. C. Ta, J. C. Billaut, and J. L. Bouquard, “Recovering beam search and Matheuristic algorithms for

the F2|| ∑Tj scheduling problem,” 11th Workshop on Models and Algorithms for Planning and

Scheduling Problems, 2013, pp. 218–220.

[21] E. Vallada, R. Ruiz, and G. Minella, “Minimising total tardiness in the m-machine flowshop problem:

A review and evaluation of heuristics and metaheuristics,” Computers & Operations Research, vol. 35,

pp. 1350–1373, 2008.

International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 41, No 1, pp 133-147

147

[22] E. Vallada and R. Ruiz, “Genetic algorithms with path relinking for the minimum tardiness

permutation flowshop problem,” European Journal of Operational Research, vol. 38, pp. 57–67, 2010.

[23] V. Fernandez-Viagas and J. M. Framinan, “NEH-based heuristics for the permutation flowshop

scheduling problem to minimise total tardiness,” Computers & Operations Research, vol. 60, pp. 27-36,

2015.

[24] V. Fernandez-Viagas, R. Ruiz, and J. M. Framinan, “A new vision of approximate methods for the

permutation flowshop to minimise makespan: State-of-the-art and computational evaluation,”

European Journal of Operational Research. vol. 257, pp. 707-721, 2017.

[25] J. A. Holland, Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor,

1975.

[26] D. E. Goldberg, Genetic algorithms in Search, Optimization and Machine Learning. Addison-Welsey,

Reading Mass, 1989.

[27] M. C. Portmann and A. Vignier. "Chapter 4: Genetic algorithm and scheduling". In Production

Scheduling, P. Lopez and F. Roubellat Eds, Wiley-ISTE, 2008.

[28] R. T. F. Della Croce, M. Ghirardi, “Recovering Beam Search: en- hancing the beam search approach

for combinatorial optimization problems,” J. Heuristics, vol. 10, pp. 89–104, 2004.

[29] R. Ruiz, C. Maroto, and J. Alcaraz, “Two newrobust genetic algorithms for the flowshop scheduling

problem,” Omega, vol. 34, pp. 461–476, 2006.

[30] F. Della Croce, M. Ghirardi, and R. Tadei, “Recovering Beam Search : Enhancing the Beam Search

Approach for Combinatorial,” Journal of Heuristics, vol. 10, pp. 89–104, 2004.

[31] C. C. Wu, W. C. Lee, and T. Chen, “Heuristic algorithms for solving the maximum lateness scheduling

problem with learning considerations,” Computers & Industrial Engineering, vol. 52, pp. 124–132,

2007.

[32] F. Glover, “Tabu Search - Part I,” ORSA Journal on Computing, vol. 1, pp. 190–206, 1989.

[33] F. Glover, “Tabu Search - Part II,” ORSA Journal on Computing, vol. 2, pp. 4–32, 1990.

[34] E. Vallada, R. Ruiz, and G. Minella, “Minimising total tardiness in the m-machine flowshop problem :

A review and evaluation of heuristics and metaheuristics,” Computers & Operations Research, vol. 35,

pp. 1350–1373, 2008.

[35] C. N. Potts and L. N. Van Wassenhove, “A decomposition algorithm for the single machine total

tardiness problem,” Operations Research Letters, vol. 1, pp. 177–181, 1982.

