

International Journal of Sciences: Basic and Applied Research (IJSBAR)

Basic and Applie Research ISSN 2307-4531

ISSN 2307-4531 (Print & Online)

http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

Reduction of ²²³Ra retention in the Large Intestine during

Targeted Alpha Therapy with ²²³RaCl₂ by Oral BaSO₄ **Administration in Mice**

Sayaka Hanadate^a, Yukie Yoshii^{b*}, Kohshin Washiyama^c, Mitsuyoshi Yoshimoto^d, Tomoo Yamamura^e, Makoto Watanabe^f, Hiroki Matsumoto^g, Mineko Igarashi^h, Atsushi B Tsujiⁱ, Tatsuya Higashi^j

a,b,h,i,j National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan

^aFaculty of Science, Toho University, Chiba 274-8510, Japan ^cFaculty of Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan ^cAdvanced Clinical Research Center, Fukushima Medical University, Fukushima 960-1295, Japan ^dDivision of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan

^{e,f}Institute for Materials Research, Tohoku University, Sendai 980-8579, Japan ^eInstitute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan ⁸Nihon Medi-Physics Co., Ltd., Chiba 299-0266, Japan ^bEmail: yoshii.yukie@qst.go.jp

Abstract

Targeted alpha therapy with ²²³RaCl₂ is used to treat skeletal metastases of hormone-refractory prostate cancer. The intravenous injection of ²²³RaCl₂ causes gastrointestinal disorders such as nausea, abdominal discomfort, and diarrhea as frequent clinical adverse events caused by radiation. BaSO₄ is known to display Ra²⁺ ion uptake in its structure and is clinically used as a contrast agent for X-ray imaging following oral administration. Here, we investigated the feasibility of a method to reduce ²²³Ra retention in the large intestine with BaSO₄ by biodistribution studies in mice. ²²³RaCl₂ biodistribution was examined in ddY mice after intravenous administration (10 kBq/mouse).

^{*} Corresponding author.

BaSO₄ (100 mg/mouse) was orally administered 1 h before 223 RaCl₂ injection. We also investigated the effect of laxative treatment on BaSO₄ activity, since laxatives are clinically used with BaSO₄ to avoid impaction in the large intestine. The results shows BaSO₄ significantly reduced 223 Ra retention in the large intestine after 223 RaCl₂ injection in mice when compared with the control without BaSO₄ administration (P < 0.05). Excretion of 223 Ra into the feces was significantly increased by BaSO₄ administration (P < 0.05). Laxative treatment did not affect BaSO₄ activity in reducing 223 Ra retention, although no additional effect of laxative treatment to 223 Ra excretion was observed in mice. BaSO₄ administration was effective in reducing 223 Ra retention in the large intestine during 223 RaCl₂ therapy, and laxative treatment did not attenuate BaSO₄ activity. This method could be useful in reducing adverse events caused by radiation exposure to the large intestine during 223 RaCl₂ therapy.

Keywords: targeted alpha therapy; ²²³Ra; BaSO₄; large intestine; radiation exposure.

1. Introduction

Prostate cancer is the most common cancer among men worldwide [1]. Androgen deprivation is mainly used in the treatment of prostate cancer [2]. Despite the initial positive effect, this treatment is not curative, and majority of these patients eventually become castration-resistant [3, 4]. Most patients with castration-resistant prostate cancer (CRPC) develop skeletal metastases [5] that are a major cause of disability, reduced quality of life, and eventual death [6-8]. Several bone-targeted therapies using bisphosphonates, denosumab, and β^- emitter ⁸⁹SrCl₂ have been used to treat skeletal metastases in patients with CRPC; however, these treatments are palliative and do not improve patient survival [6, 7, 9, 10].

