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Abstract 

Stability of Magnetohydrodynamic streaming resistive triple superposed fluid layers has been studied. The basic 

equations were obtained by combining ordinary hydrodynamic equations and Maxwells equations related to 

electromagnetic field theory. The appropriate boundary conditions have been established for this model, then we 

obtained the dispersion relationship. The behavior of the system in terms of whether stable or unstable has been 

discussed. The curves are drawn to illustrate the areas of stability and instability. The effect of different parameters 

on the stability and the instability of this system was studied. It is found in the magnetic field permeability 

coefficient and the intensity of the magnetic field values has a destabilizing influence. Also, the increase of the 

fluids density values has a stabilizing influence. The streaming velocity has a destabilizing influence. 
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1. Introduction 

The study of stability in the fluid mechanics aims to give a physical state stand with a disturbed and still return to 

original state. Therefore, we have two cases, either stability or instability. Hydrodynamic stability is the field 

which is described the stability and the instability of fluid flows. Stability theory addresses of trajectories of 

dynamical systems under small perturbations of initial conditions. This study tells us stability in many areas, for 

example, biology, geophysics, meteorology, oceanography and engineering. The Magnetohydrodynamic stability 

of a gravitational medium with streams of variable velocity distribution for a general wave propagation in the 

presence of the rotational forces has been studied by [1]. The axisymmetric magneto hydrodynamic (MHD) 

stability of a streaming resistive hollow jet under oblique varying magnetic fields has been discussed by Hasan 

and his colleagues [2]. The electro gravitational instability of an oscillating streaming fluid cylinder surrounded 

by a self-gravitating tenuous medium pervaded by transverse varying electric field is discussed under the action 

of self gravitating, capillary and electro dynamic forces were presented by [3]. The behavior of a dielectric fluid-

fluid interface in the presence of a strong electric field of a point charge and the line charge respectively, both 

statically and in the latter case dynamically, this study was conducted by [4]. Self-gravitation is the gravitational 

force exerted on a group of bodies, by the bodies that allows them to be held together. Self-gravitation has 

important effects in the fields of astronomy, physics, seismology, geology, and oceanography. The axisymmetric 

stability of the interface between two incompressible Selfgravitating non-conducting fluids in the presence of an 

electric field has been studied by [5]. The magnetodynamic instability of a rotating self-gravitating fluid layer of 

finite thickness embedded in a fluid of different density was presented by [6]. Reference [7] studied the two 

superposed fluids and the self-gravitating hydrodynamic basic equations under upon appropriate boundary 

conditions and general eigenvalue relation. The self-gravitating electrodynamic stability of an annular fluid jet 

pervaded and surrounded by periodic time dependent electric field has been discussed by [8]. The self-gravitating 

instability of the present model is discussed by using a simple linear theory. The problem is formulated for a 

rotating fluid layer, and a dispersion relation valid for all kinds of perturbations is discussed by [9]. The nonlinear 

stability of electrohydrodynamic of a cylindrical interface separating two conducting fluids of circular cross 

section in the absence of gravity using electroviscous potential flow analysis has been studied by [10]. The 

magnetohydrodynamic stability of streaming self-gravitational coaxial fluid cylinders with doubly perturbed 

interfaces was presented by [11]. The electrogravitational instability of a dielectric fluid cylinder surrounded by 

medium of negligible motion pervaded by varying transverse oscillating electric field has been investigated in the 

axisymmetric perturbation has been studied by [12]. The nonlinear capillary instability of the cylindrical interface 

between the vapor and liquid phases of a fluid is studied when there is heat and mass transfer across the interface, 

using viscous potential flow theory has been discussed by [13]. The triple-diffusive convection in a micropolar 

ferromagnetic fluid layer heated and soluted from below is considered in the presence of a transverse uniform 

magnetic field was presented by [14]. The effect of a uniform magnetic Field on the capillary breakup of a thin 

cylinder of magnetic liquid at rest, surrounded by an unbounded liquid with other coefficients of viscosity and 

magnetic permeability, is investigated in the linear formulation is discussed by [15]. The self-gravitating 

instability of an infinitely extending axisymmetric cylinder of a viscoelastic medium permeated with non uniform 

magnetic field and the nonuniform magnetic field and rotation is considered to act along the axial direction of the 

cylinder has been studied by [16]. Also, Reference [17] studied the effects of nonuniform rotation and magnetic 
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field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic 

ferromagnetic medium, the non-uniform magnetic field and rotation are acting along the axial direction of the 

cylinder and the propagation of the wave is considered along the radial direction. Reference [18] studied the effect 

of a uniform magnetic field on the capillary breakup of a thin cylinder of magnetic liquid at rest, surrounded by 

an unbounded liquid with other coefficients of viscosity and magnetic permeability. 

