Effectiveness of Variable Size of Composite Activated Carbon Sugar Palm Bunches (Arenga Pinnata) and Extract of Iron Sand on Adsorption of Motor Vehicle Exhaust Gas (CO, CO2, HC)

Authors

  • Nilam Anindytha Department of Physics Education, University of Halu Oleo, Street H.E.A Mokodompit, Kendari, 93231, Indonesia
  • Ferlyasari Ferlyasari Department of Physics Education, University of Halu Oleo, Street H.E.A Mokodompit, Kendari, 93231, Indonesia
  • Adam Maulana Department of Physics Education, University of Halu Oleo, Street H.E.A Mokodompit, Kendari, 93231, Indonesia
  • Vivi Hastuti Rufa Mongkito Department of Physics Education, University of Halu Oleo, Street H.E.A Mokodompit, Kendari, 93231, Indonesia
  • Suritno Fayanto Department of Master in Physics Education, University of Ahmad Dahlan, Street Pramuka, Yogyakarta, 55161, Indonesia

Keywords:

Activated carbon, sugar palm bunches waste, iron sand, adsorption, motor vehicle exhaust gas.

Abstract

This analysis aims to define the effectiveness of grain size variations of the composites of activated carbon from aren bunches (Arenga pinnata) and iron sand to analyze the levels of absorption of motor vehicle exhaust gas (CO, CO2, HC). Samples of sugar palm bunches wereobtained in Lalodati Village, Kendari City while iron samples obtained in Bubu Village, District, North Kambowa Buton Regency. Samples of sugar palm bunches and iron sand were washed and dried in the sun for 5 days. Waste bunches samples sugar palm is then carbonated with a temperature of  250 - 4000C for 8 hours. Then for the iron sand extraction process is carried out using magnets.

After that, carbon samples of sugar palm bunches and iron sand were mashed with a mortar and sieved with a grain size of 60 mesh, 80 mesh, 100 mesh, and 200 mesh. Samples Carbon of palm bunch waste were activated using temperature at 700 ° C for 30 minutes. Then, activated carbon samples of sugar palm bunches and iron sand waste homogenized with a ratio of  3:2 hours using a homogenizer for 8 hours After that, composite samples that have been homogeneous compacted on a pipe measuring 8 cm, with a pressure of 10 Newton. Samples are then inserted into the adsorption tube and analyzed using Anycar Autocheck Gas and Smoke (AAGS) analyzer. The results obtained showed that the activated carbon composite and iron sand extract had an influence on variations in grain size, where composite with grain size 100 mesh and 200 mesh are more effective in absorbing exhaust gas vehicle than composites measuring 60 mesh and 80 mesh.

References

Jayanti, N. E. (2014). “Emisi Gas Carbon Monooksida (Co) dan Hydrocarbon (HC) pada Rekayasa Jumlah Blade Turbo Ventilator Sepeda Motor "Supra X 125 Tahun 2006". Jurnal Teknik Mesin. Vol.16(2), 1-6. Available:http://ejournal.undip.ac.id/index.php/rotasi.

Basuki, K. T, Setiawan, B, Nurimaniwathy. (2007). "Penurunan Konsentrasi CO dan NO₂ pada Emisi Gas Buang dengan Menggunakan Media Penyisipan TiO₂ Lokal Pada Karbon Aktif." Journal Forum Nuklir (JFN). Vol 1(1).

Nugraha. B. S. “Aplikasi Teknologi Injeksi Bahan Bakar Lektronik (Efi) Untuk Mengurangi Emisi Gas Buang Sepeda Motor." Jurnal Ilmiah Popular dan Teknologi Terapan. 2007. Vol 5(2) :1-16.

Rahmawati, R. “Pengaruh Konsentrasi TiO2 pada Komposit Karbon Aktif Kulit Biji Mete dan TiO2 terhadap Daya Serap Gas Buang Sepeda Motor (CO, CO2 dan HC)”. Skripsi. Universitas Halu Oleo Kendari. 2015.

Jalaluddin, G. A., Darmadi. “Analisis Karakteristik Emisi Gas Buang pada Sarana Transportasi Roda Dua Kota Banda Aceh." Jurnal Teknik Mesin Unsyiah. Vol 1(4). December 2013.

Takagi, H., H. Hatori, Y. Yamada, S. Matsuo, and M. Shiraishi. “Hydrogen Adsorption Properties Of Activated Carbons With Modified Surfaces." Journal of Alloys and Compounds. 385(1-2). 2004.

Reynold, T. D. “Unit Operations And Processes In Environmental Engineering Brooks." California: Cole Engineering Division Monterey,1982, hlm 350-353.

Yanti. “Karbon Aktif Tempurung Biji Nyamplung (Calophyllum inphylum L.) sebagai Penyerap Gas Buang Sepeda Motor”. Skripsi. Universitas Halu Oleo. Kendari. 2018.

Haslinda. “Pengaruh Temperatur Pemanasan Terhadap Kandungan Unsur dan Nilai Suseptibilitas Magnetik Pasir Besi di Desa Laompo Kecamatan Batauga. Kabupaten Buton Selatan”. Skripsi. Universitas Halu Oleo. Kendari. 2015.

Adrianto, N., Ahmanas, S.R., Undu, M.A.A., Mongkito, V.H.R. “Characterization Activated Charcoal Sugar Palm bunches (Arengga Pinnata Merr) and the Application as Adsorbent Timbal Metal (Pb), Copper (Cu) and Krom (Cr) in Solution”. International Conference on Mathematics, Science and Education (ICMSE). 2018.

Fayanto, S., Sawaluddin., Anas, M., Hunaidah., Erniwati., Mongkito, V.H.R. “Preparation And Characterization Of Activated Carbon From Nyamplung (Calophyllum inophyllum .L) Seed Shell Waste: Effect Of Activation Temperature”. In conference Proceedings ICCSET. 2018. DOI 10.4108/eai.24-10-2018.2280629.6.

Erniwati., Ahmanas, S.R., Fayanto, S., Adrianto, N., Ahmad., Undu, M.A.A., Sulwan., Setiawan, KY., Anas, M. “Application Composite Of Iron Sand Extract And Activated Charcoal Of Cashew Nuts As Powder Ink (Toner)”. In Conference Proceedings ICCSET. 2018. EAI DOI 10.4108/eai-24-102018.2280535.

Jalaluddin, G. A., Darmad. “Analisis Karakteristik Emisi Gas Buang pada Sarana Transportasi Roda Dua Kota Banda Aceh”. Jurnal Teknik Mesin Unsyiah, Vol 1(4). 2013.

Abdul Gani Haji, Gustan Pari, Muhammad Nazar and Habibati. “Characterization of activated carbon produced from urbanorganic waste”. International Journal of Scienceand Engineering (IJSE).Vol. 5(2), hlm 89-94. 2018.Available: https://www.researchgate.net/publication/274447547.

Das D, Samal DP, Meikap BC. “Preparation of Activated Carbon fromGreen Coconut Shell and its Characterization”. J Chem. Eng Process Technology.Vol 6:248, doi:10.4172/2157-7048.10002482015.

Downloads

Published

2019-07-24

How to Cite

Anindytha, N., Ferlyasari, F., Maulana, A., Rufa Mongkito, V. H., & Fayanto, S. (2019). Effectiveness of Variable Size of Composite Activated Carbon Sugar Palm Bunches (Arenga Pinnata) and Extract of Iron Sand on Adsorption of Motor Vehicle Exhaust Gas (CO, CO2, HC). International Journal of Sciences: Basic and Applied Research (IJSBAR), 47(2), 198–207. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/10153

Issue

Section

Articles