The Effects of Dual Acceptor (Na, N) Doping on Zn and O Sites in ZnO

Authors

  • M. A. Sayed Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400, Bangladesh.
  • M. Kamruzzaman Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400, Bangladesh.

Keywords:

DFT, p-type ZnO, dual acceptor, optoelectronic and electronic

Abstract

ZnO is an attracted semiconducting material because of the intriguing structural, electronic and optical properties as well as the properties can easily be tuned for applications. However, p-type doping is an essential research interest to overcome the hindering of the applications of n-type ZnO for next-generation advanced electronic and optoelectronic devices. In this article, we focus on the p-type acceptor mono (Na, N) and dual (Na-N) doping effects on the structural, electronic and optical properties of ZnO using first-principles calculations based on the density functional theory (DFT). Detailed DFT analysis reveals that the structure of ZnO distorted resulting in (Na, N) and (Na-N) doping, respectively. Band structure calculation highlights the confirmation of p-type ZnO for both types of doping introduced by acceptor impurity bands at the top of the valence band and pushing the Fermi level into the valence band. The band gap of ZnO is increased for Na and Na-N doping, while decreases for N doping.  The widening of the band gap with Na and Na-N doping could be explained by Burstein Moss effect. In this study the band gap can be tuned in between 0.58 and 0.93 eV. Importantly, enhancement of the absorption and photoconductivity in the near band edge region attributed to (Na, N) and (Na-N) could be extended its applications in high-performance p-type based electronic and optoelectronic devices.

References

. Ü. Özgür, Y. L. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., Vol. 98, pp. 041301, 2005.

. M. Kamruzzaman, M. K .R. Khan, M. M. Rahman, M. Shahjahan M. R. Ahsan, M. A. S. Karal, “Electrical, Magnetic and Dielectric properties of Zn1-xCdxO system,” International Journal of Modern Physics B, Vol. 25, pp. 3353-3360, 2011.

. W. Dewald, V. Sittinger, B. Szyszka, F. Sauberlinch, B. Stannowski, D. Kohl, P. Ries, and M. Wuttig, “Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application,” Thin Solid Films, Vol. 534, pp. 474, 2013.

. Z. S. Wang, C. H. Huang, Y. Y. Huang, Y. J. Hou, P. H. Xie, B. W. Zhang, H. M. Cheng, “A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode,” Chem. Mater., Vol. 13(2), pp. 678-682, 2001.

. D. C. Look, B. Claflin, “P‐type doping and devices based on ZnO,” Phys. Status Solidi B, Vol. 241, pp. 624, 2014.

. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, “Sens. Al-doped ZnO for highly sensitive CO gas sensors,” Actuators B Chem., Vol. 196, pp. 413, 2014.

. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, “Low‐Temperature Fabrication of Light‐Emitting Zinc Oxide Micropatterns Using Self‐Assembled Monolayers,”. Adv. Mater., Vol. 14, pp. 418, 2012.

. Y. L. Alivov, D. C. Look, B. M. Ataev, M. V. Chukichev, V. V. Mamedov, Y. A. Agafonov, A. N. Pustovit, “Fabrication of ZnO-Based Metal-insulator-Semiconductor Diodes by Ion Implantation,” Solid State Electron, Vol. 48, pp. 2343-2346, 2014.

. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma , “Radiative and non radiative recombination processes in lattice-matched (Cd, Zn)O/(Mg, Zn)O multiquantum wells,” Appl. Phys. Lett., Vol. 77, PP. 1632-1634, 2000.

. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, Vol. 80, pp. 383-387, 2001.

. F. Y. Zhang, J. Q. You, Z. Zeng, G. H. Zhong, “The effect of electronic orbital interactions on p-type doping tendency in ZnO series: First-principles calculations,” Chin. Phys. B, Vol. 16, pp. 3815-3819, 2017.

. F. C. Zhang, Z. Y. Zhang, W. H. Zhang, J. F. Yan, J. N. Yong, “First-principles study of the electronic and optical properties of ZnO nanowires,” Chin. Phys. B, Vol. 18, pp. 2508-2513, 2009.

. A. Janotti, G. Chris, Van de Walle, “New insights into the role of native point defects in ZnO,” Journal of Crystal Growth, Vol. 287, pp. 58–65, 2006.

. S. B. Zhang, S. H. Wei, A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” A. Phys. Rev. B, Vol. 63, pp. 075205, 2001.

. J. M. Bian, X. M. Li, X.D. Gao, W. D. Yu, L. D. Chen, “Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis,” Appl. Phys. Lett., Vol. 84 (4), pp. 541, 2004.

. C. H. Park, S. B. Zhang, S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Physical Review B, Vol. 66, pp. 073202, 2002.

. J. J. Lander, “Reactions of Lithium as a donor and an acceptor in ZnO,” J. Phys. Chem. Solids, Vol. 15, pp. 324, 1960.

. D. Zwingel, F. Gärtner, “Paramagnetic and Optical Properties of Na-Doped ZnO Single Crystals. Solid State Communications,” Solid State Commun., Vol. 14, pp. 45, 2013.

