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Abstract 

Consecutive Dry Days (CDD) is one of several precipitation extreme parameter suggested by Expert Team on 

Climate Change Detection and Indices (ETCDDI) to give a brief overview about climatic condition, especially 

related to climate change and drought occurrences. Daily precipitation data from observed Indonesia Agency for 

Meteorology, Climatology and Geophysics (BMKG) station network and Climate Hazzard group Infra-Red 

Precipitation with Station (CHIRPS) during 35 years (1981 – 2015) in South Sulawesi was used for CDD 

calculation. Three approaches were used for developing high resolution gridded (0.05o x 0.05o) precipitation 

extreme index over ungauged area, i.e. i) CHIRPS standardization with observed CDD (Std_CHIRPS); ii) 

spatial interpolation using nearest neighbours (NN) and invers distance weighted (IDW); and iii) geostatistics 

method using ordinary kriging (OK) and regression kriging (RK). 
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Spatial and temporal assessments for each interpolation performance were done by applying leave one out cross 

validation method with actual CDD from observed station data. This study found that spatial and temporal 

distribution of CDD over the region are described by almost all interpolation methods, except Std_CHIRPS. 

Interpolation performance was reduced during La Niña periods or after El Niño years. Highest correlation 

coefficient value with lowest RMSE obtained by OK and RK.  Nevertheless, RK shows closest standard 

deviation value compared to observation data. Better interpolation performance achieved by RK compare to 

another method for CDD in South Sulawesi.  

Keywords: Consecutive Dry Days; drought; geostatistics; spatial interpolation; precipitation extreme.  

1. Introduction 

Climatic information related to precipitation extreme and drought generally constructed based on precipitation 

data from meteorological rainfall observation network [1,3]. Consecutive Dry Days (CDD) is one of several 

precipitation extreme parameter suggested by Expert Team on Climate Change Detection and Indices 

(ETCDDI) to give a brief overview about climatic condition, especially related to climate change and drought 

occurrences [4]. South Sulawesi is located in the centre of Indonesian Maritime Continent which has various 

elevation, spatially high precipitation variability and greatly influenced by global climate anomaly occurrence 

[5,7]. Unfortunately, this region is not covered by high network density and dense distribution of meteorological 

stations. The problem arises when the community or policy-makers request climate related information over 

area which not covered by observation network. To overcome this limitation, spatial interpolation for estimating 

meteorological parameter over those area could be performed [8,10].  

El Niño Southern Oscillation (ENSO) as one of the largest global climate phenomenon can lead to rainfall 

deficit and drought for several places in Indonesia [11], such as South Sulawesi [12], Pamengpeuk [13] and 

Cilacap [14]. Spatial heterogeneity of climate variability between one to another region lead to different impact 

associated with global climate anomaly [11,15]. For this reason, spatially high-resolution climatic information is 

essential for climate anomaly impact assessments.   

Utilization and application of remote sensing data from weather satellite or radar become suitable option for 

providing climate related information [16,18]. The superiority of remote sensing data in providing an 

atmospheric dynamics condition is the strongest considerations for using this data as important climate 

information resource. Nevertheless, further correction should be done by dealing with bias between the results 

of remote sensing output and ground observations data [19,20]. Gridded reanalysis data from various global 

climate models output are another valuable alternative resource for providing precipitation extreme and drought 

information [21]. Unfortunately, spatial resolution of the model output still relatively low compare to remote 

sensing data and need to be downscaled to point station data [21,23]. Blending observation and remote sensing 

data are then performed to obtain higher spatial resolution [17,24].  

Spatial interpolation methods are important tool in order to predict and estimate the values at unmeasured points 

from observed locations, such as precipitation data which is very important for meteorological drought 
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information [8]. Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) is valuable of data 

assimilation product based on land-only climatic precipitation database and involve three diverse types of 

information such as global climatology data, satellite estimates and gauged observations. Furthermore, this 

database concatenates all information from monthly precipitation climatology CHPClim (Climate Hazards 

Group Precipitation Climatology), quasi-global geostationary thermal infrared satellite observations, Tropical 

Rainfall Measuring Mission's (TRMM) 3B42 product, atmospheric precipitation model from NOAA CFS 

(Climate Forecast System), and various precipitation observations sources, including national or regional 

Meteorological Services [25]. Nevertheless, higher spatial resolution (0.05o x 0.05o) is the main difference of 

this dataset compared to another majority of the available global precipitation data that have 0.5° x 0.5° or lower 

spatial resolution [26,27], such as APHRODITE [28,29], TRMM's 3B43 [30] and E-OBS [31] which have a 

0.25° x 0.25° resolution. 

