Phytochemical, Pharmacological and Toxicological Aspects of Capparis erythrocarpos Isert.: A Review

  • Michael Odoi Kyene Department of Pharmaceutics and Quality Control, Centre for Plant Medicine Research, Mampong, Ghana
  • Mary-Ann Archer Department of Pharmaceutics and Quality Control, Centre for Plant Medicine Research, Mampong, Ghana
  • Susana Oteng Mintah Department of Microbiology, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
  • Peter Atta Adjei Department of Plant Development, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
  • Genevieve Yeboah Department of Pharmaceutics and Quality Control, Centre for Plant Medicine Research, Mampong, Ghana
  • Doris Kumadoh Department of Production, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
  • Alfred Ampomah Appiah Department of Production, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana, Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
Keywords: Capparis erythrocarpos, flavonoids, alkaloids, anti-inflammatory, ethnopharmacology


Capparis erythrocarpos is a shrub plant with a large natural distribution used in traditional medicines to cure various illnesses. The study sought to review and compile all data available on this medicinally important plant, which will help inform scientists and researchers the gap needed to be filled in studying the plant. The present review summarizes information concerning the ethnopharmacology, morphology, phytochemistry, toxicology and biological activities of C. erythrocarpos. Scientific databases such as NCBI/PubMed, Google scholar, Sci finder, Science direct were searched for published article on the plant. The active phytochemicals; flavonoids, alkaloids, terpenoids, phytosterols, glycosides, tannins, coumarins and saponins have been identified from various parts of the plant. Pharmacological and biological studies on the plant have revealed its antimicrobial, analgesic, anti-inflammatory, antipyretic, anti-diabetic and anti-dyslipidemia activities, with no reported toxic effect. It is recommended that future studies should focus on identification, separation, purification and quantification of the most bioactive constituents of C. erythrocarpos due to the paucity of information in this area.


D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019,” J. Nat. Prod., vol. 83, no. 3, pp. 770–803, 2020.

J. Hutchinson, The genera of flowering plants (Angiospermae) Vol-2. Oxford Univeristy Press; London, 1967.

F. R. Irvine, “Woody plants of Ghana.,” Oxford University Press: Oxford, pp. 653, 1961.

U. Quattrocchi, CRC world dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology (5 Volume Set). CRC press, 2012.

J. Jenik and J. B. Hall, “Plant communities of the Accra plains, Ghana,” Folia Geobot. Phytotaxon., vol. 11, no. 2, pp. 163–212, 1976.

M. D. Swaine, “Characteristics of dry forest in West Africa and the influence of fire,” J. Veg. Sci., vol. 3, no. 3, pp. 365–374, 1992, doi: 10.2307/3235762.

M. A. Twumasi et al., “Leaves and stems of Capparis erythrocarpos, more sustainable than roots, show antiarthritic effects,” J. Ethnopharmacol., vol. 238, no. April, p. 111890, 2019, doi: 10.1016/j.jep.2019.111890.

E. K. Kumatia, S. Antwi, H. Brew-Daniels, A. A. Appiah, and A. Ocloo, “In vivo Comparative Anti-Inflammatory and Analgesic Activities of Root Bark, Stem and Leaf Extracts of Capparis erythrocarpus (Capparaceae),” Pharmacogn. J., vol. 11, no. 3, pp. 515–520, 2019, doi: 10.5530/pj.2019.11.82.

E. Woode, C. A. Danquah, E. Boakye-Gyasi, C. Ansah, G. Ainooson, and E. Woode, “Antinociceptive effects of an ethanolic extract of Capparis erythrocarpos isert roots in the mice formalin test,” Int. J. Pharmacol., vol. 5, no. 6, pp. 354–361, 2009, doi: 10.3923/ijp.2009.354.361.

A. Danquah, E. Woode, B. Gyasi, M. Duwiejua, and C. Ansah, “Anti-inflammatory and antipyretic effects of an ethanolic extract of capparis erythrocarpos isert roots,” Res. J. Med. Plant, vol. 5, no. 2, pp. 158–168, 2011, doi: 10.3923/rjmp.2011.158.168.

G. Anywar, “Antibacterial and Antifungal Properties of Some Wild Nutraceutical Plant Species from Nebbi District, Uganda,” Br. J. Pharm. Res., vol. 4, no. 14, pp. 1753–1761, 2014, doi: 10.9734/bjpr/2014/11443.