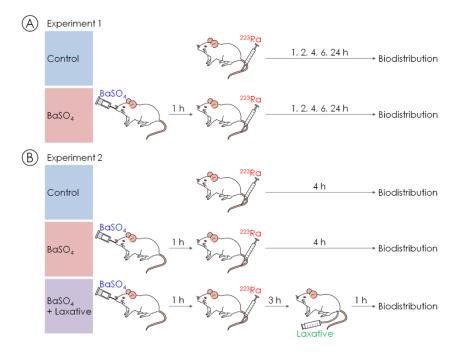
²²³RaCl₂ is an alpha particle-emitting compound and the active pharmaceutical ingredient of the first bone-targeted therapy that is reported to increase overall survival in patients with CRPC who develop skeletal metastases [6, 11]. This drug is approved by the Food and Drug Administration and used for treating patients with advanced CRPC, specifically in men with skeletal metastasis after surgery or symptomatic bone metastases without known visceral metastatic disease, in clinical practice [12]. ²²³Ra (T_{1/2} = 11.4 days) is the sixth element in group 2 of the periodic table. This group contains calcium and is known as the group of alkaline earth metals [11]. Once intravenously injected into the patients, ²²³Ra behaves as bone-seeking calcium mimetic, and selectively forms complexes with the bone mineral, hydroxyapatite, in activated osteoblastic regions of the bone with a high turnover near metastatic lesions. ²²³Ra generates four alpha particles in the decay process, in which approximately 95% of the total radiation energy is released by alpha decay [13]. The alpha particles emitted from ²²³Ra can damage adjacent cancer cells by causing severe double-strand DNA breaks with a high linear energy transfer [14, 15]. A randomized phase III trial (ALSYMPCA) using ²²³RaCl₂ indicated a significant improvement in overall survival in men with bone metastatic CRPC (median overall survival of 14 months vs. 11.2 months in those on placebo) [6]. ²²³RaCl₂ is now widely used as the first alpha particle-emitting radiopharmaceutical compound.

However, a clinical imaging study revealed that high radioactivity of ²²³Ra is found in the large intestine after intravenous injection of ²²³RaCl₂, and dosimetry analysis demonstrated that the large intestine receives high radiation exposure [16]. As a consequence, the high retention of ²²³Ra in the large intestine causes

gastrointestinal disorders, such as nausea, abdominal discomfort, and diarrhea, as the most frequent clinical adverse events [11]. Therefore, methods to reduce ²²³Ra retention in the large intestine in ²²³RaCl₂ therapy are needed. Here, we focused on the administration of BaSO₄, which has been reported to have the property of taking up Ra²⁺ ion in its structure [17, 18]. It has been demonstrated that the Ra²⁺ ion is decreased in BaSO₄ powder suspensions because of the absorption of Ra²⁺ ion into the open micropores of BaSO₄ [17, 18]. Since BaSO₄ with oral administration is already used as a contrast agent for X-ray imaging in clinical settings [19], we hypothesized that it can be useful to reduce the ²²³Ra retention in the large intestine. Therefore, we examined the effects of BaSO₄ on the biodistribution of ²²³Ra in mice. In clinical practice, BaSO₄ is usually used with laxatives to avoid BaSO₄ impaction in the colon [19]. Thus, we also examined the effect of laxative use on BaSO₄'s activity in reducing the retention of ²²³Ra in the large intestine.

2. Materials and methods

2.1. Radionuclides


²²³Ra (T_{1/2} = 11.4 days) was produced using a ²²⁷Ac/²²⁷Th/²²³Ra generator system. ²²⁷Ac (T_{1/2} = 21.8 years) was obtained from the Institute for Materials Research, Tohoku University, using a method previously reported [20]. Briefly, ²²³Ra produced from the disintegration of ²²⁷Ac was purified by separation of ²²⁷Ac and ²²⁷Th (T_{1/2} = 18.7 days) as a contaminant using a tandem combination of UTEVA Resin, DGA Resin, and Prefilter Resin. These resins were obtained from Eichrom Technologies, LLC (Lisle, IL). In this system, 4 M HNO₃ was used as an eluate; ²²³Ra was passed through three cartridge system, while ²²⁷Th and ²²⁷Ac were retained by UTEVA Resin and DGA Resin, respectively. The eluate containing ²²³Ra was evaporated by heating (90°C) to dryness, resuspended in H₂O, and evaporated again to eliminate HNO₃. The resultant ²²³Ra was resuspended in saline and the solution was filtered through a sterile filter (0.2 μm, Whatman); the pH was confirmed to be neutral before injection. The radioactivity of ²²³Ra was quantified using a germanium semiconductor detector (ORTEC, SEIKO EG&G, Tokyo, Japan). After ²²³Ra separation, ²²⁷Ac was recovered from DGA Resin with 0.1 M HCl for ²²³Ra ingrowth.