Various spatial interpolation techniques have been applied to weather and climate parameter in tropical 

maritime countries such as nearest neighbours (NN), inverse distance weighted (IDW), ordinary kriging (OK), 

universal or regression kriging (RK), kriging with external drift and cokriging [32,33]. Although several spatial 

interpolation techniques can be readily used, it is complicated to determine which one is the best estimator for 

the actual observations. The characteristics of dataset determine the interpolation technique performance. An 

interpolation method is suitable for some variables but not work for another’s [32]. Nevertheless, those 

interpolation methods and its performance assessment are not yet applied to generate high resolution CDD 

dataset. 

The purpose of this research was to develop high resolution precipitation extreme dataset, especially for 

ungauged area in South Sulawesi Indonesia using simple statistics approach using CHIRPS standardization with 

observed CDD, spatial interpolation method and geostatistics technique. Furthermore, spatio-temporal 

validation and assessment for each interpolation performance was applied using leave one out cross validation 

method with actual CDD from observed station data. There are several limitations of this research, such as less 

observational data on mountainous area for validation, relatively sparse observed spatial distribution station on 

northern part of study area, limited observational network data quality and availability. 

2. Material and Method 

2.1. Dataset 

Daily precipitation data at 293 active observation station in South Sulawesi from Indonesia Agency for 

Meteorology, Climatology and Geophysics (BMKG) observation network station spanning on 44 years period 

(1972 – 2015) are collected for this study. This observation network located on various altitude (2 – 1549 meter 

above sea level), consist of various source type (i.e. rain gauge (Obs Gauge); Agricultural Meteorological 

stations (AgriMet); BMKG weather stations) and evenly distributed over South Sulawesi (Figure 1) region. Data 

quality control have been performed to select stations which are comply the following criteria: the data are 

available for 25 or more years; missing data only 10 % or less per year; and passed standard normal 

homogeneity test [34] on annual precipitation to confirm homogeneity. 
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 Finally, only 23 stations are selected which satisfied these criteria (Table 1) and only 35 years period (1981 - 

2015) to meet up CHIRPS data temporal availability. This data was used to calculate maximum number of 

consecutive days with daily precipitation amount < 1 mm (CDD) [4]. 

CHIRPS dataset (available from 1981) also used to calculate CDD for each grid covered on the study area with 

0.05o x 0.05o horizontal resolution.  

This gridded dataset was obtained from Climate Hazards Group/ The Department of Geography, University of 

California Santa Barbara  

(ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/). 

 This dataset used to make comparison with observed data and used as independen variable to create trend 

model prediction during regression kriging analysis.  

CDD are calculated from station and gridded data for each year over 35 years (1981 – 2015 period). 

 

Figure 1: Spatial distribution of BMKG station networks with shaded elevation (in meter above sea level) 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
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Table 1: List of BMKG observational network used for this study 