2. Definition of the problem 

2.1. Basic equations 

We consider three superposed fluids of densities  𝜌(1), 𝜌(2), 𝜌(3)  in the regions (−∞˂ 𝑧 ≤ 0),  

(0 ≤  𝑧˂ ℎ), (ℎ ≤ 𝑧˂∞) respectively. 

 We suppose the streaming velocity of fluids as: 

                                                                                                                                                   (1) 

The uniform magnetic fields 

                                                                                                                                                   (2) 

Whereas 𝑓 = 1,2,3. The fluids are considered to be incompressible, no-viscous under the effect of self-gravitation 

force, electromagnetic force, pressure gradient force and the force due to resistivity.  

The basic equations of this model can be written as follows: 

                                                                                     (3) 

                                                                                            (4)  

                                                                                                                                              (5) 

                                                                                                                                                          (6) 

                                                                                                                                                      (7) 
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Where 𝜌  is the density, 𝑢  is the velocity vector, 𝑃 is the kinetic pressure, 𝜇 is the magnetic field permeability 

coefficient, 𝜙  is the self-gravitating potential, 𝐺  is the gravitational constant and  𝜂   is the coefficient of 

resistivity,  𝐻 is the magnetic field intensities. 

2.2. Perturbation analysis   

Considers the effect of small disturbances for a small departure from the unperturbed state, then every variable 

quantity 𝑌(𝑥, 𝑦, 𝑧, 𝑡) can be expressed as follows 

                                                                                               (8) 

𝑌0  represent unperturbed quantity and 𝑌1  is a small increment of  𝑌 due to disturbances. 𝑌 expresses each of the 

following variables 𝑢(𝑓), 𝐻(𝑓), 𝜙(𝑓) and  𝑃(𝑓), where f denotes different regions of fluids.  

Suppose that the interface can be described by 

                                                                                                                                                 (9) 

Where 

                                                                                                                                   (10) 

𝑧1  represented by the elevation of the surface wave, 𝜎 the growth rate, while 𝑘𝑥   and 𝑘𝑦  (real) are the wave 

numbers along  x and y directions. In the initial state, we can put the basic equations of motion Eq.s (3 - 7) and 

by using Eq. (8) as follows unperturbed and perturbed systems of equations. 

 Unperturbed system 

                                                                                                  (11) 

                                                                                                     (12) 

                                                                                                                                (13) 

                                                                                                                                                    (14) 
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                                                                                                                                                  (15) 

Perturbed system 

                                                                  (16) 

                                                                         (17) 

                                                                                                                                                  (18) 

                                                                                                                                                    (19) 

                                                                                                                                                    (20) 

Where 

                                                                                       (21) 

                                                                                              (22) 

The kinetic pressures and potentials are given by, 

                                                                                                      (23) 

                                                                                                         (24) 

                                                                                                      (25) 

                                               (26) 

Eq.s (24), (25), (26) have been solved in the unperturbed system upon applying the conditions that the self-

gravitational and its derivative must continous at the boundaries 𝑧 = 0 and 𝑧 = ℎ, where  𝑐1,  𝑐2  and 𝐶(𝑓)  are 

arbitrary constants of integration. By using the normal mode , we can put  𝑌1(𝑥, 𝑦, 𝑧, 𝑡) in the following form : 
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                                                                                                 (27) 

Substituting from Eq. (27) into Eq.(17),  we get 

                                                                                   (28) 

By using Eq.(28) in Eq.(16) 

                                                  (29) 

Where the Alfven wave frequency is denoted  by 

                                                                                                                                                 (30) 

By using Eq.(19) and taking divergence of the two sides of Eq.(29), we get the following equation 

                                                                                                                                                    (31) 

Eq.s (31), (18) leads to second order differential equations, these equations are solved in different regions 

(−∞˂ 𝑧 ≤ 0),  (0 ≤  𝑧˂ ℎ), (ℎ ≤ 𝑧˂∞), then we get: 

,                                                                                                                                                (32) 

,                                                                                                                        (33) 

,                                                                                                                                          (34) 

,                                                                                                                                          (35) 

,                                                                                                                  (36) 

,                                                                                                                                              (37) 
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where 

 

2.3.  Boundary conditions 

(i) The self-gravitational potential and their derivatives across the fluids interface must be continuous at the 

boundaries 𝑧 = 0  and 𝑧 = ℎ: 

                                                                                        (38) 

Substituting (10), (24), (25), (26) and (35), (36), (37) into (38), then we can obtain the values of the constants  

𝐷1,  𝐷2,  𝐷3   and  𝐷4: 

                                                                                            (39) 

                                                                                                                   (40) 

                                                                                                                           (41) 

                                                                                               (42) 

 

(ii) At the boundaries 𝑧 = 0  and 𝑧 = ℎ, the normal component of the velocity vector 𝑢 must be continuous  

and also suitable with the velocity of the perturbed boundary surface: 

                                                                                                                                     (43) 

