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Abstract  

Multiclass problem has continued to be an active research area due to the challenges paused by the issue of 

imbalance datasets and lack of a unifying classification algorithms. Real world problems are of multiclass nature 

with skewed representations. The study focused on the challenges of multiclass classification. Multiclass 

datasets were adopted from UCI machine learning repository. The research developed a heterogeneous 

ensemble model for multiclass classification and outlier detection that combined several strategies and ensemble 

techniques. Preprocessing involved filtering global outliers and resampling datasets using synthetic minority 

oversampling technique (SMOTE) algorithm. Datasets binarization was done using OnevsOne decomposing 

technique. Heterogeneous ensemble model was constructed using adaboost, random subspace algorithms and 

random forest as the base classifier. The classifiers built were combined using average of probabilities voting 

rule and evaluated using 10 fold stratified cross validation. The model showed better performance in terms of 

outlier detection and classification prediction for multiclass problem. The model outperformed other commonly 

used classical algorithms. The study findings established proper preprocessing and decomposing multiclass 

results in an improved performance of minority outlier classes while safe guarding integrity of the majority 

classes.  
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1. Introduction 

Multiclass problem has continued to be an active research are due to the challenges paused by the issue of 

imbalance datasets and lack of a unifying classification algorithms. Real world problems are of multiclass nature 

with skewed representations. According to [1] decomposition strategies have been demonstrated to be a 

successful methodology for multiclass classification problems. Multiclass datasets have might contain outliers 

associated with the features of the datasets or and classes with very few representations. The rare classes are also 

treated as outliers. Presence of outliers degrade performance of classifiers. Author [2] proclaimed that outlier 

detection is one of the important research tasks in data mining which essentially finds the observations that are 

deviating from the common expected behavior. The author concludes that there is no universally accepted 

methodology for detecting and analyzing outliers.   

Data preprocessing is crucial in any data mining process. Accuracy performance of classification is improved 

when redundant and irrelevant features have been removed. Dimensional reduction of attributes is desirable 

because it reduces the complexity of the model resulting in a clear and understandable model. Performance of 

classifiers is greatly improved once the aspect of dimensional data reduction has been achieved through 

techniques such as feature selection and extraction [3]. According to [4], the ensemble technique can be applied 

to feature selection method. Ensemble feature technique involves use of different feature selection methods with 

the same training data or by use of single feature with different training data. The ensemble feature results from 

a combination of rankings of features that contain all the ordered features. The results of the base selectors are 

combined using different combination methods, and a practical subset is selected according to several different 

threshold values. The Ensemble techniques utilize the explicit power of multiple models to realize better 

prediction accuracy than the case when individual models are used. The ensemble learning algorithms used in 

the design should be competent enough and complementary to one another. 

Study by [5] used information-gain, gain-ratio, chi-square and ReliefF filter methods to create an ensemble filter 

selection method. Their study showed combining feature selection methods improves the performance of 

classifiers by identifying the features that are weak as individual but strong as a group. This study aimed at 

developing a hybrid ensemble method for multiclass classification and outlier detection using adaboost, random 

subspace (RSM) algorithms and random forest (RF) as the base classifier. The proposed method incorporates 

several strategies and ensemble techniques.  

The rest of the paper is organized as follows: Critique of existing classification and outlier literature is provided. 

Problem statement is derived from the critiqued literature. A proposed method is provided. Experiments and 

results are provided in form of tables and figures. Results are discussed in line with the literature and conclusion 

drawn from the discussions. Recommendations and references are provided at the end. 

2. Critique and review of classification works 

Authors [6], addressed the issue of imbalanced dataset by use of synthetic minority over-sampling technique 

(SMOTE) approach, which generate synthetic minority samples. The technique enabled improved visibility of 
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minority classes.  However, their study was only based on binary classification problem. According to [7] 

classification systems play an important role in business decision-making tasks by classifying the available 

information based on some criteria. The objective of their research was to assess the relative performance of 

some well-known classification methods. Their research experimental findings affirmed that data characteristics 

considerably impact the classification performance.  

 Author [8]  in his research on survey of classification techniques in data mining concludes that decision trees 

and bayesian network (BN) in most cases have significant different operational profiles in a way that, when one 

is very accurate the other is not and vice versa. On the contrary, author argued that decision trees and rule 

classifiers have a similar operational profile. Thus different algorithms performs differently and thus 

amalgamating algorithms through ensemble method produces a more robust method. 

.Author [9] proposed a novel over sampling strategy to handle imbalanced data based on ensembles, named 

cluster ensembles based SMOTE (CE-SMOTE), which first used cluster ensemble to generate multiple 

partitions. However, their study focused only on binary classification. Most of the ensemble methods use a 

single base learning algorithm to produce homogeneous base learners. However there are also some methods 

that use learners of different types leading to heterogeneous ensembles. In order for ensemble methods to be 

more accurate than any of its individual members, the base learners have to be as accurate as possible and as 

diverse as possible [10]. 