Observed Station  Location Altitude (m.a.s.l) Type Longitude Latitude 

ANABANUA Wajo 15 Obs Gauge 120.06464 -3.94342 

BATUBASSI Maros 13 Obs Gauge 119.66269 -5.01972 

BATUKAROPA Bulukumba 81 AgriMet 120.20811 -5.46919 

BIRINGROMANG Makassar 8 BMKG 119.47931 -5.17575 

BPPBENGO Bone 77 Obs Gauge 120.02008 -4.62333 

BPPDOPING Wajo 4 Obs Gauge 120.32411 -4.03861 

BPPKGALESONG Takalar 15 Obs Gauge 119.38639 -5.31550 

BPPMALAKAJI Gowa 750 Obs Gauge 119.84842 -5.43408 

BUKITHARAPAN Pare-pare 80 Obs Gauge 119.65094 -3.98203 

ENREKANG Enrekang 65 Obs Gauge 119.77425 -3.57556 

MACOPE Bone 9 Obs Gauge 120.34703 -4.49661 

MENGE Wajo 38 Obs Gauge 119.91892 -3.98178 

PGCAMMING Bone 132 AgriMet 120.09275 -4.85911 

PGTAKALAR Takalar 15 AgriMet 119.50108 -5.35769 

SIWA Wajo 25 Obs Gauge 120.36394 -3.74975 

STAKLIMMAROS Maros 13 BMKG 119.57219 -4.99775 

STAMARPAOTERE Makassar 2 BMKG 119.41983 -5.11375 

STAMETHASANUDDIN Maros 14 BMKG 119.55214 -5.07100 

STAMETMASAMBA Luwu utara 50 BMKG 120.32417 -2.55444 

STAMETPONGTIKU Tana toraja 829 BMKG 119.81878 -3.04511 

STASIUNGEOFISIKA Gowa 28 Obs Gauge 119.46997 -5.21797 

SUMPANGBINANGAE Barru 7 Obs Gauge 119.61878 -4.40919 

TODOKKONG Pinrang 18 Obs Gauge 119.52875 -3.53786 

2.2. Method 

Simple statistics approach performed on CDD CHIRPS data by standardization with observed station data [35]. 

The standardization method applied for correcting climatological value and standard deviation by changing the 

origin and scaling the CDD data obtained from CHIRPS (Equation 1).  

Std_CHIRPSi = (CDDCHIRPS,i – mx,I ) * [ (δy,i/ δx,i) + my,i      (1) 

Here, Std_CHIRPSi represent the corrected value and CDDCHIRPS,i for non-corrected value of the CHIRPS CDD 

of the ith year. Where mx,i represent the spatial average of the CHIRPS with δx,i spatial standard deviation and 

my,i is observed CDD with δy,i spatial standard deviation.  

Almost all spatial interpolation methods estimations can be represented as weighted averages of sampled data 
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and used similar general estimation formula, as follows [36,37]: 

�̂�𝑧(𝑥𝑥0) = ∑ 𝜆𝜆𝑖𝑖𝑧𝑧(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1           (2) 

Here, �̂�𝑧 is the estimated value of a parameter at the unmeasured location 𝑥𝑥0, z is observed value at the sampled 

point 𝑥𝑥𝑖𝑖, 𝜆𝜆𝑖𝑖 is the weight assigned to the sampled point, and n represents the number of sampled points used for 

the estimation. The nearest neighbours (NN) is one of the earliest and simplest method. This method estimates 

the parameter value at an unmeasured point based on the value of the nearest sample by drawing perpendicular 

bisectors between sampled points (n), forming such as Thiessen (or Dirichlet/Voronoi) polygons (Vi, i=1, 2, 3, 

…, n). The estimations of the parameter at unmeasured points within polygon Vi are the measured value at the 

nearest single sampled data point xi that is �̂�𝑧(𝑥𝑥0) = z(xi). The weights are: 

𝜆𝜆𝑖𝑖 = �1 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖  𝜖𝜖 𝑉𝑉𝑖𝑖 ,
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

          (3) 

All locations (or points) inside each polygon are assigned as similar value [37]. There are several algorithms 

exist to generate the polygons [36]. 

Inverse distance weighted (IDW) is deterministic interpolation method widely used in spatial modelling. This 

method predict the values of a parameter at unsampled location using inverse function of the distance from the 

point of interest to the sampled points as weighted on linear combination of values at sampled points. Sampled 

points closer to the unsampled point are more similar to it than those further away in their values assumption is 

used [36]. The prediction is calculated based on weighted averages, which are proportional to the inverse of the 

distance between the interpolated and measured points [38]. The weights can be defined as: 

𝜆𝜆𝑖𝑖 =
1
𝑑𝑑𝑖𝑖
𝑝𝑝�

∑ 1
𝑑𝑑𝑖𝑖
𝑝𝑝�

𝑛𝑛
𝑖𝑖=1

           (4) 

Here, p is a power parameter, di represents the distance between x0 and xi, and n is the number of sampled points 

used for the estimation. The power parameter is the main factor affecting the IDW accuracy. Weights decreases 

when the distance increases, especially when great value of the power parameter was used. This mean that 

nearby samples have a heavier weight, more influence on the estimation, and the spatial interpolation is local 

[39]. 

