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Abstract 

Targeted alpha therapy with 223RaCl2 is used to treat skeletal metastases of hormone-refractory prostate cancer. 

The intravenous injection of 223RaCl2 causes gastrointestinal disorders such as nausea, abdominal discomfort, 

and diarrhea as frequent clinical adverse events caused by radiation. BaSO4 is known to display Ra2+ ion uptake 

in its structure and is clinically used as a contrast agent for X-ray imaging following oral administration. Here, 

we investigated the feasibility of a method to reduce 223Ra retention in the large intestine with BaSO4 by 

biodistribution studies in mice. 223RaCl2 biodistribution was examined in ddY mice after intravenous 

administration (10 kBq/mouse).  
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BaSO4 (100 mg/mouse) was orally administered 1 h before 223RaCl2 injection. We also investigated the effect of 

laxative treatment on BaSO4 activity, since laxatives are clinically used with BaSO4 to avoid impaction in the 

large intestine. The results shows BaSO4 significantly reduced 223Ra retention in the large intestine after 
223RaCl2 injection in mice when compared with the control without BaSO4 administration (P < 0.05). Excretion 

of 223Ra into the feces was significantly increased by BaSO4 administration (P < 0.05). Laxative treatment did 

not affect BaSO4 activity in reducing 223Ra retention, although no additional effect of laxative treatment to 223Ra 

excretion was observed in mice. BaSO4 administration was effective in reducing 223Ra retention in the large 

intestine during 223RaCl2 therapy, and laxative treatment did not attenuate BaSO4 activity. This method could be 

useful in reducing adverse events caused by radiation exposure to the large intestine during 223RaCl2 therapy. 

Keywords: targeted alpha therapy; 223Ra; BaSO4; large intestine; radiation exposure. 

1. Introduction  

Prostate cancer is the most common cancer among men worldwide [1]. Androgen deprivation is mainly used in 

the treatment of prostate cancer [2]. Despite the initial positive effect, this treatment is not curative, and majority 

of these patients eventually become castration-resistant [3, 4]. Most patients with castration-resistant prostate 

cancer (CRPC) develop skeletal metastases [5] that are a major cause of disability, reduced quality of life, and 

eventual death [6-8]. Several bone-targeted therapies using bisphosphonates, denosumab, and β- emitter 89SrCl2 

have been used to treat skeletal metastases in patients with CRPC; however, these treatments are palliative and 

do not improve patient survival [6, 7, 9, 10]. 

223RaCl2 is an alpha particle-emitting compound and the active pharmaceutical ingredient of the first bone-

targeted therapy that is reported to increase overall survival in patients with CRPC who develop skeletal 

metastases [6, 11]. This drug is approved by the Food and Drug Administration and used for treating patients 

with advanced CRPC, specifically in men with skeletal metastasis after surgery or symptomatic bone metastases 

without known visceral metastatic disease, in clinical practice [12]. 223Ra (T1/2 = 11.4 days) is the sixth element 

in group 2 of the periodic table. This group contains calcium and is known as the group of alkaline earth metals 

[11]. Once intravenously injected into the patients, 223Ra behaves as bone-seeking calcium mimetic, and 

selectively forms complexes with the bone mineral, hydroxyapatite, in activated osteoblastic regions of the bone 

with a high turnover near metastatic lesions. 223Ra generates four alpha particles in the decay process, in which 

approximately 95% of the total radiation energy is released by alpha decay [13]. The alpha particles emitted 

from 223Ra can damage adjacent cancer cells by causing severe double-strand DNA breaks with a high linear 

energy transfer [14, 15]. A randomized phase III trial (ALSYMPCA) using 223RaCl2 indicated a significant 

improvement in overall survival in men with bone metastatic CRPC (median overall survival of 14 months vs. 

11.2 months in those on placebo) [6]. 223RaCl2 is now widely used as the first alpha particle-emitting 

radiopharmaceutical compound. 