Study by [11], on multiclass imbalance problems, showed that class imbalance problems have attracted much 

research focus due to classification difficulty caused by the imbalanced class distributions.  They reaffirmed that 

many ensemble methods have been proposed to deal with such imbalance classes though a lot of earlier research 

focused on binary imbalance problems. They proclaimed that there are unsolved issues in multiclass imbalance 

problems, which exist in real-world applications. Their studies focused on the challenges posed by multiclass 

imbalance problems and investigated the generalization ability of some ensemble solutions. The study findings 

showed poor classification performance after applying multi-minority and multi-majority on their experimental 

dataset.  However performance improved after applying AdaBoost.NC learning algorithm. The results suggest 

use of ensemble learning algorithms improves performance of classifiers. 

Author [12] in a survey of efficient classifiers for multiclass classification problems maintained that 

classification problems have become more complex and intricate in modern applications in the face of 

continuous data explosion. The author showed their model can significantly improve classification training time 

by combining a compact subset of relevant features without the loss of accuracy in multiclass classification 

problems. In addition, the discrimination degree of their classifier outperforms other conventional classifiers. 

The study indicates that multiclass classification problems continue to be a problem and more research is 

required in this area of multiclass classification.  

There have been major changes and evolution done on classification of data [13]. Author noted that as the 

application area of technology increases, the size of data also increases. Classification of data becomes difficult 

because of unbounded size and imbalance nature of data. Thus class imbalance problem becomes one of the 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2019) Volume 45, No  1, pp 192-213 

195 
 

greatest issues in data mining. They reaffirmed that feature selection method can also be used for classification 

of imbalance data. 

In [14], proposed a unifying framework for multiple classifier systems that conceptually unifies a large variety 

of ensemble classification methods, including existing class binarization techniques such as error correcting 

output code (ECOC).  Binarization is a technique of extending binary classification algorithm to multiclass 

problems through the process of decomposing the original multiclass problem into a series of smaller two class 

problems. Author concludes by proclaiming that there is relatively few theoretical studies that integrate the 

strategy of data manipulation approaches with the learners’ manipulation approach.  Study by [15] on ensemble 

learning classification algorithm proposed a novel feature selection method that improves performance of 

classifiers. Author noted that ensemble learning method improves the classification performance of single 

classifier. Their experimental findings showed that feature selection method based on discrimination and class 

information of each feature ensemble classifiers can achieve higher predictive accuracy than several classical 

feature selection methods.  

In another study on improving performance on ensemble classifiers, [16] studied two different feature selection 

methods using Colon Cancer dataset. Different ensemble methods were implemented to the dataset having 

reduced features. Performance improvements obtained by this method were evaluated using the individual and 

ensemble classification methods.  Experimental findings reviewed that classification accuracy for the colon 

cancer can be increased by use of both feature reduction and ensemble methods.  

Many ensemble methods, seek to promote diversity among the models they combine [17].  Author [18] 

reaffirmed that RSM is one of the ensemble learning algorithms widely used in pattern classification 

applications. They reiterated that RSM has the advantages of small error rate and improved noise insensitivity 

due to ensemble construction of the base-learners. However, random selection of feature subspaces may result in 

a poorly selected feature subsets leading to poor discrimination capability. The latter cause a reduction of the 

final ensemble decision performance because of contributions of classifiers trained by subsets with low class 

separability. They concluded that the technique of vote weighting may overcome the drawbacks of RMS. 

Author [19] studied SMOTE-based classification approach to online data imbalance problem. Their results 

findings demonstrated that the SMOTE improves on the generalization performance of classifiers.  The Random 

Subspace Method (RSM) introduced by [20] is an attractive choice for classification problems. Similar to 

bagging, it benefits from bootstrapping and aggregation. 

3. Critique and review work on outliers detection 

Although there are a number of methods for detecting outliers in a given dataset, no single method is found to be 

the universal choice. Depending on the nature of target application, different applications require use of different 

detection methods. There is need to develop new outlier detection method using either data centered or 

algorithmic approach [21].  Author [22] assert that outlier detection is an important research area forming part of 

many application domains. Their survey tried to provide a structured and comprehensive overview of the 

research on classification based outlier detection. They proclaimed that current research done on outlier 
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detection is in an unstructured fashion. They proposed a possible future work to unify the assumptions made by 

different techniques regarding the normal and outlier behavior into a statistical or machine learning framework. 

In another study, Reference [23] affirms that outlier detection is an important research problem in data mining 

that aims at discovering useful abnormal and irregular patterns hidden in large datasets. Author argues that 

outlier detection has become the enabling underlying technology for a wide range of practical applications in 

industry, business, security and engineering, etc. According to [24], combination of ensemble learning with 

resampling techniques produce better classifiers that outperform other individual classic algorithms.  Author 

[25] assert that rare class classification is the data mining technique for building a model that can correctly 

classify both the majority and minority (outlier) classes. Classifying minority or rare class is difficult because 

size of the rare class representation is too small and existing classification algorithms were designed to be biased 

towards prediction of majority class. 

Study by [2] on comparative analysis of outlier detection techniques reviewed that outlier detection is one of the 

important aspects of data mining which essentially finds observations that are deviating from the common 

expected behavior. In their study, they provided a broad and a comprehensive literature survey of outliers and 

outlier detection techniques. Their findings reaffirmed that there is no universally accepted scale of any 

methodology to detect and analyze outliers.  In a review study on outlier, [26] affirms that with advances in 

hardware and software technology, there has been a large body of work on temporal outlier detection from a 

computational perspective within the computer science community. The advanced technologies have accelerated 

and promoted the growth of different kinds of datasets such as data streams, spatio-temporal data, distributed 

streams, temporal networks, and time series data, generated by a multitude of applications. The authors further 

suggested the need for an organized and detailed study of the work done in the area of outlier detection with 

respect to such temporal datasets. They concluded by affirming that the methods for different data types are not 

easy to generalize to one another, though some of them may have similarity in the framework at the broader 

level. 