2.2. In vivo biodistribution

ddY male mice (six-weeks old) were obtained from Japan SLC (Hamamatsu, Japan). Mice were allowed to acclimatize for one week before initiating the experiments. All animal experimental procedures were approved by the Animal Ethics Committee of the National Institutes for Quantum and Radiological Science and Technology (QST, Chiba, Japan) and conducted in accordance with the institutional guidelines.

Experiment 1: The effect of oral BaSO₄ administration on the biodistribution of ²²³RaCl₂ was examined in mice (Figure 1A). ²²³RaCl₂ (10 kBq/mouse in 100 μL saline) was intravenously injected into mice. BaSO₄ (100 mg/mouse dissolved in 200 μL saline; BaSO₄ group) or saline (200 μL; control group) was orally administered 1 h before ²²³RaCl₂ injection. The timing of administration of BaSO₄ was decided based on the observation of excretion of BaSO₄ in mouse feces at different times following its oral administration without ²²³RaCl₂ injection; described in Supplemental Data (Supplementary figure S1). BaSO₄ dose was decided based on its

clinical dose [21]. Mice were sacrificed 1, 2, 4, 6, and 24 h after ²²³RaCl₂ injection. In this experiment, four mice were prepared for each time point in both groups. Blood, liver, kidney, small intestine, large intestine, spleen, and femur were harvested and weighed; small and large intestines were isolated with the contents. Feces and urine that were excreted from mice were accumulated for 1, 2, 4, 6, and 24 h after ²²³RaCl₂ injection, respectively, and collected for measurement of radioactivity. ²²³Ra radioactivity of organs, feces, and urine was quantified with a γ-counter (Auto-well gamma counter ARC-370M, Aloka, Tokyo, Japan) according to a previously reported method [22-24]. Percentage of injected dose per gram (%ID/g) was calculated for blood and organs. For feces and urine, percentage of injected dose (%ID) was calculated. Experiment 2: The effect of laxative treatment on BaSO₄ activity after ²²³RaCl₂ injection was also examined in ddY male mice (Figure 1B). In this experiment, mice were administered BaSO₄, 1 h before the intravenous injection of ²²³RaCl₂ in a similar manner as described in experiment 1, with (BaSO₄ + laxative group) or without (BaSO₄ group) laxative treatment (n = 4/group). For the laxative treatment, 50% glycerin enema solution (0.3 mL) (Yoshida Pharmaceutical, Tokyo, Japan) was administered rectally 3 h after the intravenous injection of ²²³RaCl₂. The timing of laxative treatment was decided based on the observation of experiment 1. For comparison purposes, mice administered with saline instead of BaSO₄ without laxative treatment were also examined (control group) (n = 4/group). The biodistribution study was conducted 1 h after glycerin enema (4 h after ²²³RaCl₂ injection) because the laxative treatment caused the excretion of feces within 1 h after glycerin administration in mice as described in Supplemental Data (Supplementary figure S2). Biodistribution measurement was performed in a similar manner as described in experiment 1.

Figure 1: Summary of the ²²³Ra biodistribution study. (A) Experiment 1. Biodistribution study of ²²³Ra with or without BaSO₄ to examine the effect of BaSO₄ administration after ²²³RaCl₂ injection. (B) Experiment 2. Biodistribution study of ²²³Ra with laxative treatment after BaSO₄ administration to examine the effect of laxative treatment on the effect of BaSO₄ administration after ²²³RaCl₂ injection.

2.3. Statistical analysis

Data are expressed as means with corresponding standard deviations. *P* values were calculated using a 2-tailed *t*-test for comparisons between 2 groups or 1-way analysis of variance (ANOVA) for comparisons among multiple groups. Time-activity curves were analyzed using two-way ANOVA. *P* values less than 0.05 were considered statistically significant.

3. Results and discussion

3.1. Experiment 1: Effect of BaSO₄ on the biodistribution of ²²³RaCl₂

The effect of oral BaSO₄ administration on the biodistribution of ²²³RaCl₂ was observed in this study. Prior to the experiment, to determine the timing of BaSO₄ administration, we examined the excretion of BaSO₄ into the feces after oral administration (Supplementary figure S1). White-colored feces containing BaSO₄ were observed after 1 h of its oral administration (Supplementary figure S1). Therefore, the timing of BaSO₄ administration was decided as 1 h before ²²³RaCl₂ injection in this study.