However, a clinical imaging study revealed that high radioactivity of 223Ra is found in the large intestine after 

intravenous injection of 223RaCl2, and dosimetry analysis demonstrated that the large intestine receives high 

radiation exposure [16]. As a consequence, the high retention of 223Ra in the large intestine causes 



  International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 42, No  2, pp 95-105 

 

97 
 

gastrointestinal disorders, such as nausea, abdominal discomfort, and diarrhea, as the most frequent clinical 

adverse events [11]. Therefore, methods to reduce 223Ra retention in the large intestine in 223RaCl2 therapy are 

needed. Here, we focused on the administration of BaSO4, which has been reported to have the property of 

taking up Ra2+ ion in its structure [17, 18]. It has been demonstrated that the Ra2+ ion is decreased in BaSO4 

powder suspensions because of the absorption of Ra2+ ion into the open micropores of BaSO4 [17, 18]. Since 

BaSO4 with oral administration is already used as a contrast agent for X-ray imaging in clinical settings [19], we 

hypothesized that it can be useful to reduce the 223Ra retention in the large intestine. Therefore, we examined the 

effects of BaSO4 on the biodistribution of 223Ra in mice. In clinical practice, BaSO4 is usually used with 

laxatives to avoid BaSO4 impaction in the colon [19]. Thus, we also examined the effect of laxative use on 

BaSO4’s activity in reducing the retention of 223Ra in the large intestine. 

2. Materials and methods 

2.1. Radionuclides 

223Ra (T1/2 = 11.4 days) was produced using a 227Ac/227Th/223Ra generator system. 227Ac (T1/2 = 21.8 years) was 

obtained from the Institute for Materials Research, Tohoku University, using a method previously reported [20]. 

Briefly, 223Ra produced from the disintegration of 227Ac was purified by separation of 227Ac and 227Th (T1/2 = 

18.7 days) as a contaminant using a tandem combination of UTEVA Resin, DGA Resin, and Prefilter Resin. 

These resins were obtained from Eichrom Technologies, LLC (Lisle, IL). In this system, 4 M HNO3 was used as 

an eluate; 223Ra was passed through three cartridge system, while 227Th and 227Ac were retained by UTEVA 

Resin and DGA Resin, respectively. The eluate containing 223Ra was evaporated by heating (90 ̊C) to dryness, 

resuspended in H2O, and evaporated again to eliminate HNO3. The resultant 223Ra was resuspended in saline and 

the solution was filtered through a sterile filter (0.2 µm, Whatman); the pH was confirmed to be neutral before 

injection. The radioactivity of 223Ra was quantified using a germanium semiconductor detector (ORTEC, 

SEIKO EG&G, Tokyo, Japan). After 223Ra separation, 227Ac was recovered from DGA Resin with 0.1 M HCl 

for 223Ra ingrowth. 

2.2. In vivo biodistribution 

ddY male mice (six-weeks old) were obtained from Japan SLC (Hamamatsu, Japan). Mice were allowed to 

acclimatize for one week before initiating the experiments. All animal experimental procedures were approved 

by the Animal Ethics Committee of the National Institutes for Quantum and Radiological Science and 

Technology (QST, Chiba, Japan) and conducted in accordance with the institutional guidelines. 

Experiment 1: The effect of oral BaSO4 administration on the biodistribution of 223RaCl2 was examined in mice 

(Figure 1A). 223RaCl2 (10 kBq/mouse in 100 µL saline) was intravenously injected into mice. BaSO4 (100 

mg/mouse dissolved in 200 µL saline; BaSO4 group) or saline (200 µL; control group) was orally administered 