In another survey on outlier detection methods, Reference [27] reaffirmed that outlier detection is an active area 

for research in dataset mining community. They emphasized the need for creating more attention while 

analyzing outlier.  Detecting outliers and analyzing large datasets can lead to discovery of unexpected 

knowledge in area such as fraud detection, telecommunication, web logs, and web document, etc. Their findings 

showed that most of the techniques used for outlier detection focus more on algorithms and ignores data. It is 

observed that efficiency of outlier detection method is highly dependent upon data distribution and type of data. 

Author [28] carried study on automatic outlier identification in data mining using inter quartile range (IQR). 

They asserted that some of the real time databases contain exceptional values or extreme values generally 

referred to as outliers. They proclaimed that separation of outliers from dataset is very important as it leads to 

improvement of data quality. They further stated that outliers influence the results of data mining techniques like 

clustering, classification and association.   

Depth based outliers on squared-well was developed by [29]. The approach is able to improve on time and 
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efficiency for detecting outliers in large dataset. It is arguably established that this algorithm of the detection of 

the outlier is much effective than the previous one of depth based.  In an effort to solve problems of outlier 

detection in an imbalance data set , Reference [30] combined both local and global outlier detection and 

proposed a method which clearly handle data having imperfect labels and enhanced the performance of outlier 

detection.  The approach has been applied in real life dataset and the experimental findings concludes that these 

proposed approaches attain better tradeoff between false alarm rate and detection rate as compared to the 

traditional techniques.  

Author [31] surveyed different unsupervised techniques for outlier detection.  They asserted that methods used 

for outlier detection are application specific. Moreover selection of outlier detection method also depends on the 

type of data involved. Different methods can be used to detect outliers. However, outlier detection can be 

efficient if one method is used as a compliment to other method, so that the drawbacks of one method are 

minimized by use of the other method. Author [32] suggested a technique in which two algorithms could be 

used for the detection of the outliers. They proposed the use of distance based outlier detection and cluster based 

outlier detection algorithm for the detection and removal of the outliers. These technique of the outlier detection 

can be used for various domains like big data, high dimensional data etc. Reference [33] refuted the claim that 

high dimensional data hinders the detection of outliers using distance base-methods. It has been widely 

perceived that as dimension of data increases, distance –based methods label all points almost equally as good 

outliers. Author in their research on reverse nearest neighbors in unsupervised distance-based outlier detection 

provided evidence supporting the opinion that such a view is too simple, by demonstrating that distance-based 

methods can produce more contrasting outlier scores in high-dimensional settings. Furthermore, they showed 

that high dimensionality can have a different impact, by reexamining the notion of reverse nearest neighbors in 

the unsupervised outlier-detection context. Previous studies had showed that the distribution of points’ reverse-

neighbor counts becomes skewed in high dimensions, resulting in the phenomenon known as hubness. 

Author [34] constructed heterogeneous ensemble classifier using combination of bagging, boosting and random 

subspace ensemble algorithms. Their choice was driven by knowledge that bagging, boosting and random 

subspace methods are well known re-sampling ensemble methods that generate and combine a diversity of 

learners using the same learning algorithm for the base learners. The author used model tree inducer M5rules in 

one set of experiment and SMO algorithm in another set of experiment. They compare the performance of the 

model with the individual learning algorithms used in the construction of the heterogeneous ensemble classifier. 

However author did not balance the classes nor attempted to remove point outliers that could be associated with 

some attributes of some of the datasets. 

Author [35] researched on hybrid outlier detection method for Health Care Big Data. They reiterated that 

informatics, digitalizing health records, and telemedicine has resulted in rapid growth of health care data. 

Author noted that the conventional outlier detection methods are sometime not very efficient. In their study, 

they proposed a novel hybrid outlier detection method, namely, pruning-based K-nearest neighbor (PB-KNN), 

which integrates the density-based, cluster-based methods and K-nearest neighbor algorithm (KNN. Their 

findings showed that the PB-KNN method outperforms the k-nearest neighbor (KNN) and local outlier factor 

(LOF) in terms of the accuracy and efficiency because of effectively reducing and pruning data dimensionality. 
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Study by [36] reaffirmed that outlier detection is one of the major issues in data mining especially in the area of 

pattern classification. They asserted that outliers that were initially considered as noise can no longer be ignored 

without being analyzed. The discovery of outlier is extremely useful in detection of unpredicted and unidentified 

data, in certain areas like business fraud detection, computer networks intrusion, criminology, drug 

manufacturing, medical diagnosis and others.  Author [37] developed a model-based outlier detection system 

using IQR filter algorithm. They used the system to detect and remove point outliers. Their findings showed that 

removing point outlier improves on outlier detection and performance of classifiers. 