We examined the biodistribution of ²²³RaCl₂ with (BaSO₄ group) or without (control group) oral BaSO₄ administration 1, 2, 4, 6, and 24 h after ²²³RaCl₂ injection. Figure 2 shows differences in the biodistribution of ²²³RaCl₂ in the blood, liver, kidney, small intestine, large intestine, spleen, and femur between control and BaSO₄ groups. ²²³Ra radioactivity in the large intestine peaked between 2 and 4 h after ²²³RaCl₂ injection, and oral BaSO₄ administration significantly reduced ²²³Ra radioactivity in the large intestine at 1, 2, and 4 h after 223 RaCl₂ injection compared with that in the control group (P < 0.05) (3.02 ± 1.19 %ID/g and 5.64 ± 0.91 %ID/g at 1 h, 4.89 ± 0.60 % ID/g and 8.92 ± 0.44 % ID/g at 2 h, and 4.44 ± 1.82 % ID/g and 7.77 ± 2.46 % ID/g at 4 h, for BaSO₄ and control groups, respectively). For further analysis, a time-activity curve of ²²³Ra in the large intestine was also prepared (Supplementary figure S3) based on ²²³RaCl₂ biodistribution data (Figure 2) for BaSO₄ and control groups. Based on analysis of the time-activity curve, ²²³Ra radioactivity in the large intestine was significantly lower in the BaSO₄ group than in the control group (P < 0.05); the area under the curve of ²²³Ra radioactivity in the large intestine decreased by 27% in the BaSO₄ group compared with that in the control group (Supplementary figure S3). We also confirmed that ²²³Ra was accumulated in the femur in both control and BaSO₄ groups with no significant differences between the two groups in terms of biodistribution (Figure 2). There was no significant difference in ²²³Ra radioactivity in the blood, liver, kidney, small intestine, and spleen between the two groups in terms of biodistribution (Figure 2).

²²³Ra radioactivity in the feces and urine with time were measured for BaSO₄ and control groups (Figure 3). The time-activity curves showed increase of ²²³Ra excretion in the feces in the BaSO₄ group compared with the control group with a significant difference (P < 0.05) (Figure 3A); the increase of ²²³Ra in the feces was observed with slight delay from decrease of ²²³Ra in the large intestine in the BaSO₄ group (Figure 3A, Supplementary figure S3). There was no significant difference in time-activity curves of ²²³Ra in the urine between control and BaSO₄ groups (Figure 3B).

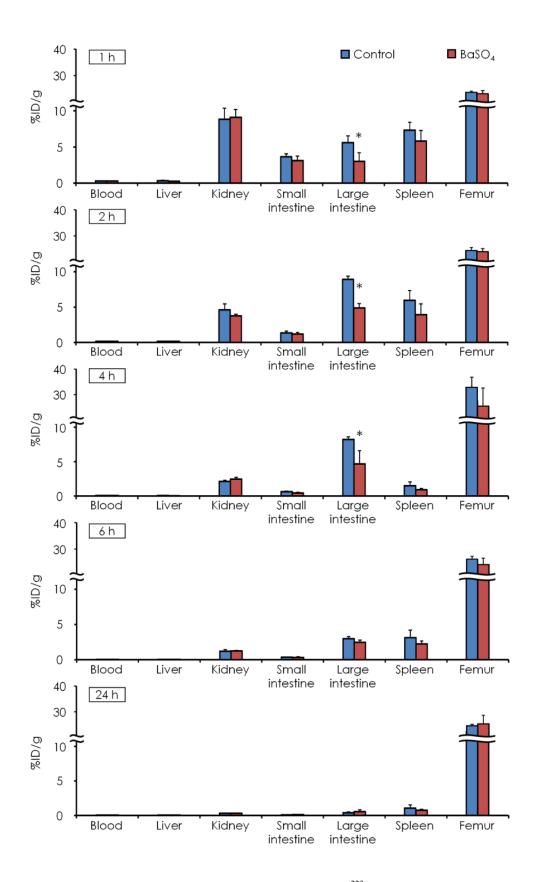


Figure 2: The effect of BaSO₄ administration on the biodistribution of 223 Ra. Data were obtained 1, 2, 4, 6, and 24 h after 223 RaCl₂ injection. Values are expressed as %ID/g for organs (liver, kidney, small intestine, large intestine, spleen, and femur) and blood. Values are shown as mean \pm SD; n = 4. Asterisks indicate statistical significance (*P < 0.05) in comparison to the control at each time point.