1 h before 223RaCl2 injection. The timing of administration of BaSO4 was decided based on the observation of 

excretion of BaSO4 in mouse feces at different times following its oral administration without 223RaCl2 

injection; described in Supplemental Data (Supplementary figure S1). BaSO4 dose was decided based on its 
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clinical dose [21]. Mice were sacrificed 1, 2, 4, 6, and 24 h after 223RaCl2 injection. In this experiment, four mice 

were prepared for each time point in both groups. Blood, liver, kidney, small intestine, large intestine, spleen, 

and femur were harvested and weighed; small and large intestines were isolated with the contents. Feces and 

urine that were excreted from mice were accumulated for 1, 2, 4, 6, and 24 h after 223RaCl2 injection, 

respectively, and collected for measurement of radioactivity. 223Ra radioactivity of organs, feces, and urine was 

quantified with a γ-counter (Auto-well gamma counter ARC-370M, Aloka, Tokyo, Japan) according to a 

previously reported method [22-24]. Percentage of injected dose per gram (%ID/g) was calculated for blood and 

organs. For feces and urine, percentage of injected dose (%ID) was calculated.Experiment 2: The effect of 

laxative treatment on BaSO4 activity after 223RaCl2 injection was also examined in ddY male mice (Figure 1B). 

In this experiment, mice were administered BaSO4, 1 h before the intravenous injection of 223RaCl2 in a similar 

manner as described in experiment 1, with (BaSO4 + laxative group) or without (BaSO4 group) laxative 

treatment (n = 4/group). For the laxative treatment, 50% glycerin enema solution (0.3 mL) (Yoshida 

Pharmaceutical, Tokyo, Japan) was administered rectally 3 h after the intravenous injection of 223RaCl2. The 

timing of laxative treatment was decided based on the observation of experiment 1. For comparison purposes, 

mice administered with saline instead of BaSO4 without laxative treatment were also examined (control group) 

(n = 4/group). The biodistribution study was conducted 1 h after glycerin enema (4 h after 223RaCl2 injection) 

because the laxative treatment caused the excretion of feces within 1 h after glycerin administration in mice as 

described in Supplemental Data (Supplementary figure S2). Biodistribution measurement was performed in a 

similar manner as described in experiment 1. 

  

Figure 1:  Summary of the 223Ra biodistribution study. (A) Experiment 1. Biodistribution study of 223Ra with or 

without BaSO4 to examine the effect of BaSO4 administration after 223RaCl2 injection. (B) Experiment 2. 

Biodistribution study of 223Ra with laxative treatment after BaSO4 administration to examine the effect of 

laxative treatment on the effect of BaSO4 administration after 223RaCl2 injection. 
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2.3. Statistical analysis 

Data are expressed as means with corresponding standard deviations. P values were calculated using a 2-tailed t-

test for comparisons between 2 groups or 1-way analysis of variance (ANOVA) for comparisons among 

multiple groups. Time-activity curves were analyzed using two-way ANOVA. P values less than 0.05 were 

considered statistically significant. 

3. Results and discussion 

3.1. Experiment 1: Effect of BaSO4 on the biodistribution of 223RaCl2  

The effect of oral BaSO4 administration on the biodistribution of 223RaCl2 was observed in this study. Prior to 

the experiment, to determine the timing of BaSO4 administration, we examined the excretion of BaSO4 into the 

feces after oral administration (Supplementary figure S1). White-colored feces containing BaSO4 were observed 

after 1 h of its oral administration (Supplementary figure S1). Therefore, the timing of BaSO4 administration 

was decided as 1 h before 223RaCl2 injection in this study. 

We examined the biodistribution of 223RaCl2 with (BaSO4 group) or without (control group) oral BaSO4 

administration 1, 2, 4, 6, and 24 h after 223RaCl2 injection. Figure 2 shows differences in the biodistribution of 
223RaCl2 in the blood, liver, kidney, small intestine, large intestine, spleen, and femur between control and 