4. Problem statement 

Multiclass classification problem has many challenges which include, imbalance classes, presence of outliers in 

the features, redundant features and lack of robust learning algorithms. The literature review has shown that 

there is no general approach for solving multiclass problem and the unification framework does not exist. One 

of the directions of addressing imbalance classes which is a common phenomenon with multiclass classification 

problem is to study underlying nature of the imbalanced data, key properties of its underlying distribution and 

consequences they bring for learning better classifiers or for constructing specialized pre-processing methods.  

The review has shown there are a number of methods for detecting outliers in a given dataset but no single 

method is found to be the universal choice. Depending on the nature of target application, different applications 

require use of different outlier detection methods. Thus there is need to develop outlier detection method using 

either data centered or algorithmic approach. Rare class classification is the data mining technique for building a 

model that can correctly classify both the majority and minority (outlier) classes. Classifying minority or rare 

class is difficult because the size of the rare class representation is too small and existing classification 

algorithms were designed to be biased towards prediction of majority class. More research work is needed for 

the ever challenging emerging multiclass problem in real life applications. Classification and outlier share 

similar variant and bias and hence the need to combine the study of classification and outlier detection. Thus the 

study tend to answer the following questions: 

(i) How does the methods for feature selection and outlier detection in data mining assist in improving 

performance in multi-class classification? 

(ii) How can a model of multiclass classification and outlier detection be created using ensemble 

techniques? 

(iii)How can test and evaluation of multiclass classification and outlier detection model be done using 

multiclass datasets? 

Thus we propose development of a hybrid ensemble method for multiclass classification and outlier detection. 

The next section describe the proposed hybrid ensemble model for multiclass classification and outlier 

detection. 

5. Proposed hybrid ensemble method 

5.1 Ensemble Filter Feature Selection Method 
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The process use Correlation, Information gain, Relief, and Gain ratio filter feature selection algorithms. Figure 1 

depict the process of developing the ensemble feature method. The process starts by selecting the four 

algorithms and using them to individually rank the features of the datasets. The generated feature lists are then 

merged together to produce a single ranked feature list.  

Random forest classifiers are built using the features. The process begin by building classifier using the top 

ranked list. The Root Mean Square Error (RMSE) for the classifier is observed and recorded. The process is 

repeated iteratively by incorporating a feature at a time until the bottom ranked feature in the merged feature is 

used in the building of the classifiers. When a feature with less contribution to the performance of classifier is 

incorporated, the resulting classifier is expected to have a higher RMSE value compared with the previous 

immediate RMSE value. Thus the threshold is set to this level. The final optimal feature sub-list includes the 

features starting from the top-ranked feature up to and including the feature that results in the generation of the 

least RMSE value. 

 

Figure 1: Ensemble Filter Selection Method 

 

5.2 Preprocessing Dataset 

Using the feature sub-list, point outliers are removed from the features using Inter-Quartile Range (IQR) 

algorithm. The outliers are identified from statistical tail ends as follows: 

X≤Q3 + 3*IQR or X≥Q1-3*IQR        (1) 

Where: Q1 = 25% quartile, Q3 = 75% quartile and 

 IQR = difference between Q1 and Q3 
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Further preprocessing involve rebalancing datasets using Synthetic Minority Oversampling Technique 

(SMOTE). Artificial samples of the rare classes are generated to the level that they measured at least 50% 

compared with the majority classes.  

5.3 Transforming Multiclass to Binary Classes 

One-verses-One decomposition technique utilizing pairwise coupling is used to transform the preprocessed 

multiclass dataset classes to binary classes. 

5.4 Building Ensemble Model 

Using the decomposed dataset, heterogeneous ensemble model is built. The process involve generating two 

ensemble classifiers AD_RF and RS_RF using Adaboost algorithm and Random Subspace algorithm 

respectively each utilizing random forest algorithm as their base classifier. The two ensemble classifiers are then 

combined using voting technique utilizing average of probabilities combination rule.  Figure 2 shows the 

proposed model. 

 

Figure 2: Proposed Ensemble Model 

5.5 Testing and Validating Model 
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The model is validated using stratified 10 fold cross validation. Performance of the model is compared with 

other algorithms using a paired T-test. Statistical confidence interval is set at 0.05. Receiver Operating 

Characteristic (ROC) values is used to measure the performance of the classifiers. Other metrics performance 

measures such as True Positive, Precision, Recall and F-measure are used to evaluate the performance of the 

model.  

6. Experiments and results 

6.1 Dataset Descriptions 

Since research was on multiclass classification and outlier detection, imbalance sensitive datasets were selected. 

The study used 6 multiclass medical datasets, 3 multiclass biological datasets and 1 manufacturing multiclass 

dataset drawn from UCI machine learning repository [38]. The description of the dataset is provided as follows: 

(i) Cleveland Dataset 

Cleveland dataset is a part of the Heart Disease Data Set (the part obtained from the V.A. Medical Center, Long 

Beach and Cleveland Clinic Foundation). The dataset was originally created to detect the presence of heart 

disease in the patient. It is integer valued from 0 to 4.The dataset 13 attributes, 5 classes and 297 instances. 

(ii) Contraceptive Dataset 

Contraceptive dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The samples 

are for married women who were either not pregnant or did not know if they were at the time of interview. The 

dataset was created to predict contraceptive method choice at the time of interview (no use, long-term methods, 

or short-term methods) for women based on their demographic and socio-economic characteristics. The dataset 

has 9 attributes, 3 classes and 1473 instances. 