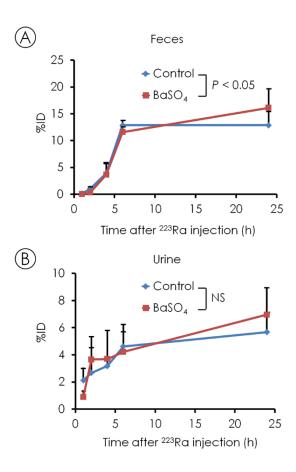


Figure 3: Time-activity curves of 223 Ra in the feces and urine for control and BaSO₄ groups. The time-activity curves of the feces (A) and urine (B) are shown. Values are expressed as %ID. Values are shown as mean \pm SD n = 4. NS = not significant

In experiment 1, we observed that oral BaSO₄ administration reduced ²²³Ra retention in the large intestines of mice and the excretion of ²²³Ra in the feces was increased by BaSO₄ administration. The effect of BaSO₄ was evident until 4 h after the administration of ²²³Ra in mice, when its retention in the large intestine was higher than at later time points.

Previous studies have reported that BaSO₄ powder in suspension displays the uptake of Ra²⁺ ion [17, 18]; however, it was unknown whether this phenomenon would take place *in vivo*. Our data showed that via oral administration, BaSO₄ was able to reduce ²²³Ra retention in the large intestine and accelerate the excretion of ²²³Ra from the large intestine into the feces in mice, suggesting that it would be effective in taking up the Ra²⁺ ion *in vivo* in ²²³RaCl₂ therapy.

The reduction of ²²³Ra retention in the large intestines could be explained by diffusion and incorporation of Ra²⁺ ion into the open micropores of BaSO₄ structure [17, 18] after oral BaSO₄ administration in mice. In addition, our data showed that the biodistribution of ²²³Ra in the femur, blood, liver, kidney, small intestine, and spleen, but not in the large intestine, was unchanged by BaSO₄ administration, suggesting that BaSO₄ does not alter the behavior of ²²³Ra as a bone-seeking agent in the body, while reducing its retention in the large intestine.

3.2. Experiment 2: Effect of laxative treatment along with oral BaSO₄ administration after ²²³RaCl₂ injection

Next, we examined the effect of laxative treatment on BaSO₄ activity in reducing 223 Ra radioactivity in the large intestines in mice, since laxative treatment is clinically used with oral administration of BaSO₄ to avoid the impaction of BaSO₄ in the large intestine. In this experiment, laxative treatment was provided 3 h after the intravenous injection of 223 RaCl₂ in mice orally administered BaSO₄. The timing of laxative treatment was decided based on the observation of experiment 1 that 223 Ra radioactivity in the large intestine peaked between 2 and 4 h after 223 RaCl₂ injection. Figure 4 shows the effect of laxative treatment along with BaSO₄ administration during 223 RaCl₂ treatment on 223 RaCl₂ biodistribution in the blood, liver, kidney, small intestine, large intestine, spleen, and femur 4 h after 223 RaCl₂ injection in BaSO₄ + laxative, BaSO₄, and control groups. In the large intestine, BaSO₄ + laxative and BaSO₄ treatments significantly decreased 223 Ra radioactivity compared with that in the control (4.05 \pm 1.05 %ID/g and 4.70 \pm 1.92 %ID/g for BaSO₄ + laxative and BaSO₄ alone groups, respectively, vs 8.22 \pm 0.41 %ID/g for the control group). BaSO₄ + laxative treatment decreased 223 Ra radioactivity to a level similar to that with BaSO₄ treatment, and laxative treatment did not enhance the effect of BaSO₄.

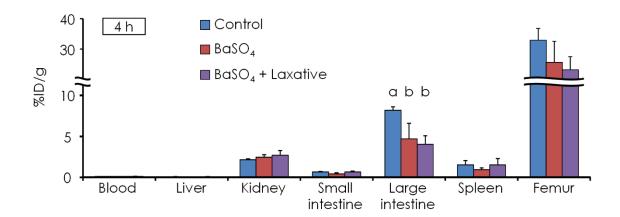


Figure 4: The effect of laxative treatment along with $BaSO_4$ administration after ^{223}Ra injection. Values are expressed as % ID/g 4 h after $^{223}RaCl_2$ injection for organs (liver, kidney, small intestine, large intestine, spleen, and femur) and blood. Values are shown as mean \pm SD; n = 4. a, b; Different letters indicate significant differences (P < 0.05).