BaSO4 groups. 223Ra radioactivity in the large intestine peaked between 2 and 4 h after 223RaCl2 injection, and 

oral BaSO4 administration significantly reduced 223Ra radioactivity in the large intestine at 1, 2, and 4 h after 
223RaCl2 injection compared with that in the control group (P < 0.05) (3.02 ± 1.19 %ID/g and 5.64 ± 0.91 %ID/g 

at 1 h, 4.89 ± 0.60 %ID/g and 8.92 ± 0.44 %ID/g at 2 h, and 4.44 ± 1.82 %ID/g and 7.77 ± 2.46 %ID/g at 4 h, 

for BaSO4 and control groups, respectively). For further analysis, a time-activity curve of 223Ra in the large 

intestine was also prepared (Supplementary figure S3) based on 223RaCl2 biodistribution data (Figure 2) for 

BaSO4 and control groups. Based on analysis of the time-activity curve, 223Ra radioactivity in the large intestine 

was significantly lower in the BaSO4 group than in the control group (P < 0.05); the area under the curve of 
223Ra radioactivity in the large intestine decreased by 27% in the BaSO4 group compared with that in the control 

group (Supplementary figure S3). We also confirmed that 223Ra was accumulated in the femur in both control 

and BaSO4 groups with no significant differences between the two groups in terms of biodistribution (Figure 2). 

There was no significant difference in 223Ra radioactivity in the blood, liver, kidney, small intestine, and spleen 

between the two groups in terms of biodistribution (Figure 2). 

223Ra radioactivity in the feces and urine with time were measured for BaSO4 and control groups (Figure 3). The 

time-activity curves showed increase of 223Ra excretion in the feces in the BaSO4 group compared with the 

control group with a significant difference (P < 0.05) (Figure 3A); the increase of 223Ra in the feces was 

observed with slight delay from decrease of 223Ra in the large intestine in the BaSO4 group (Figure 3A, 

Supplementary figure S3). There was no significant difference in time-activity curves of 223Ra in the urine 

between control and BaSO4 groups (Figure 3B). 
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Figure 2: The effect of BaSO4 administration on the biodistribution of 223Ra. Data were obtained 1, 2, 4, 6, and 

24 h after 223RaCl2 injection. Values are expressed as %ID/g for organs (liver, kidney, small intestine, large 

intestine, spleen, and femur) and blood. Values are shown as mean ± SD; n = 4. Asterisks indicate statistical 

significance (*P < 0.05) in comparison to the control at each time point. 
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Figure 3: Time-activity curves of 223Ra in the feces and urine for control and BaSO4 groups. The time-activity 

curves of the feces (A) and urine (B) are shown. Values are expressed as %ID. Values are shown as mean ± SD 

n = 4. NS = not significant 

In experiment 1, we observed that oral BaSO4 administration reduced 223Ra retention in the large intestines of 

mice and the excretion of 223Ra in the feces was increased by BaSO4 administration. The effect of BaSO4 was 

evident until 4 h after the administration of 223Ra in mice, when its retention in the large intestine was higher 

than at later time points.  

Previous studies have reported that BaSO4 powder in suspension displays the uptake of Ra2+ ion [17, 18]; 

however, it was unknown whether this phenomenon would take place in vivo. Our data showed that via oral 

administration, BaSO4 was able to reduce 223Ra retention in the large intestine and accelerate the excretion of 
223Ra from the large intestine into the feces in mice, suggesting that it would be effective in taking up the Ra2+ 

ion in vivo in 223RaCl2 therapy. 

 The reduction of 223Ra retention in the large intestines could be explained by diffusion and incorporation of 

Ra2+ ion into the open micropores of BaSO4 structure [17, 18] after oral BaSO4 administration in mice. In 

addition, our data showed that the biodistribution of 223Ra in the femur, blood, liver, kidney, small intestine, and 

spleen, but not in the large intestine, was unchanged by BaSO4 administration, suggesting that BaSO4 does not 

alter the behavior of 223Ra as a bone-seeking agent in the body, while reducing its retention in the large intestine.  
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3.2. Experiment 2: Effect of laxative treatment along with oral BaSO4 administration after 223RaCl2 injection 