(iii) Dermatology Dataset 

The dataset was original created to perform the differential diagnosis of erythemato-squamous diseases which is 

a real problem in dermatology. Patients were first evaluated clinically with 12 features. Afterwards, skin 

samples were taken for the evaluation of 22 histopathological features. The dataset has 34 attributes, 6 classes 

and 366 instances. 

(iv) Ecoli Dataset 

The original Ecoli dataset is a multiclass classification dataset having 8 attributes. Here, 7 numerical 

attributes are utilized and the attribute “sequence name” is omitted. Among the 8 classes omL, imL, and imS are 

the minority classes and used as outliers. All the other majority classes are used as inliers. The dataset has 7 

attributes, 8 classes and 336 instances. 

(v) Glass Identification Dataset 

https://archive.ics.uci.edu/ml/datasets/Ecoli
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The Original dataset was obtained from USA Forensic Science Service. The dataset has 6 types of glass which 

can be found in the crime scene, defined in terms of their oxide content (i.e. Na, Fe, K, etc). The dataset has 9 

attributes, 7 classes and 214 instances. 

(vi) Newthyroid Dataset 

This dataset is one of the several databases about Thyroid available at the UCI repository. The dataset was 

created to detect whether a given patient is normal (1) or suffers from hyperthyroidism (2) or hypothyroidism 

(3). The dataset has 5 attributes, 3 classes and 215 instances. 

(vii) Red Wine Quality Dataset 

The dataset is related to red variant of the Portuguese Vinho Verde wine. Due to privacy and logistic issues, 

only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape 

types, wine brand, wine selling price, etc.).These datasets can be viewed as classification or regression tasks. 

The classes are ordered and not balanced (e.g. there are much more normal wines than excellent or poor ones). 

The dataset has 11 attributes, 6 classes and 1599 instances. 

(viii) Zoo Dataset 

Zoo database was meant to classify animals in seven predefined classes and most of the attributes are boolean-

valued. The dataset has 16 attributes, 7 classes and 101 instances. 

(ix) Vehicle Dataset 

Vehicle dataset is used to classify a given silhouette as one of four types of vehicle, using a set of features 

extracted from the silhouette. The vehicle may be viewed from one of many different angles. The dataset has 18 

attributes, 4 classes and 946 instances. 

(x) Yeast Dataset 

This database contains information about a set of Yeast cells. The original use of dataset was to determine the 

localization site of each cell among 10 possible alternatives. The dataset has 8 attributes, 10 classes and 1484 

instances. 

7. Preprocessing datasets 

An ensemble filter method was constructed using Correlation, Information-gain, Gain-ratio and ReliefF features 

selection algorithms and the resulting ranked lists merged. The features where thereafter evaluated and an 

optimal sub-list generated. Table 1 represents results. 
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Table 1: Feature Sublists for 10 Multiclass Datasets

 

 

8. Effect of using ensemble filter method and point outlier detection 

Point outliers were detected using IQR filter algorithm. Table 2 shows results of experiment before and after 

applying the developed ensemble feature selection method. We observe after applying the ensemble method, the 

number of detected point outliers reduced from 112 to 48 for Redwine dataset, 82 to 39 for Yeast dataset, 1 to 0 

for Cleveland dataset. Other datasets showed no change since the filtered features did not contain any outlier. 

Table 2: Effect of Ensemble Filter method on Point Outlier Detection 

 

Datasets  #attributes #instances  
without  
missing  
values 

#classes  Selected Features  Dropped Features 

1 Cleverland 13 297 5 3,8,9,10,11,12,13  1,4,5,6,7 

2 Contraceptive  9 1473 3 1,2,3,4,5,6,8,9  7 
3 Dermatory 34 358 6 2.3.4.5.9.14.15.17.20,21,2 

2,26,27,28,31,33  
1,6,7,8,10, 11, 12,  
13,16, 18, 19,23, 24,  
25, 29, 30, 32 

4 Ecoli 7 336 8 1,2,3,5,6,7  4 

5 Glass  9 214 6 1,2,3,4,6,7,8,9  5 

6 Newthyroid 5 215 3 1,2,3,4,5  None 

7 Redwine 11 1599 6 1,2,3,5,7,8,10, 11 4,6,9 

8 Zoo  16 101 7 1,2,3,4,5,6,8,9,10,12,13,14 
,16  

7, 11,15 

9 Vehicle  18 946 4 1,2,3,4,5,6,7,8,9,10,11,12, 
13,14,17,18  

15,16 

10 Yeast  8 1484 10 1,2,3,4,5,6,8  7 
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9. Effect of removing point-outliers on classification 

We sought to determine the effect of presence of point outliers on classification performance using the proposed 

method. Experiment was done using preprocessed Redwine dataset, one of the dataset used in the study. Table 3 

shows results of experiment before and  after removing point-outliers. Results indicate the overall weighted 

ROC classification performance of  proposed method improved from 86.6% to 86.8%, SVM improved from 

73.6% to 74.2%, SVM improved from 70% to 70.5%, KNN improved from 73% to 75.9%, OneR declined from 

68.7% to 65.3%, C4.5 improved from 62.2% to 76.7% and randomforest improved from 72.9% to 86.1%. The 

proposed method had a better performance than other well known classification algorithms. Generally removing 

point outliers improved on classification performance of the classifiers. 