In experiment 2, we demonstrated that the combined BaSO₄ and laxative treatment decreased ²²³Ra retention in the large intestine to a level similar to that after BaSO₄ treatment. This indicates that laxative treatment did not attenuate the ability of BaSO₄ to reduce ²²³Ra retention in the large intestine, although it does not enhance the effect of BaSO₄. In clinical settings, BaSO₄ is already used as a contrast agent for X-ray imaging via oral administration [19]. BaSO₄ is not water soluble and may be impacted and retained in the colon; therefore, laxatives are usually used to prevent the impaction of BaSO₄ in clinical practice [19]. Our data indicated that BaSO₄ effectively reduces ²²³Ra retention in the large intestine during ²²³RaCl₂ therapy and laxative treatment would facilitate the removal of BaSO₄ from the large intestine, while maintaining the activity of BaSO₄ to reduce ²²³Ra retention in the large intestine. Therefore, the use of BaSO₄ along with laxative treatment could be

useful to reduce adverse effects caused by radiation exposure to the large intestine during ²²³RaCl₂ therapy. Our data showed that there is no significant difference in the decrease of ²²³Ra radioactivity in the large intestine between two treatments, viz., BaSO₄ treatment and the combined BaSO₄ and laxative treatment in mice. This might indicate that the duration of BaSO₄ persistence in the large intestine of mice is not as long as that in humans, and laxative treatment after BaSO₄ administration is unnecessary for mice. In fact, it has been reported that gastrointestinal transit in mice is faster than that in humans [25, 26]. In addition, there might be differences in timing of BaSO₄ administration and laxative treatment between mice and humans. Therefore, further preclinical and clinical studies on the efficacy and safety of the use of BaSO₄, along with laxative treatment, in ²²³RaCl₂ therapy are needed.

4. Conclusion

In conclusion, this study demonstrated that oral BaSO₄ administration reduces ²²³Ra retention in the large intestine, and laxative treatment does not attenuate the effect of BaSO₄ to reduce ²²³Ra retention in the large intestine in mice. This method could be useful to reduce adverse effects caused by radiation exposure to the large intestine during ²²³RaCl₂ therapy.

Acknowledgements

We would like to thank Ms. Aiko Inoue (National Institute of Radiological Sciences, Chiba, Japan) for assistance in the animal experiments. This study was supported by the Institute for Materials Research, Tohoku University and Initiative for Realizing Diversity in the Research Environment from Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

References

- [1]. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol 2017; 3: 524-48. doi: 10.1001/jamaoncol.2016.5688
- [2]. Ahmadi H, Daneshmand S. Androgen deprivation therapy for prostate cancer: long-term safety and patient outcomes. Patient Relat Outcome Meas 2014; 5: 63-70. doi: 10.2147/PROM.S52788
- [3]. Petrylak DP. Current state of castration-resistant prostate cancer. Am J Manag Care 2013; 19: s358-65.
- [4]. Hwang C. Overcoming docetaxel resistance in prostate cancer: a perspective review. Ther Adv Med Oncol 2012; 4: 329-40. doi: 10.1177/1758834012449685
- [5]. Keller ET, Brown J. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 2004; 91: 718-29. doi: 10.1002/jcb.10662