Geostatistical methods can be used to describe spatial patterns of the primary parameter, interpolate the values at 

unsampled locations and model the error or uncertainty of the estimated surface [36]. Kriging algorithms were 

used for estimating continuous variable in several geostatistics methods. Kriging is a generic name for a 

generalized least-squares regression algorithms family, used in pioneering work of Danie Krige [40]. The 

principle of autocorrelation (spatial correlation) between sample data points based on their distance from each 

other to predict nearby values was used in this geostatistical approach. This autocorrelation in paired sample 

data points is called semivariogram (γ) and defined as: 
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𝛾𝛾(𝑥𝑥𝑖𝑖 , 𝑥𝑥0) = 𝛾𝛾(ℎ) = 1
2
𝑣𝑣𝑣𝑣𝑒𝑒[𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝑍𝑍(𝑥𝑥0)]        (5) 

Here, Z is parameter value at corresponding data point, h is the point distance between xi and x0, and γ(h) is the 

semivariogram (commonly referred to as variogram) [37,41]. The semivariance can be estimated from the data, 

as follows: 

𝛾𝛾�(ℎ) = 1
2𝑛𝑛
∑ �𝑧𝑧(𝑥𝑥𝑖𝑖) − 𝑧𝑧(𝑥𝑥𝑖𝑖 + ℎ)�2𝑛𝑛
𝑖𝑖=1         (6) 

Here, n represent the number of pairs of sample points which separated by distance h. Modelling and estimation 

of variogram is very important for spatial interpolation. The variogram models could be consist of simple 

models (i.e. Nugget, Exponential, Spherical, Gaussian, Linear, and Power model) or the nested sum of one or 

more simple models [42]. Variants of the basic equation (7) used by all kriging estimators, which is a slight 

modification of equation (2), as follows:   

�̂�𝑍(𝑥𝑥0) − 𝜇𝜇 = ∑ 𝜆𝜆𝑖𝑖[𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝜇𝜇(𝑥𝑥0)]𝑛𝑛
𝑖𝑖=1         (7) 

Here, μ represent known stationary mean which calculated as the average of the data and assumed to be constant 

over the whole domain, λi is kriging weight, n is the number of sampled points used to make prediction which 

also depends on the size of the search window, and μ(x0) represent the mean of samples within the search 

window [36]. The ordinary kriging (OK) estimates the parameter values using equations (6) and (7) by replacing 

μ with a local mean μ(x0) or the mean of samples within the search window, and forcing [1 −∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1 ] = 0, that 

is [∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1 ] = 0, which is achieved by plugging it into equation (7). Therefore, equations (6) and (2) generally 

used by OK to make the estimation [36].  

When regression kriging (RK) applied, trend and residuals predictions are made separately and then added back 

together. Thus, the CDD at a new unmeasured point, x, is predicted using RK as follows  [43]: 

�̂�𝑍𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚(𝑥𝑥) + 𝑒𝑒(𝑥𝑥)          (8) 

Here the trend, m(x), is fitted using linear regression analysis and the residuals, r(x), are estimated using OK. 

The trend model coefficients can be solved using a weighted linear regression, where the covariance matrix, i.e. 

covariances between sample point pairs, is employed as the matrix of weights. The most known factors that 

influence on predicted parameter trend should be chosen as independent variables to model the trend [43]. In 

this study, CDD from CHIRPS data used as independen variable and observed CDD from BMKG network used 

as dependen variable. 

Cross validation applied by testing the estimation method at the locations of existing samples (observed station). 

The observed CDD value at a particular location is temporarily discarded from the sample data set, then the 

CDD value at the same location is estimated using the remaining samples. This procedure, can be seen as an 

experiment the estimation process by pretending that sampled at certain location are not available. After the 

CDD is predicted, the estimate result then compared it to the true sample value that was initially removed from 
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the sample data set. This procedure is repeated for all available samples [39]. The resulting true and estimated 

values can then be compared using several statistical parameters such as correlation coefficient (CC), mean 

absolute error (MAE) and Root Mean Square Error (RMSE).  