. D. Zwingel, “Trapping and recombination processes in the thermoluminescence of Li-doped ZnO single crystals,” J. Lumin., Vol. 5, pp. 385, 1972.

. R. Swapna, M. C. Santhosh, “Deposition of Na-N dual acceptor doped p-type ZnO thin films and fabrication of p-ZnO:(Na, N)/n-ZnO: Eu homojunction,” Mater Sci. Eng. B-Adv, Vol. 178, pp. 1032-1039, 2013.

. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, and M. Zhou, “Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method,” J. Alloys Compd., Vol. 623: pp. 367, 2015.

. D. Akcan, A. Gungor, L. Arda, “Structural and optical properties of Na-doped ZnO films,” Journal of Molecular Structure, Vol. 1161, pp. 299-305, 2018.

. J. Lu, K. Huang, J. Zhu, X. Chen, X. Song, Z. Sun, “Preparation and characterization of Na-doped ZnO thin films by sol–gel method,” Physica B, Vol. 405, pp. 3167–3171, 2010.

. F. K. Shanl, G. X. Liu1, W. J. Lee, K. R. Bae, B. C. Shin, “Structural, Electrical, and Optical Properties of Na-Doped ZnO Thin Films Deposited by Pulsed Laser Deposition,” Journal of Nanoscience and Nanotechnology, Vol. 8, pp. 5203–5207, 2008.

. O. Wan, B. Shao, Z. Xiong, D. Li, G. Liu, “Theoretical Study of the Electronic Structures of Na-doped ZnO,” Applied Mechanics and Materials, Vol. 665, pp.124-127, 2014.

. S. Dhara, P.K. Giri, “Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film,” Thin Solid Films, Vol. 520, pp. 5000, 2012.

. S. Nagar, S. Chakrabarti, “Realization of reliable p-type ZnO thin films by nitrogen implantation using plasma immersion ion implantation,” Superlattices Microstruct., Vol. 75, pp. 9-16, 2014.

. S. Golshahi, S.M. Rozati, A.M. Botelho do Rego, J. Wang, E. Elangovan, R. Martins, E. Fortunato, “Effect of substrate temperature on the properties of pyrolytically deposited nitrogen-doped zinc oxide thin films,” Mater. Sci. Eng. B, Vol. 178, pp. 103, 2013.

. T. K. Pathak, V. Kumar, H. C. Swart, L. P. Purohit, “Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films,” Phys. B Condens. Matter, Vol. 480, pp. 31-35, 2016.

. S. S. Shinde, C. H. Bhosale, K. Y. Rajpure, “Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension,” J. Photochem. Photobiol. B, Vol. 113, pp. 70-77, 2012.

. T.H. Vlasenflin, M. Tanaka, “p-type conduction in ZnO dual-acceptor-doped with nitrogen and phosphorus,” Solid State Communications, Vol. 142, pp. 292–294, 2007.

. J. J. Yang, Q. Q. Fang, W. N. Wang, D. D. Wang, C. Wang, “Pulsed laser deposition of Li-N dual acceptor in p-ZnO:(Li, N) thin film and the p-ZnO: (Li, N)/n-ZnO homo-junctions on Si(100),” J. Appl. Phys., Vol. 115, pp. 124509, 2014.

. J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, “Low-resistivity, stable p-type ZnO thin films realized using a Li–N dual-acceptor doping method,” Appl. Phys. Lett., Vol. 88, pp. 222114, 2006.

. M. Kamruzzaman, M. K. R. Khan, M. M. Rahman, M. A. S. Karal, M. Shahjahan, M. G. M. Chowdhury, “Synthesis and Characterization of Zn1-x-yCdxLiyOδ Solid Solution,” The Nucleus, Vol. 46 (1-2), pp. 37-42, (2009).

. M. Kamruzzaman, J. A. Zapien, “Effect of Co and Ni on Au/Zn1−xMxO Nanorods (M = Co and Ni) Schottky Photodiodes Performance,” J. Nanosci. Nanotechnol., Vol. 17, pp. 5342–5351, 2017.

. R. Afrose, M. Kamruzzaman, M. N. H. Liton, M. A. Helal, M. K. R. Khan, M. Rahman and T. K. Anam, “Synthesis and characterization of Zn100-xLixO and Zn100-x-yLixCuyO thin films for electronic and optoelectronic applications,” International Journal of Modern Physics B, Vol. 33, pp. 1950257, 2019.

. M. N. H. Liton, A. K. M. F. U. Islam, M. Kamruzzaman, M. K. R. Khan, M. A. Helal, M. M. Rahman, “Dual acceptor (N, Cu) doping effects on the electronic and optical properties of ZnO,” Materials Chemistry and Physics, Vol. 242, pp. 122463, 2010.

. J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., Vol. 77, pp. 3865-3868, 1996.

. M. D. Segall, P. Lindan, M. J. Probet, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys., Condens. Matter, Vol. 14, pp. 2717-2744, 2002.