D. P. Kisangau, K. M. Hosea, H. V. M. Lyaruu, C. C. Josep, Z. H. Mbwambo, and P. J. Masimba, “In vivo Anticandida Activity of Three Traditionally Used Medicinal Plants in East Africa,” vol. 3, pp. 357–373, 2017, doi: 10.1007/978-94-024-1120-1_14.

G. Nyondo et al., “In-vivo anti-diabetic activity of Capparis erythrocarpos (Capparaceae) root extract,” Am. J. Physiol. Biochem. Pharmacol., vol. 10, no. 2, p. 48, 2020, doi: 10.5455/ajpbp.20191004054714.

P. Saka et al., “The anti-dyslipidemic effects of milled root bark ethanolic extract of Capparis erythro carpus in Sprague-Dawley rats: Implications for obesity and cardiovascular diseases,” J. Appl. Pharm. Sci., vol. 8, no. 1, pp. 001–008, 2018, doi: 10.7324/JAPS.2018.8101.

A. B. Kakooko and S. A. Kerwagi, “Medicinal plants in Uganda.,” 1996.

P. W. Geissler et al., “Medicinal plants used by Luo mothers and children in Bondo district, Kenya,” J. Ethnopharmacol., vol. 83, no. 1–2, pp. 39–54, 2002, doi: 10.1016/S0378-8741(02)00191-5.

D. P. Kisangau, H. V. M. Lyaruu, K. M. Hosea, and C. C. Joseph, “Use of traditional medicines in the management of HIV/AIDS opportunistic infections in Tanzania: A case in the Bukoba rural district,” J. Ethnobiol. Ethnomed., vol. 3, pp. 1–8, 2007, doi: 10.1186/1746-4269-3-29.

F. Haerdi, “The Indigenous Medicinal Plants of Ulanga District, Tanzania, East Africa.,” Acta Trop., no. Suppl. 8, pp. 1–278, 1964.

I. Hedberg, O. Hedberg, P. J. Madati, K. E. Mshigeni, E. N. Mshiu, and G. Samuelsson, “Inventory of plants used in traditional medicine in Tanzania. I. Plants of the families Acanthaceae-Cucurbitaceae,” J. Ethnopharmacol., vol. 6, no. 1, pp. 29–60, 1982.

A. Baldascini, “Income generating opportunities arising from natural ecosystems in Uganda,” Int. Food Policy Res. Institute, Washingt. DC, USA, 2002.

N. R. Mshana et al., “Traditional medicine and pharmacopoeia,” Contrib. to Revis. Ethnobot. Florist. Stud. Ghana. Organ. African Unity/Scientific, Tech. Res. Commision, Accra, 2000.

O. N. Martey, G. E. Armah, A. A. Sittie, and L. K. Okine, “A chronic toxicity study of the ground root bark of Capparis erythrocarpus (Cappareceae) in male Sprague-Dawley rats.,” Pak. J. Biol. Sci., vol. 16, no. 23, pp. 1706–1713, 2013.

O. S. Adeyemi and M. C. Owoseni, “Polyphenolic content and biochemical evaluation of fijk, alomo, osomo and oroki herbal mixtures in vitro,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 4, no. 3, pp. 200–206, 2015, doi: 10.1016/j.bjbas.2015.07.002.

K. C. Patrick-Iwuanyanwu and K. W. Nkpaa, “Toxicity effect of sub-chronic oral administration of class bitters® - a polyherbal formula on serum electrolytes and hematological indices in male Wistar albino rats,” J. Xenobiotics, vol. 5, no. 1, pp. 5–8, 2015, doi: 10.4081/xeno.2015.5369.

J. R. S. Tabuti, C. B. Kukunda, and P. J. Waako, “Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda,” J. Ethnopharmacol., vol. 127, no. 1, pp. 130–136, 2010.

POWO. "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Internet: [Jun. 12, 2021].

Capparis erythrocarpos Isert in GBIF Secretariat, GBIF Backbone Taxonomy, 2019. internet:, [Apr. 01, 2021].

M. Twumasi, E. Ekuadzi, M. K, M. Boakye-Gyasi, M. LK, and E. Woode, “Pharmacognostic Studies of the Leaves, Stem and Root of Capparis erythrocarpos Isert (Capparaceae),” Pharmacogn. J., vol. 11, pp. 112–118, Jan. 2019, doi: 10.5530/pj.2019.1.19.