Another tool used to compare the different methods is the box plot [44]. This tool used for representing a 

frequency distribution of cross validation interpolation result. The plain box and whisker diagram consist of a 

box enclosing the interquartile range values, a line which showing the median and whiskers lines. This whiskers 

lines extending from the limits of the interquartile range to the extremes of the data, or to some other values 

such as the 90th percentiles. The brief overview of data distribution,  how it lies about the mean or median and 

extreme values identification could be obtained from box plot [37]. 

Spatial interpolation performance also plotted using Taylor diagrams [45] which provide a way of graphically 

summarizing how closely a modelled pattern (or a set of patterns) matches observed values. The similarity 

between observed and interpolated value for each station are quantified by their correlation coefficient (CC), 

centered root-mean-square difference (RMSD) and the amplitude of their variations (represented by their 

standard deviations). This diagram is especially useful in evaluating complex models, such as those used to 

study geophysical phenomena [45]. 

3. Results and Discussion 

3.1. Spatial Variability of Precipitation Extreme 

High resolution precipitation extreme dataset was produced yearly for all time period.  

Comparison between maximum CDD calculated based on observational network and gridded CHIRPS data can 

be seen in Figure 2. 

 Longest consecutive dry days number explained by color bar. Spatial distribution pattern of CHIRPS and 

observational based maximum consecutive dry days over the region during analysis period are visually quite 

similar.  

Relatively longer CDD period (140 – 260 days) observed in south western part of the region and another part 

dominated by shorter CDD (80 – 140 days).  

Different perspective arises when more detailed investigation is performed on comparison between observed 

and CHIRPS value.  

CHIRPS based CDD shows shorter period (60 – 120 days) compared to observed value (underestimate) for all 

region. Relatively high spatial CDD variability between one particular region with another observed by gauged 

station are not well represented by CHIRPS data.  Spatial variability of observed CDD between south eastern 

part and northern part also not well captured by this dataset. Further investigation applied on yearly average 

CDD, which shows relatively similar result with maximum CDD with smaller values (Figure 2). CHIRPS 

generally produced underestimates CDD values and its spatial variability are suppressed. 
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(a) 

 

(b) 

 

Figure 2: Comparison of maximum Consecutive Dry Days (CDD) based on gauged observation (a) and 

CHIRPS data (b) during 35 years period (1981 – 2015). Blue to red shaded explain number of CDD in days unit. 

 

(a) 

 

(b) 

 

Figure 3: Comparison of Consecutive Dry Days (CDD) yearly average based on gauged observation (a) and 

CHIRPS (b) during 35 years period (1981 – 2015). Blue to red shaded explain number of CDD in days unit. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 4: Spatial distribution of maximum CDD based on CHIRPS standardization (Std_CHIRPS) (a), Nearest 

Neighbours (NN) (b), Invers Distance Method (IDW) (c), Ordinary Kriging (OK) (d) and Regression Kriging 

(RK) (e) spatial interpolation method. Blue to red shaded explain number of CDD in days unit. 

Spatial distribution of maximum CDD based on each interpolation method can be seen in Figure 4. Spatial 

variability between one region to another can be found easily in this interpolation result. Std_CHIRPS, IDW and 

RK shows relatively similar higher CDD values in south western part, east part and northern part of the region. 

These characteristics are not well captured by NN and OK due to the nature of interpolation method which 

influenced by different nearby observation value. There is no different spatial variability pattern found when 

using yearly CDD average data (Figure 5).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 5: Spatial distribution of yearly average CDD based on Std_CHIRPS (a), NN (b), IDW (c), OK (d) and 

RK (e) spatial interpolation method. Blue to red shaded explain number of CDD in days unit. 

3.2. Spatio – Temporal Performance of Interpolation  

Spatial and temporal assessment for each interpolation performance was done by applied leave one out cross 

validation method with actual CDD from observed station data. Spatial and temporal distribution of CDD in this 

region are well described by almost all interpolation method, except Std_CHIRPS. Temporal cross validation 

result of Root Mean Squared Error/ RMSE for each interpolation method can be seen on Figure 6. Interpolation 

performance generally reduced during La Niña periods or after El Niño years for all method. This condition 

occurred due to smaller CDD value over all region during this period which reduce spatial variability. 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 6: Temporal Cross Validation Result of Root Mean Squared Error/ RMSE (a), Mean Absolute Error/ 

MAE (b), Correlation Coefficient (c) and box plot of each parameter (d, e, f) for CHIRPS standardization 

(Std_CHIRPS), Nearest Neighbour (NN), Invers Distance Method (IDW), Ordinary Kriging (OK) and 

Regression Kriging (RK) Spatial Interpolation Method 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 7: Spatial map of cross validation result showed by coefficient correlation values for Std_CHIRPS (a), 

NN (b), IDW (c), OK (d) and RK (e) spatial interpolation method. 