Table 3: Effect of Removing Point-Outliers on Classification Performance 

 

 

10. Comparison performance of proposed method with other algorithms using statistical paired-t test 

Ten preprocessed multiclass datasets were used in the experiment. The performance of the proposed method was 

compared with the individual algorithms used to construct the method and also with other commonly used 

classification algorithms. ROC value was used as the metric performance measure. Performance evaluation was 

done using statistical Paired T-test with significant level p set at 95% confidence interval. Results were 

presented using some terms. The term “v” represents the winning situation of that particular algorithm as 

compared with the proposed algorithm while “*” indicate that the proposed ensemble algorithm was statistically 

better than the compared algorithm. Plain text signifies that there was no difference in performance indicating a 

draw. Aggregated results are represented in terms of x, y, and z where “x” represents number of aggregated 

losses and “z” represents aggregated number of wins and “y” represents aggregated number of draws for the 

proposed method. 

10.1 Statistical Paired T-test between Proposed Method and other Algorithms before Applying SMOTE 

Resampling 

Table 4 shows results of the experiment. The results indicate Ad_RF statistically lost once to the proposed 
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method. The proposed method had zero significantly error rate to RS_RF. Thus the propose method performed 

better than the individual classifiers used in the construction of the method. Further observation shows the 

proposed method outperformed Bagging by 20%, Naïve bayes by 30%, KNN by 70%, SVM by 90%, JRipper 

by 80%, OneR by 100%, ZeroR by 100% and C4.5 by 50%. 

Table 4: Statistical Paired T-test ROC Performance between Proposed Method, Individual Classifiers and Other 

Classification Algorithms before SMOTE Resampling 

 

 

10.2 Statistical T-test between Proposed Method and Other Algorithms after SMOTE Resampling 

Table 5 shows result of experiment after SMOTE resampling 10 multiclass datasets.  

The proposed method resampled dataset with SMOTE. Results indicate performance of the proposed method 

improved from 93% to 95%, RF improved from 93% to 94%, Naïve bayes improved from 87% to 86%, SVM 

improved from 70% to 76%, KNN improved from 85% to 86%, Bagging improved from 92% to 93%, JRipper 

improved from 82% to 85%, OneR improved from 69% to 70%, ZeroR remained at 50%, and C4.5 improved 

from 85% to 88%. Generally SMOTE resampling of datasets improved performance of all the algorithms.  

Results also indicate the proposed method outperformed Naïve bayes by 50%, SVM by 80%, KNN by 60%, 

JRipper by 70%, OneR by 100%, ZeroR by 100% and C4.5 by 70%. We also observe the proposed ensemble 

method outperformed ensemble bagging (Reptree) and ensemble Random forest algorithms.  

Further observations review proposed method, ensemble random forest, ensemble bagging had better 

performance than other classification algorithms. Thus Ensemble technique produces more robust classifier that 

outperformed other algorithms.  

 

Dataset ProposedMethod Bagging Ad-RF RF RS_RF NaiveBayes KNN SVM Jripper OneR ZeroR C4.5 
'cleverland 0.89 0.88 0.88 0.88 0.9 0.9 0.78* 0.63* 0.56* 0.61* 0.5* 0.79* 
contraceptiveDataset 0.73 0.76 0.71 0.74 0.72 0.7 0.63* 0.69* 0.66* 0.61* 0.5* 0.71 
'dermatory 1 0.97 1 1 1 1 0.93* 0.88* 0.94* 0.5* 0.5* 0.95 
ecolidataset 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.5* 0.94* 0.85* 0.5* 0.94 
myglassdata 0.94 0.92 0.95 0.94 0.93 0.72* 0.8* 0.79* 0.82 0.74* 0.5* 0.8 
newthyroid 0.99 0.97 0.99 0.99 0.99 0.99 0.97 0.6* 0.91* 0.88* 0.5* 0.9* 
'RedWineQuality 0.89 0.85* 0.89* 0.89 0.89 0.78* 0.76* 0.7* 0.72* 0.69* 0.5* 0.76* 
vehicle 1 0.98* 1 1 1 0.81* 0.96* 0.53* 0.94* 0.76* 0.5* 0.94* 
yeastdataset 0.85 0.86 0.82 0.86 0.84 0.84 0.71* 0.71* 0.79* 0.49* 0.5* 0.73* 
'Zoo 1 1 1 1 1 1 1 0.99 0.96 0.82* 0.5* 1 
Average 0.93 0.92 0.92 0.93 0.93 0.87 0.85 0.7 0.82 0.69 0.5 0.85 

(x/ y/z) (0/8/2) (0/9/1) (0/10/0) (0/10/0) (0/7/3) (0/3/7) (0/1/9) (0/2/8) (0/0/10) (0/0/10) (0/5/5) 
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Table 5: Statistical Paired T-test ROC Performance for Proposed Method, After SMOTE Resampling 

 

 

10.3 Statistical Paired T-test between Proposed Method and Other Ensemble Algorithms 

Table 6 presents the results. The results shows the proposed method outperformed individual ensemble 

algorithms used in the construction of the method. Further observations reveals the proposed method 

outperformed ensemble bagging (Reptree) by 20% and Ad_RF ensemble by 10%. Thus the proposed method 

outperformed other ensemble algorithms. 