M. A. Hyde, B. T. Wursten, and P. Ballings, “Flora of Zimbabwe.,” Flora of Zimbabwe., 2020. Species information: Capparis erythrocarpos var. rosea., retrieved [Dec. 02, 2020].

T. A. Mary, E. Edmund, M. K. Priscilla, B. G. E. Mariam, M. L. K. Merlin, and W. Eric, “Pharmacognostic studies of the leaves, stem and root of capparis erythrocarpos isert (Capparaceae),” Pharmacogn. J., vol. 11, no. 1, pp. 112–118, 2019, doi: 10.5530/pj.2019.1.19.

D. F. Parkhurst, S. Wong, G. D. Farquhar, and I. A. N. R. Cowan, “Intercellular CO2,” Plant Physiol., no. 1988, pp. 1032–1037, 1988.

K. A. Mott, A. C. Gibson, and J. W. O’Leary, “The adaptive significance of amphistomatic leaves,” Plant. Cell Environ., vol. 5, no. 6, pp. 455–460, 1982.

H. J. Peat and A. H. Fitter, “A comparative study of the distribution and density of stomata in the British flora,” Biol. J. Linn. Soc., vol. 52, no. 4, pp. 377–393, 1994.

S. Rhizopoulou and G. K. Psaras, “Development and Structure of Drought‐tolerant Leaves of the Mediterranean Shrub Capparis spinosa L.,” Ann. Bot., vol. 92, no. 3, pp. 377–383, 2003.

R. Veerasamy et al., “Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities,” J. Saudi Chem. Soc., vol. 15, no. 2, pp. 113–120, 2011, doi: 10.1016/j.jscs.2010.06.004.

T. Gull, F. Anwar, B. Sultana, M. A. C. Alcayde, and W. Nouman, “Capparis species: A potential source of bioactives and high-value components: A review,” Ind. Crops Prod., vol. 67, pp. 81–96, 2015, doi: 10.1016/j.indcrop.2014.12.059.

M. A. Twumasi et al., “Leaves and stems of Capparis erythrocarpos, more sustainable than roots, show antiarthritic effects,” J. Ethnopharmacol., vol. 238, p. 111890, 2019, doi: 10.1016/j.jep.2019.111890.

C. A. Danquah, E. Woode, and E. Boakye-Gyasi, “Anti-arthritic effects of an ethanolic extract of capparis erythrocarpos isert roots in freund’s adjuvant-induced arthritis in rats,” J. Pharmacol. Toxicol., vol. 6, no. 3, pp. 201–217, 2011, doi: 10.3923/jpt.2011.201.217.

M. G. Nair et al., “Dietary food supplement containing natural cyclooxygenase inhibitors and methods for inhibiting pain and inflammation.” Google Patents, Nov. 16, 2004.

J. A. O. Ojewole, “Analgesic, antiinflammatory and hypoglycemic effects of Sutherlandia frutescens R. BR.(variety Incana E. MEY.)(Fabaceae) shoot aqueous extract.,” Methods Find. Exp. Clin. Pharmacol., vol. 26, no. 6, pp. 409–416, 2004.

C. H. Foyer and G. Noctor, “Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria,” Physiol. Plant., vol. 119, no. 3, pp. 355–364, 2003, doi: 10.1034/j.1399-3054.2003.00223.x.

J. M. McCord, “The evolution of free radicals and oxidative stress,” Am. J. Med., vol. 108, no. 8, pp. 652–659, 2000, doi: 10.1016/S0002-9343(00)00412-5.

N. Li et al., “Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production,” J. Biol. Chem., vol. 278, no. 10, pp. 8516–8525, 2003.

J. Tomazetti et al., “Baker yeast-induced fever in young rats: Characterization and validation of an animal model for antipyretics screening,” J. Neurosci. Methods, vol. 147, no. 1, pp. 29–35, 2005, doi: 10.1016/j.jneumeth.2005.03.002.

K. G. M. M. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation,” Diabet. Med., vol. 15, no. 7, pp. 539–553, 1998.

How to Cite
Kyene, M. O., Archer , M.-A., Mintah , S. O., Adjei , P. A., Yeboah , G., Kumadoh, D., & Appiah, A. A. (2022). Phytochemical, Pharmacological and Toxicological Aspects of Capparis erythrocarpos Isert.: A Review. International Journal of Sciences: Basic and Applied Research (IJSBAR), 61(1), 196-211. Retrieved from