Spatial map of cross validation result expressed by coefficient correlation value are showed in Figure 7. 

Relatively low correlation value observed on northern and southern part of the region. Meanwhile, in the center 

of the region generally shows higher interpolation performance. Limited nearby station for interpolation process 

in the northern and southern part suspected as reason for this occurrence.  Smaller coefficient values found over 

all region when Std_CHIRPS applied. This condition expected caused by standardization process on CHIRPS 

data which intensify standard deviation value.  



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 42, No  4, pp 27-46 

40 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 8: Spatial map of cross validation result showed by root mean square error (RMSE) values for 

Std_CHIRPS (a), NN (b), IDW (c), OK (d) and RK (e) spatial interpolation method. 

Spatial map of cross validation result described using root mean square error (RMSE) values for each 

interpolation method can found in Figure 8.  

Relatively similar result found when interpretation performance assessed using RMSE value. Smaller RMSE 

value generally located at the center of the region which have more nearby station used for interpolation 

process. Utilization of CHIRPS data as second variable for interpolation method enhanced RK performance by 

reducing RMSE value, especially in the northern part of the region. 
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Figure 9: Box plot comparison between Observed CDD (OBS), original CHIRPS data (CHIRPS), CHIRPS 

standardization (Std_CHIRPS), Nearest Neighbour (NN), Invers Distance Method (IDW), Ordinary Kriging 

(OK), Regression Kriging (RK) spatial interpolation method. Shaded area shows observed CDD range and 

interquartile range (darker) as observed trace hold comparison. 

 

Figure 10: Taylor diagram of spatio – temporal cross validation result for all years and all observation point. 

Dotted black line denote correlation coefficient, RMSE for red line, and dotted blue line for standard deviation. 

Box plot comparison between observed CDD (OBS) and another interpolation method can be seen in Figure 9. 

Spatial and temporal distribution of observed CDD in this region are well described by almost all interpolation 

method, except original CHIRPS data and Std_CHIRPS. CHIRPS tend to have smaller inter quartile range, 
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while Std_CHIRPS have wider distribution result with generate more upper extreme value. Relatively high 

correlation coefficient value (r = 0.79) with lowest RMSE obtained by geostatistical approach (OK=23.8; RK 

=24.1) can be seen on Figure 10.  Nevertheless, RK shows fitted interquartile range and closest standard 

deviation value (32.3) compared to observation data (38.9) (Figure 8).  

These results are consistent with previous studies [10,32] which confirmed superiority performance of 

geostatistics approach for precipitation estimation in archipelagic regions with prominent climate variability. 

The similar result was also found when spatial interpolation and geostatistical approach applied for soil moisture 

[46] and land surface temperature estimation [47,48]. 

4. Conclusion 

Spatial and temporal distribution of CDD in South Sulawesi region are well described by almost all 

interpolation method, except Std_CHIRPS (high RMSE and MAE fluctuation). Cross validation was applied on 

interpolated CDD data against observed value over 35 years period. Interpolation performance reduced during 

La Niña periods or after El Niño years. This condition occurred due to highly spatial climate variability and 

various spatial climate response to global climate anomaly between one location to another, especially on 

eastern and western part of South Sulawesi. Geostatistical approach shows its superiority against simple 

statistics standardization with observation technique and spatial interpolation method when applied to CDD 

data. Relatively high correlation coefficient value (r = 0.79) with lowest RMSE obtained by geostatistical 

approach (OK=23.8; RK =24.1).  Nevertheless, RK shows fitted interquartile range and closest standard 

deviation value (32.3) compared to observation data (38.9). This result makes RK becomes the best 

interpolation method for CDD in South Sulawesi.  
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