Table 6: Comparing Proposed Ensemble Method with other Ensemble Algorithms 

Datasets Proposed Method AD_RF RS_RF RF Bagging(Reptree) 

Cleverland 0.92 0.92 0.92 0.91 0.90 

Contraceptive 0.80 0.78 0.80 0.80 0.81 

Dermatory 1 1 1 0.99 0.98 

Ecoli 0.99 0.99 0.99 0.99 0.99 

Glass 0.96 0.94 0.94 0.94 0.89* 

Newthyroid 0.99 0.99 0.99 0.99 0.98 

RedWine 0.93 0.92 0.93 0.93 0.90* 

Vehicle 1 1 1 1 0.99 

Yeast 0.9 0.89 0.9 0.9 0.88 

Zoo 1 1 1 1 0.98 

Average 0.95 0.94 0.95 0.94 0.93 

 Aggregation (x/ y/z) (0/9/1) (0/10/0) (0/10/0) (0/8/2) 

 

The proposed method was evaluated on the capability of outlier detection. Table 7 presents a summary of the 
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ROC metric performance for the minority classes using the 10 datasets. Results indicate the proposed method 

improved in outlier detection with all the datasets except the vehicle dataset. 

.Table 7: ROC and F-Measure Outlier Metric Performance for 10 Multiclass Datasets using Proposed Method 

 

 

11. Discussions 

11.1 Feature Selection Methods and Outlier Detection in Data Mining  

In this study, preprocessing was performed using an ensemble filter selection method and removal of point 

outliers. The ensemble filter selection method was constructed using Correlation, Gain-ratio, and Information-

gain and ReliefF filter feature selection algorithms. A feature threshold was determined using Root Mean 

Square Error (RMSE) and random forest classifiers. The classifiers were evaluated using 10 fold stratified cross 

validation. The ensemble filter selection method improved the performance of classifiers. The study findings 

established that ensemble filter selection method produces a more robust filter method that improves on 

classification. The use of RMSE to determine the threshold makes the process statistically empirically testable 

and reliable. 

 Study by [5] used information-gain, gain-ratio, chi-square and ReliefF filter methods to create an ensemble 

filter selection method. Their study showed that combining feature selection methods improves the performance 

of classifiers by identifying the features that are weak as individual but strong as a group. Their findings 

affirmed that ensemble filter selection method result in an improved method that performs better than the 

individual selection methods used in the combination. However, this research study differs with the author’s [5] 

study in the process of determining the threshold. The author used the output of the one-third split of ranked 

features to determine the feature to be selected. The method assumed that if a feature is voted by 3 methods, 

then it should be considered as a good feature. In this study we used RMSE to determine the threshold as 

discussed in the proposed method. This study findings is supported by [3] who demonstrated that feature 

selection methods improves knowledge of the classification process under consideration. Study by [4] 
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reaffirmed that ensemble learning can be realized through aggregating output of several models which results in 

a better results than the output of any individual model.. This study finding is in line with their conclusion. 

Outlier detection approaches can be categorized into statistic-based, unsupervised, supervised, and semi-

supervised.  In this study, a model-based outlier detection was built using statistical IQR filter algorithm 

method. The study aimed at eliminating point outliers prior to building up the final model. The classifier built 

showed improved outlier detection after applying both the ensemble filter selection method and preprocessing 

through removal of point outliers. The results suggest removal of irrelevant or redundant features have an effect 

on reducing point-outliers leading to improved classifier performance. The study finding agrees with [37] who 

maintained that removing outlier improves outlier detection and performance of classification. Also this study 

findings reaffirms similar studies by [28] who reiterated that outliers influence the results of data mining 

techniques like clustering, classification and association.  

11.2 Multiclass Classification and Outliers Detection Methods in Data Mining 

The study sought to address the issue of imbalance problem associated with multiclass. Existing common 

classification learning algorithms are biased towards the prediction of the majority classes. Sampling techniques 

such as under-sampling, oversampling and SMOTE can be applied to balance datasets for .Minority classes in a 

multiclass problem may be described as rare classes or rare events or outliers [6]. In this study, multiclass 

datasets were individually resampled using synthetic minority over sampling technique (SMOTE) to generate 

synthetic instances from the minority classes. The numbers of artificial samples were generated to the level that 

measured at least 50% match with the majority classes. The model built showed improvements in the 

classification and outlier detection performance after resampling the datasets. This study avoided the use of 

over-sampling which tends to increase the number of the minority instances that can result to over-fitting 

because of the duplication of data. Also the study did not advocate the use of under-sampling which reduce the 

number of the majority instances but may result to a loss of information of the majority and hence decrease the 

performance of classification. [6] established that SMOTE improves on data representation that improves on 

performance of classifiers. They evaluated their model using ROC metrics performance of C4.5, Ripper and 

Naïve bayes classifiers. This study findings agrees with the conclusion of the author. Furthermore [19] 

demonstrated that the SMOTE improves on the generalization performance of classifiers which is reaffirmed by 

results of this study. 