From equations (9), (10), (29), (32), (33) and  (34)  into (43), then we get 

                                                                                                       (44) 
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                                                              (45) 

   

                                                                  (46) 

 

                                                                            (47) 

(iii) The normal component of the total stresses in the fluid layer of density 𝜌(1)   must be     suitable to that 

of the surrounding fluid of density 𝜌(2) and  𝜌(3)  across the fluid interface at  𝑧 = ℎ: 

 

                                                                                                                  (48) 

Eq. (48) can be written as follows: 

 

                                                     (49) 
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3. Dispersion relation 

Eq. (49) leads to the dimensionless dispersion relation: 

                                                 (50) 

 

Now, we are studying the effect of the different variables on the stability and drawing the relation between the 

growth rate and the coefficient of resistivity 

 

 

Figure 1: stability diagram for a system having the particulars: 𝑈 = 0.8, 𝐻0 = 1, = 0.01. 
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Figure 2: stability diagram for a system having the particulars: 𝜌(1) = 𝜌(2) = 𝜌(3) = 1, 𝑈 = 1, = 0.01. 

 

 

Figure 3: stability diagram for a system having the particulars: 𝜌(1) = 𝜌(2) = 𝜌(3) = 0.8, 𝑈 = 1, 𝐻0 = 1. 
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Figure 4: stability diagram for a system having the particulars: 𝜌(1) = 𝜌(2) = 𝜌(3) = 0.03, 𝐻0 = 1, = 0.1 . 

 

From Figure 1, as ( 𝝆(𝟏) = 𝝆(𝟐) = 𝝆(𝟑) =  𝟎. 𝟏𝟎, 𝟎. 𝟏𝟏, 𝟎. 𝟏𝟐, 𝟎. 𝟏𝟑), we find the following domains (0 < σ < 

0.919), (0 < σ < 0.912), (0 < σ < 0.905), (0 < σ < 0.90)  unstable states. The neighboring stable domains are (0.919 

<  σ  < ∞), (0.912 <  σ  < ∞), (0.905 <  σ  <  ∞), (0.90 <  σ <  ∞).From Figure 2,  as  (𝑯𝟎 = 𝟏. 𝟎, 𝟏. 𝟓, 𝟐. 𝟎, 𝟐. 𝟓), 

we find the following domains (0 < σ < 0.841), (0 <  σ < 0.855), (0 <  σ <  0.873), (0 < σ < 0.894)  unstable states. 

The neighboring stable domains are (0.841 <  σ  < ∞), (0.855 <  σ  < ∞) , (0.873 <  σ  < ∞), (0.894 <  σ  < ∞). 

From Figure 3,  as (𝝁 = 𝟏. 𝟎, 𝟏. 𝟏, 𝟏. 𝟐, 𝟏. 𝟑), we find the following domains (0 < σ  < 0.804),  (0 < σ  < 0.823), 

(0 < σ  <  0.835), (0 < σ  < 0.841) unstable states. The neighboring stable domains are (0.804< σ  < ∞), (0.823< 

σ  < ∞), (0.835< σ  < ∞), (0.841 <  σ  < ∞). From Figure 4, as (𝑼 = 𝟐. 𝟎𝟎, 𝟐. 𝟎𝟑, 𝟐. 𝟎𝟔, 𝟐. 𝟎𝟗), we find the 

following domains (0 < σ  < 0.850), (0 <  σ  < 0.830), (0 <  σ <  0.810), (0 < σ <  0.790)  unstable states. The 

neighboring stable domains are (0.850 <  σ  < ∞), (0.830 < σ  < ∞), (0.810 <  σ  < ∞), (0.790 <  σ  < ∞). From 

what we had before, We observe that the increase of the fluids density values has a stabilizing influence (Fig.1). 

We conclude that the increase of the intensity of the magnetic field values, the system gives a stable situation 

(Fig.2). We conclude that the increase of the magnetic field permeability coefficient values, the system gives a 

stable situation (Fig.3).  Finally, we found that  the streaming velocity has a destabilizing influence (Fig.4), which 

is consistent with all previous studies. 
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4. Conclusions 

In this study, we have examined the influence of the existence of self-gravitating, magnetic field, streaming 

resistive triple superposed fluid layers. After we obtained the dispersion relation, we plotted (𝜎 − 𝞰) plane and 

studying the effect of different variables on the process stability. 

The following is a general summary of the study  in this paper: 

1- The streaming velocity has a destabilizing influence. 

2- We observe that the increase of the magnetic field permeability coefficient values, the system gives a 

stable situation and with the continuous increase of the magnetic field permeability coefficient values, 

the system is more stable and the stability zone increases. 

3- We observe that the increase of the intensity of the magnetic field  values, the system gives a stable 

situation and with the continuous increase of the intensity of the magnetic field values, the system is 

more stable and the stability zone increases. 

4- The increase of the fluids density values has a stabilizing influence. 
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