Next, we examined the effect of laxative treatment on BaSO4 activity in reducing 223Ra radioactivity in the large 

intestines in mice, since laxative treatment is clinically used with oral administration of BaSO4 to avoid the 

impaction of BaSO4 in the large intestine. In this experiment, laxative treatment was provided 3 h after the 

intravenous injection of 223RaCl2 in mice orally administered BaSO4. The timing of laxative treatment was 

decided based on the observation of experiment 1 that 223Ra radioactivity in the large intestine peaked between 2 

and 4 h after 223RaCl2 injection. Figure 4 shows the effect of laxative treatment along with BaSO4 administration 

during 223RaCl2 treatment on 223RaCl2 biodistribution in the blood, liver, kidney, small intestine, large intestine, 

spleen, and femur 4 h after 223RaCl2 injection in BaSO4 + laxative, BaSO4, and control groups. In the large 

intestine, BaSO4 + laxative and BaSO4 treatments significantly decreased 223Ra radioactivity compared with that 

in the control (4.05 ± 1.05 %ID/g and 4.70 ± 1.92 %ID/g for BaSO4 + laxative and BaSO4 alone groups, 

respectively, vs 8.22 ± 0.41 %ID/g for the control group). BaSO4 + laxative treatment decreased 223Ra 

radioactivity to a level similar to that with BaSO4 treatment, and laxative treatment did not enhance the effect of 

BaSO4. 

 

Figure 4: The effect of laxative treatment along with BaSO4 administration after 223Ra injection. Values are 

expressed as %ID/g 4 h after 223RaCl2 injection for organs (liver, kidney, small intestine, large intestine, spleen, 

and femur) and blood. Values are shown as mean ± SD; n = 4. a, b; Different letters indicate significant 

differences (P < 0.05). 

In experiment 2, we demonstrated that the combined BaSO4 and laxative treatment decreased 223Ra retention in 

the large intestine to a level similar to that after BaSO4 treatment. This indicates that laxative treatment did not 

attenuate the ability of BaSO4 to reduce 223Ra retention in the large intestine, although it does not enhance the 

effect of BaSO4. In clinical settings, BaSO4 is already used as a contrast agent for X-ray imaging via oral 

administration [19]. BaSO4 is not water soluble and may be impacted and retained in the colon; therefore, 

laxatives are usually used to prevent the impaction of BaSO4 in clinical practice [19]. Our data indicated that 

BaSO4 effectively reduces 223Ra retention in the large intestine during 223RaCl2 therapy and laxative treatment 

would facilitate the removal of BaSO4 from the large intestine, while maintaining the activity of BaSO4 to 

reduce 223Ra retention in the large intestine. Therefore, the use of BaSO4 along with laxative treatment could be 
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useful to reduce adverse effects caused by radiation exposure to the large intestine during 223RaCl2 therapy. Our 

data showed that there is no significant difference in the decrease of 223Ra radioactivity in the large intestine 

between two treatments, viz., BaSO4 treatment and the combined BaSO4 and laxative treatment in mice. This 

might indicate that the duration of BaSO4 persistence in the large intestine of mice is not as long as that in 

humans, and laxative treatment after BaSO4 administration is unnecessary for mice. In fact, it has been reported 

that gastrointestinal transit in mice is faster than that in humans [25, 26]. In addition, there might be differences 

in timing of BaSO4 administration and laxative treatment between mice and humans. Therefore, further 

preclinical and clinical studies on the efficacy and safety of the use of BaSO4, along with laxative treatment, in 
223RaCl2 therapy are needed. 

4. Conclusion 

In conclusion, this study demonstrated that oral BaSO4 administration reduces 223Ra retention in the large 

intestine, and laxative treatment does not attenuate the effect of BaSO4 to reduce 223Ra retention in the large 

intestine in mice. This method could be useful to reduce adverse effects caused by radiation exposure to the 

large intestine during 223RaCl2 therapy. 
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