In this study, each of the 10 multiclass datasets were transformed to binary classes using OnevsOne 

decomposition technique utilizing pairwise coupling. The model built performed well in classification and 

outlier detection. This study finding is in line with [1] who supported the techniques of extending binary 

classification problems to handle the multiclass. In their findings, they affirmed that a multiclass problem can be 

decomposed into several binary classes and the resulting classifier performs well. The technique used in this 

study is in conformity with study by [26] who proclaimed that researchers use multiclass decomposition 

technique of one against one, and one against all to address the issue of multiclass classification. 

11.3 Use of Ensemble Learning Methods 
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In this study, a heterogeneous ensemble model was built using ensemble Adaboost and ensemble Random 

subspace algorithms using random forest as the base classifiers for each of the algorithms. According to [24] 

combining ensemble learning with resampling techniques produce better classifiers that outperform other 

individual classic algorithms. In this study, adaboost was considered in the model due to its boosting 

capabilities. According to [10] boosting works by repeatedly running a given weak learning algorithm on 

various distributions over the training data, and then combining the classifiers produced by the weak learner into 

a single composite classifier.  

Random subspace algorithm was considered in this study since it benefits from bootstrapping and aggregation 

focusing on feature space. The original training set is modified but unlike bagging that bootstraps training 

samples, this modification is performed in the feature space by projecting the original feature space into 

different and randomly chosen feature subspaces. According to [20], RMS can effectively handle datasets with 

redundant features and it has been known to overcome the problems of instability and over-fitting.  

Random forest algorithm was considered in this study since it is the most commonly used ensemble 

classification algorithm and computes the importance of each feature in the classification process. The algorithm 

utilizes the combination of tree predictors to produce tree classifiers. The algorithm use bagging and random 

selection of features to split at each node. The study aimed at boosting the performance of classifier built using 

random forest as the base classifier. 

11.4 Performance of the Proposed Method 

Statistical Paired-T test was used to compare the performance of the proposed method. Comparisons were 

performed with the individual classifiers used in the method and also with other existing algorithms. Results 

showed Ad_RF and Random forest statistically lost once to the proposed method but the proposed method had 

zero significantly error rate to RS_RF algorithm. Further observation showed the ensemble random forest, 

ensemble bagging had better performance than other classification algorithms though they were outperformed 

by the proposed method. This study support conclusion of [18] who reaffirmed that random subspace method 

(RSM) is a good ensemble learning algorithms and is widely used in pattern classification applications. The 

authors reiterated that RSM has the advantages of small error rate and improved noise insensitivity due to 

ensemble construction of the base-learners. The use of ensemble method in this study is in line with assertion by 

[17] who claimed that many ensemble methods, seek to promote diversity among the models they combine. 

Ensembles tend to yield better results when there is a significant diversity among the models. 

The technique used in this study is slightly different from the one proposed by [34] who constructed 

heterogeneous ensemble classifier using combination of bagging, boosting and random subspace ensemble 

algorithms. The author used model tree inducer M5rules in one set of experiment and sequential minimal 

optimization (SMO) algorithm in another set of experiment whereas in this study we used random forest 

algorithm as the base learner. Another difference arises in the handling of the multiclass. In this study we 

applied SMOTE resampling and decomposed the datasets using OnevsOne technique. The Authors did not 

balance the datasets nor attempted to remove point outliers that could be associated with some attributes of some 
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of the datasets. Also the author only carried a comparative study with the individual classifiers used in the 

construction of the ensemble. In this study, we compared the performance of the proposed heterogeneous 

ensemble method with 10 other well-known classification algorithms and performed preprocessing using an 

ensemble filter method that we created.  

12. Conclusion 

This study proposed the use of ensemble filter selection method to improve on the performance of classifiers 

and rebalancing datasets using SMOTE. The ensemble filter method provides an improved reliable effective 

way of preprocessing datasets. Since multiclass problems are well handled through binarization, this research 

proposed use of decomposition technique rather than the technique of merging classes. Also we propose 

removal of point-outliers associated with features prior to the building of classification and outlier classifiers. 

This research proposed development of heterogeneous ensemble model using boosting and bagging techniques.  

In this study, model-based outlier detection method was built using statistical IQR filter algorithm method. The 

results suggest removing irrelevant or redundant features have an effect of reducing point-outliers leading to 

improved classifier performance. The study demonstrates that presence of outlier degrades and influences the 

performance of classifiers. The study demonstrates resampling dataset using SMOTE improves on rare class 

detection. The study confirmed ensemble techniques produce better outlier detection and classification 

performance. The study findings reaffirmed that ensemble learning can be realized through aggregating output 

of several models which results in a better results than the output of one individual model. 

13. Recommendation 

In this study, an ensemble filter selection method was developed and used in the development of the proposed 

model using four filter selection algorithms. There is need to explore the effect of creating an ensemble selection 

method using combination of filter and wrapper selection methods. Future study should investigate the effect of 

partial removal of point-outliers from datasets prior to building up of classifiers. In this study, skewed datasets 

were resampled using SMOTE algorithm to the extent that the resulting minority class distribution measured at 

least 50% match in comparison with the majority class. Further study could be done to ascertain an ideal 

percentage of resampling rather than choosing an arbitrary distribution measure. In this study the model built 

utilized the capabilities of boosting and bagging ensemble learning algorithms. We recommend further study on 

combining the proposed method with deep learning algorithms.  
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