- [6]. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369: 213-23. doi: 10.1056/NEJMoa1213755
- [7]. Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004; 350: 1655-64. doi: 10.1056/NEJMra030831
- [8]. Huang X, Chau CH, Figg WD. Challenges to improved therapeutics for metastatic castrate resistant prostate cancer: from recent successes and failures. J Hematol Oncol 2012; 5: 35. doi: 10.1186/1756-8722-5-35
- [9]. Hegemann M, Bedke J, Stenzl A, Todenhofer T. Denosumab treatment in the management of patients with advanced prostate cancer: clinical evidence and experience. Ther Adv Urol 2017; 9: 81-8. doi: 10.1177/1756287216686018
- [10]. Soerdjbalie-Maikoe V, Pelger RC, à Nijeholt GA, Arndt JW, Zwinderman AH, Papapoulos SE, et al. Strontium-89 (Metastron) and the bisphosphonate olpadronate reduce the incidence of spinal cord compression in patients with hormone-refractory prostate cancer metastatic to the skeleton. Eur J Nucl Med Mol Imaging 2002; 29: 494-8. doi: 10.1007/s00259-001-0728-7
- [11]. Harrison MR, Wong TZ, Armstrong AJ, George DJ. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag Res 2013; 5: 1-14. doi: 10.2147/CMAR.S25537
- [12]. Wissing MD, van Leeuwen FW, van der Pluijm G, Gelderblom H. Radium-223 chloride: Extending life in prostate cancer patients by treating bone metastases. Clin Cancer Res 2013; 19: 5822-7. doi: 10.1158/1078-0432.CCR-13-1896
- [13]. Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: alpha therapy with ²²³Ra-dichloride. J Nucl Med 2014; 55: 268-74. doi: 10.2967/jnumed.112.112482
- [14]. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005; 46: 4S-12S.
- [15]. Suominen MI, Fagerlund KM, Rissanen JP, Konkol YM, Morko JP, Peng Z, et al. Radium-223 inhibits osseous prostate cancer growth by dual targeting of cancer cells and bone microenvironment in mouse models. Clin Cancer Res 2017; 23: 4335-46. doi: 10.1158/1078-0432.CCR-16-2955
- [16]. Yoshida K, Kaneta T, Takano S, Sugiura M, Kawano T, Hino A, et al. Pharmacokinetics of single dose radium-223 dichloride (BAY 88-8223) in Japanese patients with castration-resistant prostate cancer and bone metastases. Ann Nucl Med 2016; 30: 453-60. doi: 10.1007/s12149-016-1093-8

- [17]. Bosbach D, Böttle M, Metz V. Experimental study on Ra²⁺ uptake by barite (BaSO₄). Kinetics of solid solution formation via BaSO₄ dissolution and Ra_xBa_{1-x}SO₄ (re) precipitation. Technical Report TR-10-43. Stockholm: Svensk Kärnbränslehantering AB; 2010.
- [18]. Waber J, Bosbach D, Roth G. Fundamental Insights into the Radium Uptake into Barite by Atom Probe Tomography and Electron Microscopy. Jülich: Forschungszentrum Jülich GmbH Zentralbibliothek; 2017.
- [19]. Araghizadeh F. Fecal impaction. Clin Colon Rectal Surg 2005; 18: 116-9. doi: 10.1055/s-2005-870893
- [20]. McAlister DR, Horwitz EP. Chromatographic generator systems for the actinides and natural decay series elements. Radiochimica Acta 2011; 99: 151-9. doi: 10.1524/ract.2011.1804
- [21]. Yamamoto K, Yamazaki H, Kuroda C, Kubo T, Oshima A, Katsuda T, et al. Diagnostic validity of high-density barium sulfate in gastric cancer screening: follow-up of screenees by record linkage with the Osaka Cancer Registry. J Epidemiol 2010; 20: 287-94.
- [22]. Eriksen DØ, Ryningen B, Schoultz BW, Salberg G, Larsen RH. Liquid Scintillation Spectroscopy of ²²⁷Ac and Daughters. J Anal Sci Meth Instrum 2012; 2: 33-6. doi: 10.4236/jasmi.2012.21007
- [23]. Abou DS, Pickett J, Mattson JE, Thorek DLJ. A Radium-223 microgenerator from cyclotron-produced trace Actinium-227. Appl Radiat Isot 2017; 119: 36-42. doi: 10.1016/j.apradiso.2016.10.015
- [24]. Abou DS, Ulmert D, Doucet M, Hobbs RF, Riddle RC, Thorek DL. Whole-Body and Microenvironmental Localization of Radium-223 in Naive and Mouse Models of Prostate Cancer Metastasis. J Natl Cancer Inst 2016; 108: djv380. doi: 10.1093/jnci/djv380
- [25]. Padmanabhan P, Grosse J, Asad AB, Radda GK, Golay X. Gastrointestinal transit measurements in mice with ^{99m}Tc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI Res 2013; 3: 60. doi: 10.1186/2191-219X-3-60
- [26]. Burton DD, Camilleri M, Mullan BP, Forstrom LA, Hung JC. Colonic transit scintigraphy labeled activated charcoal compared with ion exchange pellets. J Nucl Med 1997; 38: 1807-10.