. R. D. Vispute, V. Talyansky, S. Choopun, P. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X Li, L. G. Salamanca-Riba, A. A. Iliadis, K. A. Jones, “Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices,” Applied Physics Letters, Vol. 73, pp. 348, 1998.

. H. Y. Xia, C. Q. Xi, L. Z. Min, L. G. Fang, W. Y. Peng, W. Y. Ge, H. Y. Xia, C. Q. Xi, L. Z. Min, L. G. Fang, W. Y. Peng, W. Y. Ge, “First-principles calculation of microwave dielectric properties of Al-doping ZnO powders,” Acta Physico-Chimic Sinica, Vol. 58, pp. 8002, 2009.

. E. H. Kisi, M. M. Elcombe. “u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction,” Acta Cryst. C, Vol. 45, pp. 1867-1870, 1989.

. Y. G. Rui, F. G. Han, Z. S. Wen, M. J. Hong, C. Jun, Z. Yong, L. S. Ti, S. S. Chen, Z. Tao, “First-principles study of p-type ZnO by Te-N codoping,” Acta Phys. Sin., Vol. 61(17), pp. 176105-7, 2012.

. Z. C. Ying, W. Jing, B. Y. Lei, “First-principles investigation of N Ag co-doping effect on electronic properties in p-type ZnO,” Chin. Phys. B, Vol. 19(4), pp. 047101-7, 2010.

. S. F. Decremp, F. Datchi, A. M. Saitta, A. Polian, S. Pascarelli, A. DiCicco, J. P. Itie, F. Baudelet, “Local structure of condensed zinc oxide,” Phys. Rev. B, Vol. 68, pp. 104101-10, 2013.

. J. E. Jaffe, J. A. Snydern, Z. Lin, A. C. Hess, “LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO,” Phys. Rev. B, Vol. 62, pp. 1660-1665, 2010.

. R. Baghdad, B. Kharroubi, A. Abdiche, M. Bousmaha, M. A. Bezzerrouk, A. Zeinert, M. E. Marssi, K. Zellama, “Mn doped ZnO nanostructured thin films prepared by ultrasonic spray pyrolysis method,” Superlatt. Microstruct., Vol. 52, pp. 711-721, 2012.

. M. N. H. Liton, K. K. R. Khan, M. M. Rahman, M. M. Islam, “Effect of N and Cu Doping on Structure, Surface Morphology and Photoluminescence Properties of ZnO Thin Films,” J. Sci. Res., Vol. 7(1), pp. 23-34, 2015.

. M. A. Basyooni, M. Shaban, A. M. El Sayed, “Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films,” Scientific Reports, Vol. 7, pp. 41716, 2016.

. S. M. Karadeniz, H. K. B. Çiplak, A. E. Ekinci, “Synthesis and Characterization of Na Doped ZnO Rods Grown by Simple Chemical Method,” Materials Science (MEDŽIAGOTYRA), Vol. 26(4), pp. 387-391, 2020.

. M. N. H. Liton, M. K. R. Khan, M. M. Rahman, “Effect of N and Al-N dual doping on optical, photoluminescence and transport properties of ZnO films,” Mater. Res. Express, Vol. 2, pp. 065903–065909, 2015.

. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica, Vol. 32(5), pp. 751–767, 1976.

. X. Si, Y. Liu, W. Lei, J. Xu, W. Du, L. Jia, T. Zhou, L. Zheng, “First-principles investigation on the optoelectronic performance of Mg doped and Mg–Al co-doped ZnO,” Materials and Design, Vol. 93, pp. 128–132, 2016.

. Z. Ming Z, Z. C. Hui, S. Jiang, “First-principles calculation of electronic structure of MgxZn1−xO codoped with aluminium and nitrogen,” Chin. Phys. B, Vol. 20, pp. 017101, 2011.

. P. Yang, Y. F. Zhao, H. Y. Yang, “Investigation on optoelectronic performances of Al, N codoped ZnO: First-principles method,” Ceram. Int., Vol. 41, pp. 2446–2452, 2015.

. R. Chowdhury, P. Rees, S. Adhikari, F. Scarpa, S. P. Wilks, “Electronic structures of silicon doped ZnO,” Physica B, Vol. 405, PP. 1980-1985, 2010.

. M. Bousmaha, M. A. Bezzerrouk, R. Baghdad, K. Chebbah, B. Kharroubi, B. Bouhafs, “Realization of p-Type Conductivity in ZnO via Potassium Doping,” Acta Physica Polonica A, Vol. 129, pp. 1155-1158, 2016.

. R. De L Kronig, “On the Theory of Dispersion of X-Rays,” Journal of the Optical Society of America, Vol. 12 (6), pp. 547-557, 1926.

. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapour deposition,” J. Appl. Phys., Vol. 98, pp. 013505-5, 2005.

Downloads

Published

2021-01-05

How to Cite

A. Sayed, M. ., & Kamruzzaman, M. . (2021). The Effects of Dual Acceptor (Na, N) Doping on Zn and O Sites in ZnO. International Journal of Sciences: Basic and Applied Research (IJSBAR), 55(1), 112–125. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/12132

Issue

Section

Articles